MATH-414 - Stochastic simulation

Lecture 6: Variance Reduction Techniques II

Prof. Fabio Nobile

Outline

Importance sampling

Importance sampling for stochastic processes

Importance sampling

- **X** random vector in \mathbb{R}^d with (joint) pdf $f: \mathbb{R}^d \to \mathbb{R}_+$
- $ightharpoonup Z = \psi(X) \in \mathbb{R}$ output quantity
- ▶ Goal: compute $\mu = \mathbb{E}[Z] = \mathbb{E}[\psi(X)]$

Consider an auxiliary pdf g s.t. $g(x) = 0 \Rightarrow \psi(x)f(x) = 0$. Then

$$\mu = \mathbb{E}\left[Z\right] = \int_{\mathbb{R}^d} \left(\frac{\psi(\mathbf{x})f(\mathbf{x})}{g(\mathbf{x})}\right) g(\mathbf{x}) d\mathbf{x} = \mathbb{E}\left[\frac{\psi(\tilde{\mathbf{X}})f(\tilde{\mathbf{X}})}{g(\tilde{\mathbf{X}})}\right], \quad \tilde{\mathbf{X}} \sim g$$

Importance sampling Monte Carlo estimator:

- lacktriangle generate N iid replicas $ilde{oldsymbol{X}}^{(i)} \sim g$
- riangleright compute $\hat{\mu}_{IS} = \frac{1}{N} \sum_{i=1}^{N} \frac{\psi(\tilde{\mathbf{X}}^{(i)}) f(\tilde{\mathbf{X}}^{(i)})}{g(\tilde{\mathbf{X}}^{(i)})}$

Nomenclature

- g: importance sampling distribution (or dominating distribution)
- $w(x) = \frac{f(x)}{g(x)}$: likelihood ratio

Importance sampling – algorithm

Algorithm: Importance sampling

- 1 Generate N iid replicas $ilde{X}^{(1)}, \dots, ilde{X}^{(N)} \sim g$
- 2 Compute $\hat{\mu}_{\text{IS}} = \frac{1}{N} \sum_{i=1}^{N} \psi(\tilde{X}^{(i)}) w(\tilde{X}^{(i)}), \qquad w(\tilde{X}^{(i)}) = \frac{f(\tilde{X}^{(i)})}{g(\tilde{X}^{(i)})}$
- 3 Estimate $\hat{\sigma}_{IS}^2 = \frac{1}{N-1} \sum_{i=1}^N \left(\psi(\tilde{X}^{(i)}) w(\tilde{X}^{(i)}) \hat{\mu}_{IS} \right)^2$
- 4 Output $\hat{\mu}_{\text{IS}}$ and a (asymptotic) 1-lpha confidence interval

$$\hat{I}_{\alpha,N} = \left[\hat{\mu}_{\mathsf{IS}} - c_{1-\alpha/2} \frac{\hat{\sigma}_{\mathsf{IS}}}{\sqrt{N}}, \ \hat{\mu}_{\mathsf{IS}} + c_{1-\alpha/2} \frac{\hat{\sigma}_{\mathsf{IS}}}{\sqrt{N}}\right]$$

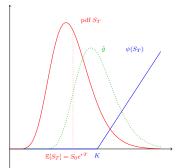
Example – option pricing

 \triangleright S_t : value of an asset at time t, modeled by

$$dS_t = rS_t dt + \sigma S_t dW_t, \quad t \in (0, T]$$

- ▶ call option: payoff $\psi(S_T) = (S_T K)_+$:
- ▶ **Goal**: estimate (discounted) option price $\mu = \mathbb{E}\left[e^{-rT}\psi(S_T)\right]$
- If K ≫ S₀ only few samples will fall above the strike price ~> CMC estimator is inefficient
- ▶ Idea: increase interest rate r to enhance the probability of S_T being above the strike

