MATH-414 — Stochastic simulation

Lecture 4: Monte Carlo Method

Prof. Fabio Nobile
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Setting
» Z: output of a stochastic model
» Goal: estimate u = E[Z]

» other properties of the distribution of Z could be of interest as well
(higher moments, quantiles, ...)

Assumptions:
» distribution of Z not known / not easily computable

» Z can be simulated (by simulating the stochastic process and
evaluating its output)

> Typically Z = ¢(Us, Ua, ..., Ug) where (U, ..., Uy) are all the
uniform random variables used to simulate the stochastic process
and ¢ represent the simulation algorithm.

Computing the expectation p = E[Z] can be seen as a high-dimensional
integration problem

p=E[Z]= o(ur,...,un)duy ... dug ]
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Monte Carlo method

The Monte Carlo method simply consists in
» Generating N i.i.d replicas Z1), ..., Z(N) of Z (by simulation)

» estimating p by a sample mean estimator
L
iy — — ()
NN 2 ‘
=

We assume hereafter that Z has finite second moments

0% =Var[Z] < oo
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Properties fo the Monte Carlo estimator

1. fiy is unbiased (i.e. E[an] = p)

E[fin] = LXN:E{Z(I')} =u

=1 N—_——r
=p, Vi
(expection is taken w.r.t. the joint distribution of the sample zW . z(M) )
~ 2 )
2. Var[fiy] = 9. Indeed:
N 2
Var [in] = E [(An — B [n])’] K Z (z" - ) ]
= Z E[(Z2V = )29 - )]
i,j=1
1 o 2
— () ) _9
— S B ]+ SR @] =
i=1 %’_’ i#j
=02 Vi since Z() are iid =0 since Z(),Z0) are indept.
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Properties fo the Monte Carlo estimator

3. Almost sure convergence (from Strong Law of Large Numbers since
E[Z] < o0)
~ N— oo
iy —— p  as.

4. Asymptotic normality (from Central Limit Theorem since
Var[Z] < o)

VN(fin — ) .

N(0,1) as N — o0
o

Denoting ¢, the a-quantile of the standard
normal distribution

VIN|an — )
P (ILLN M| S Cl—a/2> ‘—°—>N_> l—«
g

= lin — | < Cl—a/2% asympt. with probability 1 — « — @



Confidence intervals
Define the asymptotic confidence interval of level 1 — «

. o, o
loon = {ﬂN - Cl—a/2ﬁ7 an + Cl—a/zm]

Then P (u € lo,n) N RS
Problem: I, n is not directly computable (o not known in general).
Solution: replace o with sample variance estimator
N
. 1 noa )2
=g (20— m)
i=1
Since 6 — o a.s. we have
N(fn — N(an —
VNGiv =) _ o VNG =p) @ o)
ON g
~
—las 40,0

Computable (approximate) asymptotic confidence interval

~ ~
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Adaptive Monte Carlo

Given an estimate 62 of Var [Z] and the CLT, one can estimate the
smallest sample size N needed to achieve a given tolerance tol with

confidence level 1 — )
N> (Cla/sz)
- tol

This suggest the following two stages algorithm

Algorithm: Two stages Monte Carlo.
Given: tol, o _ B
1 Pilot run with N replicas (ZW1), ... Z(N)); compute

N N
A2
f= AT = g Sy
i—1 i=1
c? 52
2 Set N = [2=2452]
3 Generate a new sample (Z(), ... z(N)

4 OQutput fiy and 7aN
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One can further check that |/a n| < 2tol. If not, repeat the procedure.



Adaptive Monte Carlo

Alternatively one can add one new sample at the time until a stopping
criterion is met

Algorithm: Sequential Monte Carlo.
Given: tol, o _ .
1 Do a pilot run with N replicas (Z(%), ..., Z(M) and compute fi, 62

2 Set N=N, iy = i, 6§ = 6.
ONC1—a)2
VN

set N=N+1
generate z(N) independent of ZWO i< N
recompute fiy, 63

end

while > tol do

w

0 N o a »

Output fiy and 7a,N.

Stable update rules for /iy and 63%:

N 1 N-—-1 1 2
A _ A Z(N+D) A2 £2 ZN+D) _ o
JEs] N1 1MN+7NJr 1 ; N1 = =7 N1 ( MN)

It can be shown that  limsoi0 P (|fingony — pf < tol) =1 -« ePFL @



Non asymptotic error bound — Chebyshev

CLT gives only an asymptotic result for N — oco. For small sample sizes,
other more robust bounds can be used.

Bound based on Chebyshev inequality P(|Y —E[Y]| > a) < Var[Y]

22

Applied to Y = iy and with Var[Y] /a? = « gives

P(r - >")<a
Un — Na ) =

Computable (approximate) confidence interval of level 1 — «

A

Compare with CLT result [,y = [ﬁN — Cl,a/z%, fin+ cioa)2 %]

Notice that ¢;_q /2 < % for small a.
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Non asymptotic error bound — Berry-Essén

The Berry-Essén bound quantifies the deviation of the cdf of M
from a standard normal cdf ® — Requires bounded third moments

) ol

VN3

sup <k

X

(k =~ 0.4748)

hence

VN|fin — p| E[|Z—pP]
P(ng) 2 20(x) — 2= -1

>l—«

Given estimates &y ~ std[Z] and 45 ~ E [|Z — p[?], and

k’Ay3
fa i O(Ra) - N
g N =]

o
> (corrected quantile)

Computable confidence interval: 755\, = [An — &(y%, fiy + 2(,&—\/%] EPFL @



Vector valued output
» Output of stochastic model: Z = (Zy,...,Zn)"
» Goal: estimate u =E[Z] = (E[Z],...,E[Z,])"
Monte Carlo estimator:
» Generate N iid replicas ZM, ..., ZN) of Z
> compute fiy = % Z,N:l 44

Assuming bounded second moments, with covariance matrix
C=E[(Z-p)Z-u)T]

CLT:  VN(an—p) = N(0,C) and  N(an—p)" CH(an—p) — x5

g can be replaced by sample covariance matrix
Cn = w1 s (29— an)(Z0) — )

Computable asymptotic confidence region of level 1 — «

2
7 m ~ ~— A~ X 1l—a
lon={y eR": (an—y) Cy' (An — y) < ml\1, }

where X2, _, is the 1 — a quantile of the x2, distribution. Rl @



Delta method

» Output of stochastic model: Z = (Zy,...,2Z,)"
» Goal: estimate ( = f(E[Z],...,E[Z.])
with f : R — R a smooth function

Monte Carlo estimator:
» Generate N iid replicas Z(MW, ..., ZN) of Z
> compute fiin = % S, zW
> estimate CAN =f(f1n, -5 mn)

Notice that in general CA is biased.

Error estimation can be based on first order Taylor expansion (delta
method)

Cv — ¢ = f(pn) — F(p) = V() (v — p) + o[l an — pl).

Then
VN — ¢) —5 N (0, V() CV () 7).

Computable asymptotic confidence interval of level 1 — «
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lov = [ — An, Cn+ A, Ay
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