
MATH-414 – Stochastic simulation

Lecture 3: Generation of stochastic processes

Prof. Fabio Nobile

Outline

Generation of Gaussian processes
Wiener process
Brownian bridge
Stationary Gaussian processes – circulant embedding

Generation of discrete time Markov processes

Generation of continuous time - discrete state Markov processes
Poisson processes
General case

Stochastic process / random field

Definition. Let I ⊂ Rd . A stochastic process {Xt , t ∈ I} is a collection
of random variables indexed by t ∈ I.

Usually we use the terminology
▶ stochastic process when d = 1 and t denotes the time variable
▶ random field when d ≥ 1 and t denotes a space variable.

Gaussian process

Definition. [Gaussian process] A Gaussian process (or Gaussian random
field) {Xt , t ∈ I} is a stochastic process (random field) for which all
finite dimensional distributions are Gaussian, i.e. for all n ∈ N and
t1, . . . , tn ∈ I, the random vector X = (Xt1 , . . . , Xtn) has a multivariate
Gaussian distribution.

A Gaussian process is uniquely determined by
▶ Mean function: µX : I → R,

µX (t) = E [Xt] , t ∈ I

▶ Covariance function: CX : I × I → R,

CX (t, s) = E [(Xt − µX (t))(Xs − µX (s))] , t, s ∈ I.

Notation: X ∼ N(µX , CX)

Gaussian process generation
Let t1, t2, . . . , tn ∈ I be fixed and X = (Xt1 , Xt2 , . . . , Xtn). Then X has a
multivariate Gaussian distribution (by definition)

X ∼ N(µ, Σ), with µ = (µX (t1), . . . , µX (tn)), Σij = CX (ti , tj)

Question: is Σ positive definite?

Definition. A function C : I × I → R is positive (semi-)definite if, for
all n and t1, . . . , tn ∈ I, the matrix Σ ∈ Rn×n, Σij = C(ti , tj) is positive
(semi-)definite.
The covariance function CX of a stochastic process (random field) has to
be a symmetric and positive (semi-)definite function.

▶ To generate X ∼ N(µ, Σ) we can proceed as in the last lecture by
factorizing Σ = AA⊤ (Cholesky or spectral)

▶ Similarly, if we have generated already X = (Xt1 , . . . , Xtn) and we
want to generate the process in other points Y = (Xtn+1 , . . . , Xtn+k),
conditional on the values already generated, we can use the
algorithm for conditional Gaussian generation from last lecture.

Wiener process

Definition. The Wiener process is a Gaussian stochastic process
{Wt , t ≥ 0} with
▶ W0 = 0,
▶ Independent increments: for all 0 < t1 < t2 ≤ t3 < t4, (Wt2 − Wt1)

and (Wt4 − Wt3) are independent random variables
▶ Gaussian stationary increments: for all 0 ≤ t1 ≤ t2,

Wt2 − Wt1 ∼ N(0, t2 − t1)

mean: µW (t) = E [Wt] = E [Wt − W0] = 0
covariance function: CW (t, s) = min{s, t}

Indeed: CW (t, s) = E [WtWs] =
{
E [(Wt − Ws)Ws] + E

[
W 2

s
]

= s, t ≥ s
E [(Wt(Ws − Wt)] + E

[
W 2

t
]

= t, t < s

Wiener process generation
Algorithm to generate {Wt , t ≥ 0} on a set of points
0 = t0 < t1 < . . . < tn

Algorithm: Wiener process generation
1 Set t0 = 0 and Wt0 = 0
2 for k = 1, . . . , n do
3 Generate ∆Wk ∼ N(0, tk − tk−1)
4 Set Wtk = Wtk−1 + ∆Wk
5 end

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Brownian bridge
Definition. A Brownian bridge process {Xt , t ∈ [0, 1]} is a Wiener
process {Wt , t ∈ [0, 1]} conditioned upon W1 = b.

mean: take Y = Wt , Z = W1. Then ΣYZ = t, ΣZZ = 1 and

µX (t) = E [Xt] = E [Y | Z = b] = µY + ΣYZ Σ−1
ZZ (b − µZ) = tb

covariance function: take Y = (Ws , Wt), Z = W1 so that

ΣYY =
(

s min{s, t}
min{s, t} t

)
, ΣYZ =

(
s
t

)
, ΣZZ = 1.