$$d\tilde{S}_t = \tilde{r}\tilde{S}_t dt + \sigma \tilde{S}_t dW_t$$



Example – option pricing

- original random variable: $S_T = S_0 e^{X_T}$, with $X_T \sim N((r \sigma^2/2)T, \sigma^2T)$
- lacksquare option price: $\mu=\mathbb{E}\left[ilde{\psi}(X_T)\right]$, with $ilde{\psi}(X_T)=e^{-rT}(S_0e^{X_T}-K)_+$
- ▶ modified random variable: $\tilde{S}_T = S_0 e^{\tilde{X}_T}$, with $\tilde{X}_T \sim N((\tilde{r} \sigma^2/2)T, \sigma^2T)$
- likelihood ratio: $w(x) = \frac{f_{X_T}(x)}{f_{\tilde{X}_T}(x)} = \exp\left\{\frac{(\tilde{r}-r)((\tilde{r}+r-\sigma^2)T-2x)}{2\sigma^2}\right\}$
- Importance sampling

$$\mu = \mathbb{E}\left[\tilde{\psi}(\tilde{X}_T)w(\tilde{X_T})\right]$$

with \tilde{X}_T following the modified GBM.

Choice of importance sampling distribution

Consider the importance sampling Monte Carlo estimator

$$\hat{\mu}_{\mathsf{IS}} = rac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} rac{\psi(ilde{X}^{(i)}) f(ilde{X}^{(i)})}{g(ilde{X}^{(i)})}, \qquad ilde{X}^{(i)} \stackrel{\mathsf{iid}}{\sim} g$$

- \triangleright $\hat{\mu}_{IS}$ is unbiased.
- ▶ Variance of $\hat{\mu}_{IS}$:

$$\operatorname{Var}\left[\hat{\mu}_{\mathsf{IS}}\right] = \frac{1}{N} \operatorname{Var}_{g}\left(\frac{\psi f}{g}\right) = \frac{1}{N} \left(\int_{\mathbb{R}^{d}} \frac{\psi^{2}(x) f^{2}(x)}{g^{2}(x)} g(x) dx - \mu^{2} \right)$$
$$= \frac{1}{N} \left(\mathbb{E}_{f} \left[\psi^{2} \frac{f}{g} \right] - \mu^{2} \right)$$

Can we choose optimally g to minimize the variance of the extimator?

Choice of importance sampling distribution

Constrained minimization problem

$$\min_{g} \int \frac{\psi^{2}(x)f^{2}(x)}{g(x)} dx \quad \text{s.t.} \quad \int g(x)dx = 1, \quad g \ge 0$$

Lagrangian multiplier approach: $\mathcal{L}(g,\lambda) = \int_{\Gamma} \frac{\psi^2 f^2}{g} dx + \lambda \left(\int_{\Gamma} g - 1 \right)$ taking variations:

$$egin{aligned} rac{\partial \mathcal{L}}{\partial \mathbf{g}}(\delta \mathbf{g}) &= -\int_{\mathbb{R}^d} \left(\psi^2 rac{f^2}{\mathbf{g}^2} - \lambda
ight) \delta \mathbf{g} d\mathbf{x} = 0, \qquad orall \delta \mathbf{g} \ &\Longrightarrow \qquad \mathbf{g}^2 = rac{\psi^2 f^2}{\lambda} \end{aligned}$$

optimal pdf:
$$g^* = \frac{|\psi|f}{\int |\psi|f}$$

- Not practical: Normalizing constant $\int |\psi| f dx$ not know (and as difficult to compute as $\mathbb{E}_{X \sim f}[\psi(X)]$)
- Gives guidelines on how to construct good importance sampling distributions

Optimal distribution over a parametric family

variance minimization

- ▶ Let $\mathcal{F} = \{f(\cdot, \theta), \ \theta \in \Theta\}$ be a paramtric family of distributions (e.g. exponenatial family)
- ▶ Assume that the initial distribution f is in \mathcal{F} , i.e. $f(\cdot) = f(\cdot, \theta_0)$

Idea: look for optimal g within \mathcal{F} :

$$g(\cdot) = f(\cdot, \theta^*), \quad \text{with } \theta^* = \operatorname*{argmin}_{\theta \in \Theta} \mathbb{E}_{\theta_0} \left[\frac{\psi^2 f(\cdot, \theta_0)}{f(\cdot, \theta)} \right].$$

