MATH-414 - Stochastic simulation

Lecture 5: Variance Reduction Techniques I

Prof. Fabio Nobile

Outline

Variance Reduction Techniques

Antithetic variables

(Crude) Monte Carlo estimator

Standard setting:

- ▶ Z: output of a stochastic model, with $\sigma^2 := \mathbb{V}\mathrm{ar}\left[Z\right] < \infty$; exact distribution not known, but Z can be simulated exactly.
- lacksquare Typically, $Z=\phi(U_1,U_2,\ldots,U_d)$ with $(U_1,\ldots,U_d)\stackrel{\mathsf{iid}}{\sim} \mathcal{U}(0,1)$
- ▶ **Goal**: estimate $\mu = \mathbb{E}[Z] = \int_{[0,1]^d} \phi(u_1,\ldots,u_N) du_1\ldots du_d$

Crude Monte Carlo (CMC) estimator:

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N Z^{(i)}, \text{ with } Z^{(1)}, \dots, Z^{(N)} \stackrel{\text{iid}}{\sim} Z$$

Mean Squared Error:

$$\mathsf{MSE}(\hat{\mu}_N) = \mathbb{E}\left[(\hat{\mu}_N - \mu)^2\right] = \mathbb{V}\mathrm{ar}\left[\hat{\mu}_N\right] = \frac{\mathbb{V}\mathrm{ar}\left[Z\right]}{N}$$

► Asymptotic confidence interval:

$$|\hat{\mu}_N - \mu| \leq c_{1-\frac{\alpha}{2}} \frac{\sqrt{\mathbb{V}\mathrm{ar}\left[Z\right]}}{\sqrt{N}}$$
 with prob. $1-lpha$ as $N o \infty$

Variance Reduction Techniques

The error of the CMC estimator is proportional to $\sqrt{\operatorname{Var}[Z]}$.

Variance Reduction Techniques aim at reducing this multiplicative constant. How can this be done?

Idea:

ightharpoonup Find another random variable \tilde{Z} such that

$$\mathbb{E}[\tilde{Z}] = \mathbb{E}[Z] = \mu \quad \text{and} \quad \mathbb{V}ar[\tilde{Z}] \ll \mathbb{V}ar[Z]$$

▶ Then apply CMC on \tilde{Z} :

$$\hat{\mu}_{VR} = \frac{1}{N} \sum_{i=1}^{N} \tilde{Z}^{(i)}, \quad \text{with} \quad \tilde{Z}^{(1)}, \dots, \tilde{Z}^{(N)} \stackrel{\text{iid}}{\sim} \tilde{Z}$$

so that
$$\mathsf{MSE}(\hat{\mu}_{\mathit{VR}}) = \frac{\mathbb{V}\mathrm{ar}[\tilde{Z}]}{\mathsf{N}} \ll \frac{\mathbb{V}\mathrm{ar}[Z]}{\mathsf{N}}$$

Variance reduction techniques act on the multiplicative constant, not on the MC rate $\frac{1}{\sqrt{N}}$!

Antithetic variables

We call Z_a an antithetic variable of Z if

- $ightharpoonup Z_a \sim Z$ (i.e. Z and Z_a have the same distribution
- $ightharpoonup \operatorname{Cov}(Z,Z_a) < 0 \ (Z \ \operatorname{and} \ Z_a \ \operatorname{are negatively correlated})$

Then we can build the following estimator (assuming N even)

- ▶ Generate N/2 iid pairs $(Z^{(i)}, Z_a^{(i)}) \sim (Z, Z_a)$, i = 1, ..., N/2
- $\blacktriangleright \text{ Define } \hat{Z}^{(i)} = \frac{Z^{(i)} + Z_a^{(i)}}{2}$
- $\hat{\mu}_{AV} = \frac{1}{N/2} \sum_{i=1}^{N/2} \hat{Z}^{(i)} = \frac{1}{N} \sum_{i=1}^{N/2} (Z^{(i)} + Z_a^{(i)})$