Therefore

ΣY | Z = ΣYY − ΣYZ Σ−1
ZZ ΣZY

=
(

s min{s, t}
min{s, t} t

)
−
(

s
t

)
(s, t)

and
CovX (s, t) = (ΣY |Z)12 = min{s, t} − st

Generating a Brownian bridge
To generate a Brownian bridge in a set of points
0 < t1 < . . . < tn < tn+1 = 1 we can use the following algorithm

Algorithm: Brownian bridge generation.
Given: 0 < t1 < · · · < tn < tn+1 = 1 and b

1 Generate Wti , i = 1, . . . , n + 1 from standard Wiener process
2 Output Xti = Wti + ti(b − Wtn+1), i = 1, . . . , n.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Stationary Gaussian processes

Definition. A Gaussian process {Xt , t ∈ R} is
▶ weakly stationary if CX (s, t) = C̃(t − s)
▶ strongly stationary if also µX (t) = µ, independent of t.

Generation on a uniform grid X = (Xt0 , . . . , Xtn), with tj = t0 + jh,
j = 0, . . . , n. Covariance matrix

Σij = CX (ti , tj) = C̃((j − i)h) =⇒ Toeplitz matrix

Σ =



σ0 σ1 σ2 . . . σn
σ1 σ0 σ1 . . . σn−1

σ2 σ1
. . .

. . .
...

...
...

. . .
. . .

...
...

...
. . . σ1

σn σn−1 . . . σ1 σ0

 σi = C̃(ih)

Circulant embedding
Consider the following circulant embedding of Σ:

Σ̃ =



σ0 σ1 σ2 . . . σn−1 σn
σ1 σ0 σ1 . . . σn−1

σ2 σ1
. . .

. . .
...

...
...

. . .
. . .

...
...

...
. . . σ1

σn σn−1 . . . σ1 σ0

σn−1 σn−2 . . . σ1
σn σn−1 . . . σ2
...

. . .
. . .

...
...

. . . σn−1

σ2 σn
σ1 σn−1

σn−1 σn σn−1 σ1

σn−2 σn−1
. . .

. . . σ0
...

. . .
. . .

. . .
...

σ1 σn−1 σn σn−1

σ0 σ1 . . . σn−2

σ1 σ0 . . .
...

...
. . .

. . .
...

σn−2 σ1 σ0


∈ R2n×2n

In short, Σ̃ = circ(α), with α = (σ0, σ1, . . . , σn, σn−1, . . . , σ1).
Σ̃ can be easily diagonalized as Σ̃ = 1

2n F ∗ΛF
▶ F : Fourier matrix, Fkℓ = e−2πi(ℓ−1)(k−1)/2n, F ∗F = FF ∗ = 2nI2n
▶ Λ = diag(λ), and λ = (λ1, . . . , λ2n)T = Fα = FFT (α)

Hence Σ̃ = AA∗, A = 1√
2n

F ∗Λ1/2

Circulant embedding

Indeed, notice that Σ̃jk = α{(2n+k−j+1) mod 2n} (with α0 := α2n) Then

2n∑
k=1

Σ̃jkFkℓ =
2n∑

k=1
α{(2n+k−j+1) mod 2n}e−2πi(ℓ−1)(k−1)/2n

=
2n∑

k=1
α{(2n+k−j+1) mod 2n}e−2πi(ℓ−1)(2n+k−j)/2ne−2πi(ℓ−1)(j−1)/2π

=
(2n∑

k=1
αke−2πi(ℓ−1)(k−1)/2n

)
︸ ︷︷ ︸

λℓ

Fjℓ

Circulant embedding
Idea: let us try to generate our (zero mean) discretized random field as
X̃ = AY with Y = (Y1, . . . , Y2n) a vector of complex standard normal
r.vs, i.e.

Y = YR + iYI , YR , YI
iid∼ N(0, I2n)

Properties of X̃
▶ E [YY ∗] = 2I2n

▶ E
[
YY T] = 0 = E

[
Ȳ Ȳ T],

▶ E
[
X̃X̃∗] = E [AYY ∗A∗] = 2Σ̃, E

[
X̃X̃⊤] = 0 = E

[¯̃X ¯̃XT
]
,

▶ E
[
Re(X̃) Re(X̃)⊤] = E

[
X̃+ ¯̃X

2

(
X̃+ ¯̃X

2

)⊤
]

= Σ̃ = E
[
Im(X̃) Im(X̃)⊤],

▶ E
[
Re(X̃) Im(X̃)⊤] = E

[
X̃+ ¯̃X

2

(
X̃− ¯̃X

2i

)⊤
]

= 0.

Conclusion:
▶ Re(X̃), Im(X̃) iid∼ N(0, Σ̃)
▶ Re(X̃1:n+1), Im(X̃1:n+1) iid∼ N(0, Σ)

Circulant embedding
Notice that X̃ can be computed efficiently by iFFT as

X̃ = AY = F ∗(1√
2n

Λ1/2Y) = iFFT (
√

2nΛ1/2Y)

Algorithm: Circulant embedding.