Algorithm: Importance sampling with variance minimization

- 1 Generate \bar{N} iid replicas $Y^{(1)}, \ldots, Y^{(\bar{N})} \sim f(\cdot, \theta_0)$
- 2 Solve the minimization problem

$$\hat{\theta}_{\mathbf{Y}}^* = \underset{\theta \in \Theta}{\operatorname{argmin}} \ \frac{1}{\bar{N}} \sum_{i=1}^{\bar{N}} \psi^2(Y^{(i)}) \frac{f(Y^{(i)}, \theta_0)}{f(Y^{(i)}, \theta)}$$

- 3 Generate N iid replicas $X^{(1)}, \ldots, X^{(N)} \sim f(\cdot, \hat{\theta}_{Y}^{*})$
- 4 Compute $\hat{\mu}_{IS} = \frac{1}{N} \sum_{i=1}^{N} \psi(X^{(i)}) \frac{f(X^{(i)}, \theta_0)}{f(X^{(i)}, \hat{\theta}^*)}$.

Adaptive importance sampling

The previous algorithm can be made adaptive:

- ightharpoonup suppose that at the (k-1)-th iteration we have estimated the parameter $heta^{(k-1)}$
- ▶ Then, at iteration k we generate from $f(\cdot, \theta^{(k-1)})$ and we have to minimize the variance

$$\theta^{(k)} = \operatorname*{argmin}_{\theta} \mathbb{E}_{\theta_0} \left[\frac{\psi^2 f(\cdot, \theta_0)}{f(\cdot, \theta)} \right] \\ = \mathbb{E}_{\theta^{(k-1)}} \left[\frac{\psi^2 f^2(\cdot, \theta_0)}{f(\cdot, \theta) f(\cdot, \theta^{(k-1)})} \right]$$

Algorithm: Adaptive importance sampling with variance minimization

```
Given: tol, \alpha, \theta_0, \bar{N} > 1, \gamma > 1

1 Set N = \bar{N}, \hat{\theta} = \theta_0, \hat{\sigma} = \infty

2 while \frac{\hat{\sigma} c_{1-\alpha/2}}{\sqrt{N}} > tol do

3 Generate N iid replicas Y^{(1)}, \ldots, Y^{(N)} \sim f(\cdot, \hat{\theta})

4 Compute \hat{\mu}_{IS} = \frac{1}{N} \sum_{i=1}^{N} \psi(Y^{(i)}) \frac{f(Y^{(i)}, \theta_0)}{f(Y^{(i)}, \hat{\theta})}

5 Optimize \hat{\theta}_{new} = \operatorname{argmin}_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \psi^2(Y^{(i)}) \frac{f^2(Y^{(i)}, \theta_0)}{f(Y^{(i)}, \theta)f(Y^{(i)}, \hat{\theta})}

6 Set \hat{\theta} = \hat{\theta}_{new} and N = \gamma N
```


7 end

Optimal distribution over a parametric family

cross entropy minimization

Definition. The Kullbach-Leibler divergence $D_{KL}(g|f)$ between a target pdf g and a candidate pdf f is defined as

$$D_{KL}(g|f) = \mathbb{E}_g[\log \frac{g}{f}] = \int g(x) \log g(x) dx - \int g(x) \log f(x) dx.$$

$$D_{KL}(g|f) \ge 0$$
 and $D_{KL}(g|f) = 0$ if and only if $g = f$ a.e.

Idea: find the pdf $f\in\mathcal{F}$ that minimizes the KL divergence to the optimal importance sampling distribution $g^*=\frac{|\psi|f}{\int \|\psi|f}$

$$\begin{split} \theta^* &= \operatorname*{argmin}_{\theta} D_{\mathit{KL}}(g^*|f(\cdot,\theta)) = \operatorname*{argmin}_{\theta} \mathbb{E}_{g^*}[\log g^*] - \mathbb{E}_{g^*}[\log f(\cdot,\theta)] \\ &= \operatorname*{argmax}_{\theta} \frac{1}{\mathbb{E}_{\theta_0}[|\psi|]} \int |\psi(x)| f(x,\theta_0) \log f(x,\theta) dx \\ &= \operatorname*{argmax}_{\theta} \int |\psi(x)| f(x,\theta_0) \log f(x,\theta) dx \\ &= \operatorname*{argmax}_{\theta} \mathbb{E}_{\hat{\theta}} \left[|\psi(\cdot)| \frac{f(\cdot,\theta_0)}{f(\cdot,\hat{\theta})} \log f(\cdot,\theta) \right] \end{split}$$

