MATH-414 - Stochastic simulation

Lecture 4: Monte Carlo Method

Prof. Fabio Nobile

Outline

Monte Carlo method

Convergence and error estimates

Adaptive Monte Carlo

Non-asymptotic error bounds

Delta method

Setting

- ► Z: output of a stochastic model
- ▶ **Goal**: estimate $\mu = \mathbb{E}[Z]$
- other properties of the distribution of Z could be of interest as well (higher moments, quantiles, ...)

Assumptions:

- ▶ distribution of *Z* not known / not easily computable
- Z can be simulated (by simulating the stochastic process and evaluating its output)
- ▶ Typically $Z = \phi(U_1, U_2, \dots, U_d)$ where (U_1, \dots, U_d) are all the uniform random variables used to simulate the stochastic process and ϕ represent the simulation algorithm.

Computing the expectation $\mu=\mathbb{E}\left[Z\right]$ can be seen as a high-dimensional integration problem

$$\mu = \mathbb{E}[Z] = \int_{[0,1]^d} \phi(u_1,\ldots,u_N) du_1 \ldots du_d$$

Monte Carlo method

The Monte Carlo method simply consists in

- ▶ Generating N i.i.d replicas $Z^{(1)}, ..., Z^{(N)}$ of Z (by simulation)
- \blacktriangleright estimating μ by a sample mean estimator

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N Z^{(i)}$$

We assume hereafter that Z has finite second moments

$$\sigma^2 = \mathbb{V}\mathrm{ar}\left[Z\right] < \infty$$

Properties fo the Monte Carlo estimator

1. $\hat{\mu}_N$ is unbiased (i.e. $\mathbb{E}\left[\hat{\mu}_N\right] = \mu$)

$$\mathbb{E}\left[\hat{\mu}_{N}\right] = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\mathbb{E}\left[Z^{(i)}\right]}_{=\mu, \forall i} = \mu$$

(expection is taken w.r.t. the joint distribution of the sample $Z^{(1)},\dots,Z^{(N)}$)

2. $\operatorname{Var}\left[\hat{\mu}_{N}\right] = \frac{\sigma^{2}}{N}$. Indeed:

$$\operatorname{Var}\left[\hat{\mu}_{N}\right] = \mathbb{E}\left[\left(\hat{\mu}_{N} - \mathbb{E}\left[\hat{\mu}_{N}\right]\right)^{2}\right] = \mathbb{E}\left[\left(\frac{1}{N}\sum_{i=1}^{N}(Z^{(i)} - \mu)\right)^{2}\right]$$

$$= \frac{1}{N^{2}}\sum_{i,j=1}^{N}\mathbb{E}\left[\left(Z^{(i)} - \mu\right)(Z^{(j)} - \mu)\right]$$

$$= \frac{1}{N^{2}}\sum_{i=1}^{N}\underbrace{\mathbb{E}\left[\left(Z^{(i)} - \mu\right)^{2}\right]}_{=\sigma^{2} \text{ $\forall i$ since } Z^{(i)$ are iiid}} + \frac{1}{N^{2}}\sum_{i\neq j}\underbrace{\mathbb{E}\left[\left(Z^{(i)} - \mu\right)(Z^{(j)} - \mu)\right]}_{=0 \text{ since } Z^{(i)}, Z^{(j)} \text{ are indept.}} = \frac{\sigma^{2}}{N}$$

Properties fo the Monte Carlo estimator

3. Almost sure convergence (from Strong Law of Large Numbers since $\mathbb{E}[Z] < \infty$

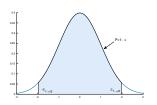
$$\hat{\mu}_N \xrightarrow{N \to \infty} \mu$$
 a.s.