Variance of the estimator:

$$\begin{aligned} \mathbb{V}\mathrm{ar}\left[\hat{\mu}_{AV}\right] &= \frac{1}{N^2} \sum_{i=1}^{N/2} \mathbb{V}\mathrm{ar}\left[Z^{(i)} + Z_a^{(i)}\right] \\ &= \frac{1}{2N} \mathbb{V}\mathrm{ar}\left[Z + Z_a\right] \\ &= \frac{1}{2N} \left(\mathbb{V}\mathrm{ar}\left[Z\right] + \mathbb{V}\mathrm{ar}\left[Z_a\right] + 2\operatorname{Cov}(Z, Z_a)\right) \\ &= \frac{\mathbb{V}\mathrm{ar}\left[Z\right] + \operatorname{Cov}(Z, Z_a)}{N} < \mathbb{V}\mathrm{ar}\left[\hat{\mu}_{\mathsf{CMC}}\right] \end{aligned}$$

Antithetic variables

How do we construct in practice Z_a ?

Suppose that $Z = \phi(U_1, \dots, U_d)$ with $U_1, \dots, U_d \stackrel{\text{iid}}{\sim} \mathcal{U}([0, 1])$. Then

$$Z_{\mathsf{a}} := \phi(1 - U_1, \dots, 1 - U_d) \sim Z$$

More generally, suppose that $Z = \phi(X_1, \dots, X_d)$ with

- \triangleright X_1, \ldots, X_d independent random variables
- ▶ $2\mathbb{E}[X_i] X_i \sim X_i$ (i.e. X_i 's law is symmetric around the mean)

Then

$$Z_a = \phi(2\mathbb{E}[X_1] - X_1, \dots, 2\mathbb{E}[X_d] - X_d) \sim Z$$

When is $Cov(Z, Z_a) \leq 0$?

Proposition. (Sufficient condition) If

- ▶ $X_1, ..., X_d$ are independent r.vs and $2\mathbb{E}[X_i] X_i \sim X_i$, $\forall i$
- $\blacktriangleright \phi$ is a monotonic in each of its arguments

Then $Z = \phi(X_1, \dots, X_d)$ and $Z_a = \phi(2\mathbb{E}[X_1] - X_1, \dots, 2\mathbb{E}[X_d] - X_d)$ satisfy

$$\mathbb{E}[Z] = \mathbb{E}[Z_a]$$
 and $Cov(Z, Z_a) \leq 0$.

Proof in 1D

Let f be the pdf of X and $\psi(X) = \phi(2\mathbb{E}[X] - X)$. Observe that if ϕ is non-decresing, then ψ is non-increasing and vice-versa.

Denote, moreover, $ilde{\phi}(X) = \phi(X) - \mathbb{E}\left[\phi(X)\right]$ and similarly for $ilde{\psi}$

$$Cov(Z, Z_a) = \mathbb{E}\left[\tilde{\phi}(X)\tilde{\psi}(X)\right] = \int \tilde{\phi}(x)\tilde{\psi}(x)f(x)dx$$

$$= \frac{1}{2}\iint (\tilde{\phi}(x) - \tilde{\phi}(y))(\tilde{\psi}(x) - \tilde{\psi}(y))f(x)f(y)dxdy$$

$$= \frac{1}{2}\iint (\phi(x) - \phi(y))(\psi(x) - \psi(y))f(x)f(y)dxdy$$

Assume ϕ non-decreasing (hence ψ non-increasing). Then

$$\operatorname{Cov}(Z, Z_{\mathsf{a}}) = \frac{1}{2} \iint_{x \geq y} (\underbrace{\phi(x) - \phi(y)}_{\geq 0}) (\underbrace{\psi(x) - \psi(y)}_{\leq 0}) f(x) f(y) dx dy$$

$$+ \frac{1}{2} \iint_{x < y} (\underbrace{\phi(x) - \phi(y)}_{\leq 0}) (\underbrace{\psi(x) - \psi(y)}_{\geq 0}) f(x) f(y) dx dy \leq 0$$

$$\text{EPF}$$

Antithetic variables – algorithm

Algorithm: Antithetic variables.