Adaptive cross-entropy importance sampling

Algorithm: Adaptive importance sampling with cross entropy minimization

```
Given: tol, \alpha, \theta_0, \bar{N} > 1, \gamma > 1
1 Set N = \bar{N}. \hat{\theta} = \theta_0. \hat{\sigma} = \infty
2 while \frac{\hat{\sigma}c_{1-\alpha/2}}{\sqrt{N}} > tol \ \mathbf{do}
3 Generate N iid replicas Y^{(1)}, \ldots, Y^{(N)} \sim f(\cdot, \hat{\theta})
        Compute \hat{\mu}_{IS} = \frac{1}{N} \sum_{i=1}^{N} \psi(Y^{(i)}) \frac{f(Y^{(i)}, \theta_0)}{f(Y^{(i)}, \hat{\theta})}
4
   Optimize \hat{\theta}_{new} = \operatorname{argmax}_{\theta} \frac{1}{N} |\psi(Y^{(i)})| \frac{f(Y^{(i)}, \theta_0)}{f(Y^{(i)}, \hat{\theta})} \log f(Y^{(i)}, \theta)
            Set \hat{\theta} = \hat{\theta}_{new} and N = \gamma N
7 end
```


8 Output $\hat{\mu}_{\mathsf{IS}}$

Weighted importance sampling

In certain cases, the pdf f and/or the dominating pdf g, are known only up to a normalizing constant.

Let
$$f = c_g \tilde{f}$$
 and $g = c_g \tilde{g}$, with $c_f = (\int \tilde{f})^{-1}$ and $c_g = (\int \tilde{g})^{-1}$.

Self-normalized importance sampling estimator

$$\hat{\mu}_{\mathsf{IS}}^{W} = \frac{\sum_{i=1}^{N} \psi(X^{(i)}) w(X^{(i)})}{\sum_{i=1}^{N} w(X^{(i)})}, \quad \text{with} \quad w(x) = \frac{\tilde{f}(x)}{\tilde{g}(x)}, \quad X^{(i)} \stackrel{\text{iid}}{\sim} g$$

The estimator $\hat{\mu}_{IS}^{W}$ is asymptotically consistent. Indeed by SLLN

$$\frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}) \xrightarrow{\text{a.s.}} \int \frac{\tilde{f}(x)}{\tilde{g}(x)} g(x) dx = \frac{c_g}{c_f}$$

$$\frac{1}{N} \sum_{i=1}^{N} \psi(X^{(i)}) w(X^{(i)}) \xrightarrow{\text{a.s.}} \int \psi \frac{\tilde{f}}{\tilde{g}} g dx = \frac{c_g}{c_f} \mu$$

It is however, biased, in general, although the bias is usually small.

Discrete time Markov Chains

Consider a discrete time Markov chain $\{X_n, n \in \mathbb{N}_0\} \sim \operatorname{Markov}(p_0, P)$ in \mathbb{R}^d , with transition density function $p : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$:, i.e.

$$P(x,A) = \mathbb{P}(X_{n+1} \in A \mid X_n = x) = \int_A p(x,y) dy, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

Goal: compute $\mu = \mathbb{E}[Z] = \mathbb{E}[\psi(X_{0:m})]$

where $X_{0:m} = (X_0, \dots, X_m)$ corresponds to the path up to step m.

Question: how to do importance sampling in this case?