Given: µ ∈ Rn and Σ =


σ0 σ1 . . . σn
σ1 σ0 . . . σn−1
...

...
. . .

...
σn σ0

 ∈ Rn+1×n+1

1 Generate the vector α = (σ0, σ1, . . . , σn, σn−1, . . . , σ1) ∈ R2n

2 Compute λ = FFT(α) and Λ = diag(λ)
3 Generate Y = YR + iYI with YR , YI

iid∼ N(0, I2n)
4 Compute X̃ = iFFT(

√
2nΛ1/2Y)

5 Output X (1) = µ + Re(X̃1:n+1) and X (2) = µ + Im(X̃1:n+1)

Circulant embedding

Problem: the matrix Σ̃ might not be semi positive definite.
Possible remedy: enlarge the circulant embedding

α = (σ0, σ1, . . . , σn, σ∗
n+1, . . ., σ∗

m, σ∗
m−1, . . ., σ∗

n+1, σn, . . . , σ1)

with m > n large enough. Typical choice: σ∗
j = σj = C̃(jh).

Discrete time / discrete space Markov chain
▶ State space X = {y1, y2, . . . } (finite or countable)
▶ Stochastic process on X : {Xn ∈ X , n ∈ N0}

Definition. A stochastic process {Xn ∈ X , n ∈ N0} is a Markov chain
if it satisfies the Markov property

P (Xn+1 = yn+1 | Xn = yn, Xn−1 = yn−1, . . . , X0 = y0)
= P (Xn+1 = yn+1 | Xn = yn)

with y0, . . . , yn+1 ∈ X .

Transition matrix: Pij(n) = P (Xn = yj | Xn−1 = yi)

▶ The Markov chain {Xn, n ∈ N0} is entirely defined by
▶ transition matrices P(n), n = 1, 2, . . .
▶ distribution of initial state X0 ∼ λ

In short, Xn ∼ Markov(λ, P(n))
▶ P(n) is a stochastic matrix:

∑
j Pij(n) = 1, ∀i = 1, 2, . . . ,

▶ The Markov chain is time-homogeneous if P(n) does not
depend on n.

Generation of discrete time / discrete space Markov chains
Algorithm: Generation of discrete time / discrete space Markov chain
Given: λ and P(n), n ∈ N0

1 Generate X0 ∼ λ
2 For n = 1, 2, . . . ,
3 Generate Xn ∼ PXn−1,:(n) // pmf: Xn−1-th row of P(n)

Example: Random walk on integers. Start at X0 = 0:
P (Xn+1 = j | Xn = j − 1) = P (Xn+1 = j | Xn = j + 1) = a ∈ (0, 1),
P (Xn+1 = j | Xn = j) = 1 − 2a,

P (Xn+1 = j | Xn = i) = 0, i ̸= j , j − 1, j + 1.

0 10 20 30 40 50

-10

-8

-6

-4

-2

0

2

4

6

8

a = 0.55

Discrete time / continuous space Markov chains
▶ State space X ⊂ Rd (continuous set)
▶ Stochastic process on X : {Xn ∈ X , n ∈ N0}

Definition. A Markov transition kernel on (X , B(X)), with B(X) the
Borel σ-algebra, is a function P : X × B(X) → [0, 1] such that
▶ for all y ∈ X , P(y , ·) is a probability measure on (X , B(X));
▶ for all A ∈ B(X), P(·, A) is a measurable function on X .

Often, the transition kernel is defined from a density function

P(x , A) =
∫

A
p(x , y) dy , with p ≥ 0,

∫
X

p(x , y)dy = 1, ∀x

Definition. {Xn, n ∈ N0} is a homogeneous Markov chain on X with
kernel P : X × B(X) → [0, 1] and initial distribution X0 ∼ λ, denoted
{Xn} ∼ Markov(λ, P), if for any n ∈ N, A ∈ B(X),

P (Xn+1 ∈ A | Xn = yn, . . . , X0 = y0)
= P (Xn+1 ∈ A | Xn = yn) = P(yn, A)

Generation of discrete time / cont. space Markov chains

Algorithm: Generation of discrete time / continuous space Markov
process.
Given: λ and P

1 Generate X0 ∼ λ
2 For n = 1, 2, . . . ,
3 Generate Xn ∼ P(Xn−1, ·)

Example: Continuous random walk in 2D. Start at X0 = 0:

Xn+1 = Xn + ξn, ξn
iid∼ N(0, σ2I2).