- 1 Generate N/2 iid replicas $X^{(1)}, \ldots, X^{(N/2)}$ of X;
- 2 For each $X^{(i)}$ compute $Z^{(i)} = \psi(X^{(i)})$ and $Z_a^{(i)} = \psi(2\mathbb{E}[X] X^{(i)})$;
- 3 Compute $\hat{\mu}_{AV} = \frac{1}{N} \sum_{i=1}^{N/2} (Z^{(i)} + Z_a^{(i)}).$
- 4 Estimate $\hat{\sigma}_{\text{AV}}^2 = \frac{1}{N/2-1} \sum_{i=1}^{N/2} \left(\frac{Z^{(i)} + Z_{\text{a}}^{(i)}}{2} \hat{\mu}_{\text{AV}} \right)^2$
- 5 Output $\hat{\mu}_{\mathsf{AV}}$ and a (asymptotic) $1-\alpha$ confidence interval

$$\hat{J}_{lpha,\mathsf{N}} = \left[\hat{\mu}_{\mathsf{AV}} - c_{1-lpha/2} rac{\hat{\sigma}_{\mathsf{AV}}}{\sqrt{\mathsf{N}/2}}, \;\; \hat{\mu}_{\mathsf{AV}} + c_{1-lpha/2} rac{\hat{\sigma}_{\mathsf{AV}}}{\sqrt{\mathsf{N}/2}}
ight]$$

Example 1 – option pricing

 \triangleright S_t : value of an asset at time t, modeled by

$$dS_t = rS_t dt + \sigma S_t dW_t, \quad t \in (0, T]$$

- $\psi: \mathbb{R} \to \mathbb{R}$: option's payoff (increasing function)
- ▶ **Goal**: estimate option price $\mu = \mathbb{E}\left[e^{-rT}\psi(S_T)\right]$

The log-price $X_t = \log(S_t/S_0)$ satisfies

$$dX_t = (r - \sigma^2/2) dt + \sigma dW_t, \quad X_0 = 0.$$

Hence

$$X_T = (r - \sigma^2/2)T + \sigma W_T \sim N((r - \sigma^2/2)T, \sigma^2 T)$$

Defining $Z = e^{-rT}\psi(S_T) = e^{-rT}\psi(S_0e^{X_T}) = \tilde{\psi}(X_T)$ we have

- \triangleright X_T has a normal distribution (symmetric around the mean)
- $ightharpoonup ilde{\psi}$ is increasing (composition of increasing functions)

The antithetic variables estimator

$$\hat{\mu}_{\mathsf{AV}} = \frac{1}{N} \sum_{i=1}^{N/2} \left(\tilde{\psi}(X_{T}^{(i)}) + \tilde{\psi}((2r - \sigma^2)T - X_{T}^{(i)}) \right), \qquad X_{T}^{(i)} \stackrel{\mathsf{iid}}{\sim} X_{T}$$

will therefore lead to variance reduction.

Example 2 – random walk

Consider a random walk on the integers:

$$Y_{n+1} = Y_n + X_{n+1}, \quad Y_0 = 0$$

with X_i iid, $\mathbb{P}(X_i = 1) = \mathbb{P}(X_i = -1) = 1/2$ **Goal**: for some $s \in \mathbb{N}$, estimate

$$\mu = \mathbb{P}(Y_N \ge s) = \mathbb{E}[Z], \text{ with } Z = \mathbb{1}_{\{Y_N \ge s\}}$$

How to construct an antithetic variable estimator?

We have
$$Z=\mathbb{1}_{\{Y_N\geq s\}}=\mathbb{1}_{\{\sum_{n=1}^N X_n\geq s\}}=\psi(X_1,\ldots,X_N)$$
 Moreover,

- $ightharpoonup X_i$ is symmetric around its mean $\mathbb{E}\left[X_i=0\right]$
- lackbox ψ is non-decreasing in each argument

Hence, $Z_a = \psi(-X_1, \dots, -X_N)$ is negatively correlated with Z

- MC estimator with antithetic variables:
 - ▶ generate N/2 iid paths $Y_{n+1}^{(i)} = Y_n^{(i)} + X_n^{(i)}$ and corresponding antithetic paths $\tilde{Y}_{n+1}^{(i)} = \tilde{Y}_n^{(i)} X_n^{(i)}$,
 - build estimator $\hat{\mu}_{AV} = \frac{1}{N} \sum_{i=1}^{N/2} (\mathbb{1}_{\{Y^{(i)} > s\}} + \mathbb{1}_{\{\tilde{Y}^{(i)} > s\}}).$