Take dominating densities

$$q_0\gg p_0$$
 (i.e. $q_0(y)=0 \implies p_0(y)=0, \ \forall y)$ $q(x,\cdot)\gg p(x,\cdot), \ \forall x$ (i.e. $q(x,y)=0 \implies p(x,y)=0, \ \forall y)$

Shorthand notation:

$$\begin{aligned} \{X_n\} \sim p_0, P & & \text{if } \{X_n\} \sim \operatorname{Markov}\{p_0, P\} \\ \{X_n\} \sim q_0, Q & & \text{if } \{X_n\} \sim \operatorname{Markov}\{q_0, Q\} \end{aligned}$$

Discrete time Markov Chains

$$\mu = \mathbb{E}_{X_{0:m} \sim p_0, P}[\psi(X_{0:m})] = \int \psi(x_0, \dots, x_m) p_{X_{0:m}}(x_0, \dots, x_m) dx_0 \dots dx_m$$

$$= \int \psi(x_0, \dots, x_m) p_0(x_0) p(x_0, x_1) \dots p(x_{m-1}, x_m) dx_0 \dots dx_m$$

$$= \int \psi(x_0, \dots, x_m) \frac{p_0(x_0) \prod_{i=1}^m p(x_{i-1}, x_i)}{q_0(x_0) \prod_{i=1}^m q(x_{i-1}, x_i)} q_0(x_0) \prod_{i=1}^m q(x_{i-1}, x_i) dx_0 \dots dx_m$$

$$= \mathbb{E}_{X_{0:m} \sim q_0, Q}[\psi(X_{0:m}) w(X_{0:m})]$$
with likelihood ratio $w(X_{0:m}) = \frac{p_0(X_0)}{q_0(X_0)} \prod_{i=1}^m \frac{p(X_{i-1}, X_i)}{q(X_{i-1}, X_i)}.$

The previous formula generalizes to the case of a stopped process. Let τ be a stopping time (e.g. $\tau = \min\{n \geq 0 : X_n \in A\}$) and aim to compute $\mu = \mathbb{E}\left[\psi_{\tau}(X_{0:\tau})\mathbb{1}_{\tau<\infty}\right]$ with $\{X_n\} \sim \operatorname{Markov}(p_0, P)$. Then

$$\mu = \mathbb{E}_{\{X_n\} \sim q_0, Q}[\psi_{ au}(X_{0: au})\mathbb{1}_{ au < \infty} w(X_{0: au})]$$
 with $w(X_{0: au})$ as above

as long as $\tau < \infty$ under P $\implies \tau < \infty$ under Q.

Discrete time Markov Chains

Algorithm: Importance sampling for Markov processes.

- 1 Generate N iid paths $X_{0:\tau^{(i)}}^{(i)}=(X_0^{(i)},\ldots,X_{\tau^{(i)}}^{(i)}),\ i=1,\ldots,N,$ each one up to the stopping time $\tau^{(i)}$, of the Markov chain with transition probability $q:\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R}_+$ and initial probability $q_0:\mathbb{R}^d\to\mathbb{R}_+$
- 2 Compute likelihood ratio $w(X_{0:\tau^{(i)}}^{(i)}) = \frac{p_0(X_0^{(i)})}{q_0(X_0^{(i)})} \prod_{k=1}^{\tau^{(i)}} \frac{p(X_{k-1}^{(i)}, X_k^{(i)})}{q(X_{k-1}^{(i)}, X_k^{(i)})}$
- 3 Compute $\hat{\mu}_{\text{IS}} = \frac{1}{N} \sum_{i=1}^N \psi_{\tau^{(i)}} (X_{0:\tau^{(i)}}^{(i)}) w(X_{0:\tau^{(i)}}^{(i)})$
- 4 Output $\hat{\mu}_{IS}$ and a confidence interval based on $\hat{\sigma}_{IS}$.

Discretized stochastic differential equations

Consider a stochastic differential equation in \mathbb{R}^d

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t, \quad t > 0,$$
 with X_0 given, (1)

- \triangleright W_t : d-dimensional Brownian motion
- \triangleright $b: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^d$: drift
- $ightharpoonup \sigma: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^{d \times d}$: diffusion matrix

Goal: compute
$$\mu = \mathbb{E}[Z] = \mathbb{E}[\psi(\{X_t\}_{0 \le t \le T})]$$

(e.g.
$$Z = \int_0^T X_{s,1} ds$$
, $Z = ||X_T||$, etc.)