4. Asymptotic normality (from Central Limit Theorem since \mathbb{V} ar $[Z] < \infty$)

$$\frac{\sqrt{N}(\hat{\mu}_N - \mu)}{\sigma} \stackrel{\mathsf{d}}{\longrightarrow} \mathcal{N}(0, 1) \quad \text{as} \quad N \to \infty$$

Denoting c_{α} the α -quantile of the standard normal distribution

$$\mathbb{P}\left(\frac{\sqrt{N}|\hat{\mu}_N - \mu|}{\sigma} \leq c_{1-\alpha/2}\right) \xrightarrow{N \to \infty} 1 - \alpha$$



$$\Longrightarrow$$

$$\implies |\hat{\mu}_N - \mu| \le c_{1-\alpha/2} \frac{\sigma}{\sqrt{N}}$$
 asympt. with probability $1 - \alpha$

Confidence intervals

Define the asymptotic confidence interval of level $1-\alpha$

$$I_{lpha,N} = \left[\hat{\mu}_N - c_{1-lpha/2} rac{\sigma}{\sqrt{N}}, \; \hat{\mu}_N + c_{1-lpha/2} rac{\sigma}{\sqrt{N}}
ight]$$

Then
$$\mathbb{P}(\mu \in I_{\alpha,N}) \xrightarrow{N \to \infty} 1 - \alpha$$

Problem: $I_{\alpha,N}$ is not directly computable (σ not known in general). Solution: replace σ^2 with sample variance estimator

$$\hat{\sigma}_N^2 = \frac{1}{N-1} \sum_{i=1}^N \left(Z^{(i)} - \hat{\mu}_N \right)^2.$$

Since $\hat{\sigma}_N \to \sigma$ a.s. we have

$$\frac{\sqrt{N}(\hat{\mu}_N - \mu)}{\hat{\sigma}_N} = \underbrace{\frac{\sigma}{\hat{\sigma}_N}}_{\text{das}} \underbrace{\frac{\sqrt{N}(\hat{\mu}_N - \mu)}{\sigma}}_{\text{das}} \xrightarrow{\text{d}} \mathcal{N}(0, 1).$$

Computable (approximate) asymptotic confidence interval

$$\hat{l}_{lpha,N} = \left[\hat{\mu}_N - c_{1-lpha/2} rac{\hat{\sigma}_N}{\sqrt{N}}, \; \hat{\mu}_N + c_{1-lpha/2} rac{\hat{\sigma}_N}{\sqrt{N}}
ight]$$

Adaptive Monte Carlo

Given an estimate $\hat{\sigma}^2$ of $\mathbb{V}\mathrm{ar}\left[Z\right]$ and the CLT, one can estimate the smallest sample size N needed to achieve a given tolerance tol with confidence level $1-\alpha$

$$N \geq \left(\frac{c_{1-\alpha/2}\hat{\sigma}}{tol}\right)^2$$

This suggest the following two stages algorithm

Algorithm: Two stages Monte Carlo.

Given: tol, α

1 Pilot run with \bar{N} replicas $(Z^{(1)},\ldots,Z^{(\bar{N})})$; compute

$$\hat{\mu}_{\bar{N}} = \frac{1}{N} \sum_{i=1}^{N} Z^{(i)}, \qquad \hat{\sigma}_{\bar{N}}^2 = \frac{1}{\bar{N}-1} \sum_{i=1}^{N} (Z^{(i)} - \hat{\mu}_{\bar{N}})^2$$

2 Set
$$N = \lceil \frac{c_{1-\alpha/2}^2 \hat{\sigma}_{\bar{N}}^2}{to^2} \rceil$$

- 3 Generate a new sample $(Z^{(1)}, \ldots, Z^{(N)})$
- 4 Output $\hat{\mu}_N$ and $\hat{l}_{\alpha,N}$.

Adaptive Monte Carlo

Alternatively one can add one new sample at the time until a stopping criterion is met

Algorithm: Sequential Monte Carlo.

Given: tol, α

- 1 Do a pilot run with \bar{N} replicas $(Z^{(1)}, \dots, Z^{(\bar{N})})$ and compute $\hat{\mu}_{\bar{N}}, \hat{\sigma}_{\bar{N}}^2$.
- 2 Set $N = \bar{N}$, $\hat{\mu}_N = \hat{\mu}_{\bar{N}}$, $\hat{\sigma}_N = \hat{\sigma}_{\bar{N}}$.
- 3 while $\frac{\hat{\sigma}_N c_{1-\alpha/2}}{\sqrt{N}} > tol \ \mathbf{do}$
- 4 | set N = N + 15 | generate $Z^{(N)}$ independent of $Z^{(i)}$, i < N $\hat{\rho}_N$ recompute $\hat{\mu}_N$, $\hat{\sigma}_N^2$
- 7 end
- 8 Output $\hat{\mu}_N$ and $\hat{I}_{\alpha,N}$.

