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Importance sampling

Importance sampling for stochastic processes



Importance sampling
▶ X random vector in Rd with (joint) pdf f : Rd → R+

▶ Z = ψ(X) ∈ R output quantity
▶ Goal: compute µ = E [Z ] = E [ψ(X)]

Consider an auxiliary pdf g s.t. g(x) = 0 ⇒ ψ(x)f (x) = 0. Then

µ = E [Z ] =
∫
Rd

(
ψ(x)f (x)

g(x)

)
g(x) dx = E

[
ψ(X̃)f (X̃)

g(X̃)

]
, X̃ ∼ g

Importance sampling Monte Carlo estimator:
▶ generate N iid replicas X̃ (i) ∼ g
▶ compute µ̂IS = 1

N
∑N

i=1
ψ(X̃(i))f (X̃(i))

g(X̃(i))

Nomenclature
▶ g : importance sampling distribution (or dominating distribution)
▶ w(x) = f (x)

g(x) : likelihood ratio



Importance sampling – algorithm

Algorithm: Importance sampling
1 Generate N iid replicas X̃ (1), . . . , X̃ (N) ∼ g
2 Compute µ̂IS = 1

N
∑N

i=1 ψ(X̃ (i))w(X̃ (i)), w(X̃ (i)) = f (X̃ (i))
g(X̃ (i))

3 Estimate σ̂2
IS = 1

N−1
∑N

i=1
(
ψ(X̃ (i))w(X̃ (i)) − µ̂IS

)2

4 Output µ̂IS and a (asymptotic) 1 − α confidence interval

Îα,N =
[
µ̂IS − c1−α/2

σ̂IS√
N
, µ̂IS + c1−α/2

σ̂IS√
N

]



Example – option pricing

▶ St : value of an asset at time t, modeled by

dSt = rSt dt + σSt dWt , t ∈ (0,T ]

▶ call option: payoff ψ(ST ) = (ST − K )+:
▶ Goal: estimate (discounted) option price µ = E

[
e−rTψ(ST )

]
▶ If K ≫ S0 only few samples will

fall above the strike price ⇝
CMC estimator is inefficient

▶ Idea: increase interest rate r to
enhance the probability of ST
being above the strike

dS̃t = r̃ S̃t dt + σS̃t dWt

E[ST ] = S0erT K

pdf ST

ψ(ST )g̃



Example – option pricing

▶ original random variable: ST = S0eXT , with
XT ∼ N((r − σ2/2)T , σ2T )

▶ option price: µ = E
[
ψ̃(XT )

]
, with ψ̃(XT ) = e−rT (S0eXT − K )+

▶ modified random variable: S̃T = S0eX̃T , with
X̃T ∼ N((r̃ − σ2/2)T , σ2T )

▶ likelihood ratio: w(x) = fXT (x)
fX̃T

(x) = exp
{

(r̃−r)((r̃+r−σ2)T−2x)
2σ2

}
▶ Importance sampling

µ = E
[
ψ̃(X̃T )w(X̃T )

]
with X̃T following the modified GBM.



Choice of importance sampling distribution

Consider the importance sampling Monte Carlo estimator

µ̂IS = 1
N

N∑
i=1

ψ(X̃ (i))f (X̃ (i))
g(X̃ (i))

, X̃ (i) iid∼ g

▶ µ̂IS is unbiased.
▶ Variance of µ̂IS :

Var [µ̂IS] = 1
N Varg

(
ψf
g

)
= 1

N

(∫
Rd

ψ2(x)f 2(x)
g2(x) g(x) dx − µ2

)
= 1

N

(
Ef

[
ψ2 f

g

]
− µ2

)

Can we choose optimally g to minimize the variance of the extimator?



Choice of importance sampling distribution
Constrained minimization problem

min
g

∫
ψ2(x)f 2(x)

g(x) dx s.t.
∫

g(x)dx = 1, g ≥ 0

Lagrangian multiplier approach: L(g , λ) =
∫

Γ
ψ2f 2

g dx + λ
(∫

Γ g − 1
)

taking variations:

∂L
∂g (δg) = −

∫
Rd

(
ψ2 f 2

g2 − λ

)
δgdx = 0, ∀δg

=⇒ g2 = ψ2f 2

λ

optimal pdf: g∗ = |ψ|f∫
|ψ|f

▶ Not practical: Normalizing constant
∫

|ψ|fdx not know (and as
difficult to compute as EX∼f [ψ(X )])

▶ Gives guidelines on how to construct good importance
sampling distributions



Optimal distribution over a parametric family
variance minimization

▶ Let F = {f (·, θ), θ ∈ Θ} be a paramtric family of distributions (e.g.
exponenatial family)

▶ Assume that the initial distribution f is in F , i.e. f (·) = f (·, θ0)
Idea: look for optimal g within F :

g(·) = f (·, θ∗), with θ∗ = argmin
θ∈Θ

Eθ0

[
ψ2f (·, θ0)

f (·, θ)

]
.