Discretization by Euler Maruyama:

$$X_{n+1} = X_n + b(X_n, t_n)\Delta t + \sigma(X_n, t_n)\xi_n, \quad \xi_n \sim N(0, I_{d\times d}\Delta t).$$

Discretized output

$$\mu_{\Delta t} = \mathbb{E}\left[\psi_{\Delta t}(X_0,\ldots,X_m)\right] = \mathbb{E}_{\xi_0,\ldots,\xi_{m-1}}[\hat{\psi}(\xi_0,\ldots,\xi_{m-1})]$$

Discretized stochastic differential equations

How to do importance sampling in this case? Idea: change the drift of the SDE to $\tilde{b}(X_n, t_n)$.

This corresponds to changing the mean of the Gaussian increments:

$$\tilde{\xi}_n \sim N(\phi(X_n, t_n)\Delta t, I_{d\times d}\Delta t), \quad \phi(X_n, t_n) = \sigma^{-1}(X_n, t_n)(\tilde{b}(X_n, t_n) - b(X_n, t_n))$$

Indeed, writing $\tilde{\xi}_n = \phi(X_n, t_n)\Delta t + \eta_n$, with $\eta_n \sim N(0, I_{d\times d}\Delta t)$ we have

$$X_{n+1} = X_n + b(X_n, t_n) \Delta t + \sigma(X_n, t_n) \tilde{\xi}_n$$

= $X_n + \tilde{b}(X_n, t_n) \Delta t + \sigma(X_n, t_n) \eta_n$

We then have

$$\mu_{\Delta t} = \mathbb{E}_{\xi_{0:m-1}}[\hat{\psi}(\xi_{0:m-1})] = \mathbb{E}_{\tilde{\xi}_{0:m-1}}\left[\hat{\psi}(\tilde{\xi}_{0:m-1})w(\tilde{\xi}_{0:m-1})\right]$$

Discretized stochastic differential equations

Denoting $z \mapsto p(z; \mu, \Sigma)$ the joint pdf of a Gaussian vector with mean μ and covariance matrix Σ , the likelihood ratio reads

$$w(\tilde{\xi}_{0:m-1}) = \prod_{i=0}^{m-1} \frac{p(\tilde{\xi}_{i}; 0, I_{d \times d} \Delta t)}{p(\tilde{\xi}_{i}; \phi(X_{i}, t_{i}) \Delta t, I_{d \times d} \Delta t)}$$

$$= \prod_{i=0}^{m-1} \exp\left(-\frac{1}{2\Delta t} \|\tilde{\xi}_{i}\|^{2} + \frac{1}{2\Delta t} \|\tilde{\xi}_{i} - \phi(X_{i}, t_{i}) \Delta t\|^{2}\right)$$

$$= \prod_{i=0}^{m-1} \exp\left(\frac{\Delta t}{2} \|\phi(X_{i}, t_{i})\|^{2} - \phi(X_{i}, t_{i})^{T} \tilde{\xi}_{i}\right)$$

$$= \exp\left(\frac{1}{2} \sum_{i=0}^{m-1} \Delta t \|\phi(X_{i}, t_{i})\|^{2} - \sum_{i=0}^{m-1} \phi(X_{i}, t_{i})^{T} \tilde{\xi}_{i}\right)$$

Discretized stochastic differential equations

Algorithm: Importance sampling for SDEs.