Stable update rules for $\hat{\mu}_N$ and $\hat{\sigma}_N^2$:

$$\hat{\mu}_{N+1} = \frac{N}{N+1} \hat{\mu}_N + \frac{1}{N+1} Z^{(N+1)}, \qquad \hat{\sigma}_{N+1}^2 = \frac{N-1}{N} \hat{\sigma}_N^2 + \frac{1}{N+1} \left(Z^{(N+1)} - \hat{\mu}_N \right)^2$$

It can be shown that $\lim_{tol o 0} \mathbb{P}\left(|\hat{\mu}_{N(tol)} - \mu| \leq tol\right) = 1 - \alpha$

Non asymptotic error bound - Chebyshev

CLT gives only an asymptotic result for $N \to \infty$. For small sample sizes, other more robust bounds can be used.

Bound based on Chebyshev inequality $\mathbb{P}(|Y - \mathbb{E}[Y]| > a) \leq \frac{\mathbb{V}ar[Y]}{a^2}$

Applied to $Y = \hat{\mu}_N$ and with $\mathbb{V}\mathrm{ar}\left[Y\right]/a^2 = \alpha$ gives

$$\mathbb{P}\left(|\hat{\mu}_{N} - \mu| > \frac{\sigma}{\sqrt{N\alpha}}\right) \le \alpha$$

Computable (approximate) confidence interval of level $1-\alpha$

$$\hat{I}_{lpha,N}^{\mathit{Cheb}} = [\hat{\mu}_{\mathit{N}} - rac{1}{\sqrt{lpha}}rac{\hat{\sigma}_{\mathit{N}}}{\sqrt{N}}, \; \hat{\mu}_{\mathit{N}} + rac{1}{\sqrt{lpha}}rac{\hat{\sigma}_{\mathit{N}}}{\sqrt{N}}].$$

Compare with CLT result $\hat{I}_{\alpha,N} = \left[\hat{\mu}_N - \frac{c_{1-\alpha/2}}{\sqrt{N}}, \ \hat{\mu}_N + \frac{c_{1-\alpha/2}}{\sqrt{N}} \frac{\hat{\sigma}_N}{\sqrt{N}}\right]$

Notice that $c_{1-\alpha/2} \ll \frac{1}{\sqrt{\alpha}}$ for small α .

Non asymptotic error bound – Berry-Essén

The Berry-Essén bound quantifies the deviation of the cdf of $\frac{\sqrt{N(\hat{\mu}_N - \mu)}}{\sigma}$ from a standard normal cdf Φ – Requires bounded third moments

$$\sup_{x} \left| \mathbb{P} \left(\frac{\sqrt{N}(\hat{\mu}_{N} - \mu)}{\sigma} \le x \right) - \Phi(x) \right| \le k \frac{\mathbb{E} \left[|Z - \mu|^{3} \right]}{\sqrt{N} \sigma^{3}}, \quad (k \approx 0.4748)$$

hence

$$\mathbb{P}\left(\frac{\sqrt{N}|\hat{\mu}_N - \mu|}{\sigma} \le x\right) \ge \underbrace{2\Phi(x) - 2k\frac{\mathbb{E}\left[|Z - \mu|^3\right]}{\sqrt{N}\sigma^3} - 1}_{\ge 1 - \alpha}$$

Given estimates $\hat{\sigma}_N \approx \mathrm{std}[Z]$ and $\hat{\gamma}_N^3 \approx \mathbb{E}\left[|Z - \mu|^3\right]$, and

$$\hat{x}_{\alpha}: \qquad \Phi(\hat{x}_{\alpha}) - \frac{k\hat{\gamma}_{N}^{3}}{\sqrt{N}\hat{\sigma}_{\alpha}^{3}} = 1 - \frac{\alpha}{2} \qquad \text{(corrected quantile)}$$