Algorithm: Importance sampling with variance minimization
1 Generate N̄ iid replicas Y (1), . . . ,Y (N̄) ∼ f (·, θ0)
2 Solve the minimization problem

θ̂∗
Y = argmin

θ∈Θ

1
N̄

N̄∑
i=1

ψ2(Y (i)) f (Y (i), θ0)
f (Y (i), θ)

3 Generate N iid replicas X (1), . . . ,X (N) ∼ f (·, θ̂∗
Y )

4 Compute µ̂IS = 1
N
∑N

i=1 ψ(X (i)) f (X (i),θ0)
f (X (i),θ̂∗

Y ) .



Adaptive importance sampling
The previous algorithm can be made adaptive:
▶ suppose that at the (k − 1)-th iteration we have estimated the

parameter θ(k−1)

▶ Then, at iteration k we generate from f (·, θ(k−1)) and we have to
minimize the variance

θ(k) = argmin
θ

Eθ0

[
ψ2f (·, θ0)

f (·, θ)

]
= Eθ(k−1)

[
ψ2f 2(·, θ0)

f (·, θ)f (·, θ(k−1))

]

Algorithm: Adaptive importance sampling with variance minimization
Given: tol , α, θ0, N̄ > 1, γ > 1

1 Set N = N̄, θ̂ = θ0, σ̂ = ∞

2 while
σ̂c1−α/2√

N
> tol do

3 Generate N iid replicas Y (1), . . . ,Y (N) ∼ f (·, θ̂)
4 Compute µ̂IS = 1

N
∑N

i=1 ψ(Y (i)) f (Y (i),θ0)
f (Y (i),θ̂)

5 Optimize θ̂new = argminθ∈Θ
1
N
∑N

i=1 ψ
2(Y (i)) f 2(Y (i),θ0)

f (Y (i),θ)f (Y (i),θ̂)

6 Set θ̂ = θ̂new and N = γN
7 end
8 Output µ̂IS



Optimal distribution over a parametric family
cross entropy minimization

Definition. The Kullbach-Leibler divergence DKL(g |f ) between a
target pdf g and a candidate pdf f is defined as

DKL(g |f ) = Eg [log g
f ] =

∫
g(x) log g(x)dx −

∫
g(x) log f (x)dx .

DKL(g |f ) ≥ 0 and DKL(g |f ) = 0 if and only if g = f a.e.

Idea: find the pdf f ∈ F that minimizes the KL divergence to the
optimal importance sampling distribution g∗ = |ψ|f∫

∥ψ|f

θ∗ = argmin
θ

DKL(g∗|f (·, θ)) = argmin
θ

Eg∗ [log g∗] − Eg∗ [log f (·, θ)]

= argmax
θ

1
Eθ0 [|ψ|]

∫
|ψ(x)|f (x , θ0) log f (x , θ)dx

= argmax
θ

∫
|ψ(x)|f (x , θ0) log f (x , θ)dx

= argmax
θ

Eθ̂

[
|ψ(·)| f (·, θ0)

f (·, θ̂)
log f (·, θ)

]



Adaptive cross-entropy importance sampling

Algorithm: Adaptive importance sampling with cross entropy mini-
mization
Given: tol , α, θ0, N̄ > 1, γ > 1

1 Set N = N̄, θ̂ = θ0, σ̂ = ∞

2 while
σ̂c1−α/2√

N
> tol do

3 Generate N iid replicas Y (1), . . . ,Y (N) ∼ f (·, θ̂)
4 Compute µ̂IS = 1

N
∑N

i=1 ψ(Y (i)) f (Y (i),θ0)
f (Y (i),θ̂)

5 Optimize θ̂new = argmaxθ 1
N |ψ(Y (i))| f (Y (i),θ0)

f (Y (i),θ̂) log f (Y (i), θ)
6 Set θ̂ = θ̂new and N = γN
7 end
8 Output µ̂IS



Weighted importance sampling
In certain cases, the pdf f and/or the dominating pdf g , are known only
up to a normalizing constant.

Let f = cg f̃ and g = cg g̃ , with cf = (
∫

f̃ )−1 and cg = (
∫

g̃)−1.

Self-normalized importance sampling estimator

µ̂W
IS =

∑N
i=1 ψ(X (i))w(X (i))∑N

i=1 w(X (i))
, with w(x) = f̃ (x)

g̃(x) , X (i) iid∼ g

The estimator µ̂W
IS is asymptotically consistent. Indeed by SLLN

1
N

N∑
i=1

w(X (i)) a.s.−→
∫ f̃ (x)

g̃(x)g(x) dx = cg
cf

1
N

N∑
i=1

ψ(X (i))w(X (i)) a.s.−→
∫
ψ

f̃
g̃ g dx = cg

cf
µ

It is however, biased, in general, although the bias is usually small.