1 Generate N iid paths $X_{0:m}^{(i)}$, i = 1, ..., N with modified drift

$$X_{n+1}^{(i)} = X_n^{(i)} + b(X_n^{(i)}, t_n) \Delta t + \sigma(X_n^{(i)}, t_n) \tilde{\xi}_n^{(i)}, \quad \tilde{\xi}_n^{(i)} \sim N(\phi(X_n, t_n) \Delta t, I_{d \times d} \Delta t)$$
(2)

2 Compute likelihood ratio

$$w(\tilde{\xi}_{0:m-1}^{(i)}) = \exp\left(\frac{1}{2}\sum_{n=0}^{m-1}\Delta t \|\phi(X_n^{(i)}, t_n)\|^2 - \sum_{n=0}^{m-1}\phi(X_n, t_n)^T \tilde{\xi}_n^{(i)}\right)$$

- 3 Compute $\hat{\mu}_{\text{IS}} = \frac{1}{N} \sum_{i=1}^{N} \hat{\psi}(\tilde{\xi}_{0:m-1}^{(i)}) w(\tilde{\xi}_{0:m-1}^{(i)})$
- 4 Output $\hat{\mu}_{\text{IS}}$ and a confidence interval based on $\hat{\sigma}_{\text{IS}}$.

Discretized stochastic differential equations

In the limit $\Delta t \to 0$ we can define a drifted Brownian motion $d\tilde{W}_t = \phi(X_i, t_i)dt + dW_t$ (with W_t a standad BM) and

$$w(\{\tilde{W}_t\}_{0 \leq t \leq T}) = \exp\left(\frac{1}{2} \int_0^T \|\phi(X_t, t)\|^2 dt - \int_0^T \phi(X_t, t) \cdot d\tilde{W}_t\right)$$

This represents the ratio between the (joint) densities of W_t and \tilde{W}_t denoted $\frac{d\mathbb{P}_{W_t}}{d\mathbb{P}_{\tilde{W}_t}}$ (Girsanov's theorem)

Then we can write (at least formally)

$$\mu = \mathbb{E}_{W_t}[\psi(\{X_t\}_{0 \le t \le T})] = \mathbb{E}_{\tilde{W}_t} \left[\psi(\{X_t\}_{0 \le t \le T}) \frac{d\mathbb{P}_{W_t}}{d\mathbb{P}_{\tilde{W}_t}}(\tilde{W}_t) \right].$$

Continuous time discrete space Markov processes

Consider a continuous time Markov process taking values in the discrete space $\mathcal{X} = \{y_1, y_2, \ldots\}$

$$\{X_t \in \mathcal{X}, t \geq 0\} \sim \operatorname{Markov}(\lambda, Q)$$

(Q - stable and conservative generator matrix; λ initial distribution)

Goal: compute $\mu = \mathbb{E}[Z] = \mathbb{E}[\psi(\{X_t\}_{0 \le t \le T})]$

Importance sampling by changing (λ, Q) into $(\tilde{\lambda}, \tilde{Q})$. Then

$$\mu = \mathbb{E}_{\lambda,Q}[\psi(\{X_t\}_{0 \leq t \leq T})] = \mathbb{E}_{\tilde{\lambda},\tilde{Q}}[\psi(\{X_t\}_{0 \leq t \leq T})w(\{X_t\}_{0 \leq t \leq T})]$$

Denoting $\{J_n\}$ the jump times; $\{S_n\}$ the holding times; $\{Y_n\}$ the visited states, then the Likelihood ratio reads

$$\begin{split} w(\{X_t\}_{0 \leq t \leq T}) &= \frac{\lambda_{X_0}}{\tilde{\lambda}_{X_0}} \left(\prod_{i=1}^{N(T)} \frac{Q_{Y_{i-1}Y_i}}{\tilde{Q}_{Y_{i-1}Y_i}} \frac{\exp\{-S_j Q_{Y_{j-1}}\}}{\exp\{-S_j \tilde{Q}_{Y_{j-1}}\}} \right) \frac{\exp\{-(T - J_{N(T)})Q_{Y_{N(T)}}\}}{\exp\{-(T - J_{N(T)})\tilde{Q}_{Y_{N(T)}}\}} \\ &= \frac{\lambda_{X_0}}{\tilde{\lambda}_{X_0}} \left(\prod_{j=1}^{N(T)} \frac{Q_{Y_{i-1}Y_i}}{\tilde{Q}_{Y_{i-1}Y_i}} \right) \exp\left\{-\int_0^T (Q_{Y_s} - \tilde{Q}_{Y_s}) ds\right\} \end{split}$$

with $Q_i = -Q_{ii} = \sum_{i \neq i} Q_{ij}$.