Computable confidence interval: $\hat{I}_{\alpha.N}^{BE} = [\hat{\mu}_N - \hat{\chi}_{\alpha} \frac{\hat{\sigma}_N}{.N}, \ \hat{\mu}_N + \hat{\chi}_{\alpha} \frac{\hat{\sigma}_N}{.N}]$ **EPFL**

Vector valued output

- ▶ Output of stochastic model: $\mathbf{Z} = (Z_1, \dots, Z_m)^{\top}$
- ▶ Goal: estimate $\mu = \mathbb{E}[\boldsymbol{Z}] = (\mathbb{E}[Z_1], \dots, \mathbb{E}[Z_m])^{\top}$

Monte Carlo estimator:

- ▶ Generate *N* iid replicas $Z^{(1)}, ..., Z^{(N)}$ of Z
- ightharpoonup compute $\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N Z^{(i)}$

Assuming bounded second moments, with covariance matrix $C = \mathbb{E}\left[(\boldsymbol{Z} - \boldsymbol{\mu})(\boldsymbol{Z} - \boldsymbol{\mu})^T \right]$

CLT:
$$\sqrt{N}(\hat{\mu}_N - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, C)$$
 and $N(\hat{\mu}_N - \mu)^\top C^{-1}(\hat{\mu}_N - \mu) \stackrel{d}{\longrightarrow} \chi_m^2$

C can be replaced by sample covariance matrix

$$\hat{C}_{N} = \frac{1}{N-1} \sum_{i=1}^{N} (\mathbf{Z}^{(i)} - \hat{\mu}_{N}) (\mathbf{Z}^{(i)} - \hat{\mu}_{N})^{\top}$$

Computable asymptotic confidence region of level $1-\alpha$

$$\hat{l}_{\alpha,N} = \{ \boldsymbol{y} \in \mathbb{R}^m : (\hat{\boldsymbol{\mu}}_N - \boldsymbol{y})^\top \hat{C}_N^{-1} (\hat{\boldsymbol{\mu}}_N - \boldsymbol{y}) \leq \frac{\chi_{m;1-\alpha}^2}{N} \}$$

where $\chi^2_{m:1-\alpha}$ is the $1-\alpha$ quantile of the χ^2_m distribution.

Delta method

- Output of stochastic model: $\mathbf{Z} = (Z_1, \dots, Z_m)^{\top}$
- ▶ Goal: estimate $\zeta = f(\mathbb{E}[Z_1], \dots, \mathbb{E}[Z_m])$ with $f: \mathbb{R}^m \to \mathbb{R}$ a smooth function

Monte Carlo estimator:

- ▶ Generate *N* iid replicas $Z^{(1)}, ..., Z^{(N)}$ of Z
- \triangleright compute $\hat{\mu}_{i,N} = \frac{1}{N} \sum_{k=1}^{N} Z_i^{(k)}$
- estimate $\hat{\zeta}_N = f(\hat{\mu}_{1,N}, \dots, \hat{\mu}_{m,N})$

Notice that in general $\hat{\zeta}$ is biased.

Error estimation can be based on first order Taylor expansion (delta method)

$$\hat{\zeta}_N - \zeta = f(\hat{\mu}_N) - f(\mu) = \nabla f(\mu)(\hat{\mu}_N - \mu) + o(\|\hat{\mu}_N - \mu\|).$$

Then

$$\sqrt{N}(\hat{\zeta}_N - \zeta) \stackrel{\mathsf{d}}{\longrightarrow} \mathcal{N}(0, \nabla f(\boldsymbol{\mu}) C \nabla f(\boldsymbol{\mu})^\top).$$

Computable asymptotic confidence interval of level $1-\alpha$

$$\hat{l}_{lpha,N} = [\hat{\zeta}_N - \Delta_N, \; \hat{\zeta}_N + \Delta_N], \qquad \Delta_N = rac{c_{1-lpha/2}}{\sqrt{N}} \sqrt{
abla} f(\hat{m{\mu}}_N) \hat{m{c}}_N
abla f(\hat{m{\mu}}_N)^{ op}$$