Importance sampling for stochastic processes
Discrete time Markov Chains

Consider a discrete time Markov chain {Xn, n ∈ N0} ∼ Markov (p0,P)
in Rd , with transition density function p : Rd × Rd → R+ :, i.e.

P(x ,A) = P (Xn+1 ∈ A | Xn = x) =
∫

A
p(x , y) dy , A ∈ B(Rd),

Goal: compute µ = E [Z ] = E [ψ(X0:m)]
where X0:m = (X0, . . . ,Xm) corresponds to the path up to step m.
Question: how to do importance sampling in this case?
Take dominating densities

q0 ≫ p0 (i.e. q0(y) = 0 =⇒ p0(y) = 0, ∀y)
q(x , ·) ≫ p(x , ·), ∀x (i.e. q(x , y) = 0 =⇒ p(x , y) = 0, ∀y)

Shorthand notation:

{Xn} ∼ p0,P if {Xn} ∼ Markov{p0,P}
{Xn} ∼ q0,Q if {Xn} ∼ Markov{q0,Q}



Importance sampling for stochastic processes
Discrete time Markov Chains

µ = EX0:m∼p0,P [ψ(X0:m)] =
∫
ψ(x0, . . . , xm)pX0:m (x0, . . . , xm)dx0 · · · dxm

=
∫
ψ(x0, . . . , xm)p0(x0)p(x0, x1) · · · p(xm−1, xm)dx0 · · · dxm

=
∫
ψ(x0, . . . , xm)p0(x0)

∏m
i=1 p(xi−1, xi)

q0(x0)
∏m

i=1 q(xi−1, xi)
q0(x0)

m∏
i=1

q(xi−1, xi)dx0 · · · dxm

= EX0:m∼q0,Q[ψ(X0:m)w(X0:m)]

with likelihood ratio w(X0:m) = p0(X0)
q0(X0)

m∏
i=1

p(Xi−1,Xi)
q(Xi−1,Xi)

.

The previous formula generalizes to the case of a stopped process. Let τ
be a stopping time (e.g. τ = min{n ≥ 0 : Xn ∈ A}) and aim to compute
µ = E [ψτ (X0:τ )1τ<∞] with {Xn} ∼ Markov(p0,P). Then

µ = E{Xn}∼q0,Q[ψτ (X0:τ )1τ<∞w(X0:τ )] with w(X0:τ ) as above

as long as τ < ∞ under P =⇒ τ < ∞ under Q.



Importance sampling for stochastic processes
Discrete time Markov Chains

Algorithm: Importance sampling for Markov processes.
1 Generate N iid paths X (i)

0:τ (i) = (X (i)
0 , . . . ,X (i)

τ (i)), i = 1, . . . ,N, each one
up to the stopping time τ (i), of the Markov chain with transition
probability q : Rd × Rd → R+ and initial probability q0 : Rd → R+

2 Compute likelihood ratio w(X (i)
0:τ (i)) = p0(X (i)

0 )
q0(X (i)

0 )

τ (i)∏
k=1

p(X (i)
k−1,X

(i)
k )

q(X (i)
k−1,X

(i)
k )

3 Compute µ̂IS = 1
N
∑N

i=1 ψτ (i)(X (i)
0:τ (i))w(X (i)

0:τ (i))

4 Output µ̂IS and a confidence interval based on σ̂IS.



Importance sampling for stochastic processes
Discretized stochastic differential equations

Consider a stochastic differential equation in Rd

dXt = b(Xt , t)dt + σ(Xt , t)dWt , t > 0, with X0 given, (1)

▶ Wt : d-dimensional Brownian motion
▶ b : Rd × R+ → Rd : drift
▶ σ : Rd × R+ → Rd×d : diffusion matrix

Goal: compute µ = E [Z ] = E [ψ({Xt}0≤t≤T )]
(e.g. Z =

∫ T
0 Xs,1ds, Z = ∥XT ∥, etc. )

Discretization by Euler Maruyama:

Xn+1 = Xn + b(Xn, tn)∆t + σ(Xn, tn)ξn, ξn ∼ N(0, Id×d∆t).

Discretized output

µ∆t = E [ψ∆t(X0, . . . ,Xm)] = Eξ0,...,ξm−1 [ψ̂(ξ0, . . . , ξm−1)]



Importance sampling for stochastic processes
Discretized stochastic differential equations

How to do importance sampling in this case? Idea: change the drift of
the SDE to b̃(Xn, tn).

This corresponds to changing the mean of the Gaussian increments:

ξ̃n ∼ N(ϕ(Xn, tn)∆t, Id×d∆t), ϕ(Xn, tn) = σ−1(Xn, tn)(b̃(Xn, tn)−b(Xn, tn))

Indeed, writing ξ̃n = ϕ(Xn, tn)∆t + ηn, with ηn ∼ N(0, Id×d∆t) we have

Xn+1 = Xn + b(Xn, tn)∆t + σ(Xn, tn)ξ̃n

= Xn + b̃(Xn, tn)∆t + σ(Xn, tn)ηn

We then have

µ∆t = Eξ0:m−1 [ψ̂(ξ0:m−1)] = Eξ̃0:m−1

[
ψ̂(ξ̃0:m−1)w(ξ̃0:m−1)

]



Importance sampling for stochastic processes
Discretized stochastic differential equations

Denoting z 7→ p(z ;µ,Σ) the joint pdf of a Gaussian vector with mean µ
and covariance matrix Σ, the likelihood ratio reads

w(ξ̃0:m−1) =
m−1∏
i=0

p(ξ̃i ; 0, Id×d∆t)
p(ξ̃i ;ϕ(Xi , ti)∆t, Id×d∆t)

=
m−1∏
i=0

exp
(

− 1
2∆t ∥ξ̃i∥2 + 1

2∆t ∥ξ̃i − ϕ(Xi , ti)∆t∥2
)

=
m−1∏
i=0

exp
(

∆t
2 ∥ϕ(Xi , ti)∥2 − ϕ(Xi , ti)T ξ̃i

)

= exp
(

1
2

m−1∑
i=0

∆t∥ϕ(Xi , ti)∥2 −
m−1∑
i=0

ϕ(Xi , ti)T ξ̃i

)



Importance sampling for stochastic processes
Discretized stochastic differential equations

Algorithm: Importance sampling for SDEs.
1 Generate N iid paths X (i)

0:m, i = 1, . . . ,N with modified drift

X (i)
n+1 = X (i)

n +b(X (i)
n , tn)∆t+σ(X (i)

n , tn)ξ̃(i)
n , ξ̃(i)

n ∼ N(ϕ(Xn, tn)∆t, Id×d∆t)
(2)

2 Compute likelihood ratio

w(ξ̃(i)
0:m−1) = exp

(
1
2

m−1∑
n=0

∆t∥ϕ(X (i)
n , tn)∥2 −

m−1∑
n=0

ϕ(Xn, tn)T ξ̃(i)
n

)

3 Compute µ̂IS = 1
N
∑N

i=1 ψ̂(ξ̃(i)
0:m−1)w(ξ̃(i)

0:m−1)
4 Output µ̂IS and a confidence interval based on σ̂IS.



Importance sampling for stochastic processes
Discretized stochastic differential equations

In the limit ∆t → 0 we can define a drifted Brownian motion
dW̃t = ϕ(Xi , ti)dt + dWt (with Wt a standad BM) and

w({W̃t}0≤t≤T ) = exp
(

1
2

∫ T

0
∥ϕ(Xt , t)∥2dt −

∫ T

0
ϕ(Xt , t) · dW̃t

)

This represents the ratio between the (joint) densities of Wt and W̃t
denoted dPWt

dPW̃t
(Girsanov’s theorem)

Then we can write (at least formally)

µ = EWt [ψ({Xt}0≤t≤T )] = EW̃t

[
ψ({Xt}0≤t≤T )dPWt

dPW̃t

(W̃t)
]
.



Importance sampling for stochastic processes
Continuous time discrete space Markov processes

Consider a continuous time Markov process taking values in the discrete
space X = {y1, y2, . . .}

{Xt ∈ X , t ≥ 0} ∼ Markov(λ,Q)
(Q - stable and conservative generator matrix; λ initial distribution)
Goal: compute µ = E [Z ] = E [ψ({Xt}0≤t≤T )]
Importance sampling by changing (λ,Q) into (λ̃, Q̃). Then

µ = Eλ,Q[ψ({Xt}0≤t≤T )] = Eλ̃,Q̃[ψ({Xt}0≤t≤T )w({Xt}0≤t≤T )]

Denoting {Jn} the jump times; {Sn} the holding times; {Yn} the visited
states, then the Likelihood ratio reads

w({Xt}0≤t≤T ) = λX0

λ̃X0

(N(T )∏
i=1

QYi−1Yi

Q̃Yi−1Yi

exp{−SjQYj−1 }
exp{−SjQ̃Yj−1 }

)
exp{−(T − JN(T ))QYN(T ) }
exp{−(T − JN(T ))Q̃YN(T ) }

= λX0

λ̃X0

(N(T )∏
i=1

QYi−1Yi

Q̃Yi−1Yi

)
exp
{

−
∫ T

0
(QYs − Q̃Ys )ds

}
with Qi = −Qii =

∑
j ̸=i Qij .
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