Let p(x; µ, Σ) be the pdf of a Gaussian vector X ∼ N(µ, Σ). Then

transition kernel: P(y , A) =
∫

A
p(x; y , σ2I2)dx

Continuous time / discrete state Markov chains
▶ State space X = {y1, y2, . . . } (finite or countable isolated points)
▶ Stochastic process on X : {Xt ∈ X , t ≥ 0}

A process {Xt , t ≥ 0} is right continuous if for any realization ω,

lim
h→0+

Xt+h(ω) = Xt(ω).

A right continuous discrete state Markov process is piecewise constant

▶ Jump times: J0 = 0,

Jn = inf{t ≥ Jn−1 : Xt ̸= XJn−1 }, n > 0

▶ Holding times:

Sn =
{

Jn − Jn−1, if Jn−1 < ∞, n = 1, 2, . . .

∞, otherwise.

▶ Jump process: {Yn = XJn , n ∈ N0}
t = 0 J1 J2 J3

y1

y2

y3

yn

S1

S2

Poisson process

Definition. A Poisson process {Nt ∈ N0, t ≥ 0} with initial state
N0 = 0 and parameter 0 < λ < ∞, is a non decreasing, right-continuous,
integer valued process which satisfies:

1. Independent increments: for all 0 < t1 < t2 ≤ t3 < t4,

Nt2 − Nt1 is independent of Nt4 − Nt3

2. Poisson stationary increments: for all 0 < s < t,
Nt − Ns ∼ Pois(λ(t − s)) i.e.

P (Nt − Ns = j) = (λ(t − s))j

j! e−λ(t−s).

The Poisson process is a (continuous time / discrete state) Markov
process. Hence {Ñt = Ns+t − Ns , t ≥ 0} is also a Poisson process of
parameter λ, intependent of {Nt , t ≤ s}.

Equivalent characterizations of the Poisson process

a. The holding times S1, S2, . . . are independent exponential random
variables Exp(λ) and the jump chain is Yn = NJn = n.
Indeed
▶ P (S1 > t) = P (Nt = 0) = e−λt ⇒ S1 ∼ Exp(λ).
▶ P (Sn+1 > t) = P (NJn+t − NJn = 0) = e−λt , ⇒ Sn+1 ∼ Exp(λ)

Moreover, Sn+1 is independent of S1, . . . , Sn by independence of
increments of Nt .

Equivalent characterizations of the Poisson process

b. For any t > 0 and h → 0+, uniformly in t it holds

P (Nt+h − Nt = 0) = 1 − λh + o(h),
P (Nt+h − Nt = 1) = λh + o(h),
=⇒ P (Nt+h − Nt > 1) = o(h).

c. Conditional on Nt = n, the n jump times are uniformly distributed in
(0, t), i.e. J1, . . . , Jn have the same distribution of the order
statistics U(1), . . . U(n) with Ui

iid∼ U(0, t).

Generation of a Poisson process

Generation based on property a.
Algorithm: Poisson process – version I.

1 Set N0 = 0, J0 = 0, Y0 = 0
2 For n = 1, 2, . . . ,
3 Generate Sn ∼ Exp(λ) and set Jn = Jn−1 + Sn
4 Set Nt = NJn−1 , t ∈ [Jn−1, Jn) and NJn = NJn−1 + 1.

Generation on an interval [0, T] based on procerty c.
Algorithm: Poisson process – version II.

1 Generate NT ∼ Pois(λT)
2 Generate U1, . . . , UNT

iid∼ U(0, T)
3 Order the sample U(1) < · · · < U(NT)
4 Set J0 = 0, Jn = U(n), and Nt = n, t ∈ [Jn, Jn+1), n = 1, . . . , NT

Non homogeneous Poisson process

Definition. {Nt , t ≥ 0, N0 = 0} is a non-homogeneous Poisson process
with rate λ : [0, ∞) → R+ if it is a right-continuous process with
independent increments, such that

P (Nt+h − Nt = 0) = 1 − λ(t)h + o(h),
P (Nt+h − Nt = 1) = λ(t)h + o(h).

Lemma
Distribution of the holding times:

Fn+1(t) = P (Sn+1 ≤ t) = 1 − exp
{

−
∫ Jn+t

Jn

λ(s) ds
}

.

Proof of the Lemma

F ′
n+1(t) = lim

h→0

Fn+1(t + h) − Fn+1(t)
h

= lim
h→0

P (t < Sn+1 ≤ t + h)
h = lim

h→0

P (Sn+1 ≤ t + h | Sn+1 > t)
h (1 − Fn+1(t))

= lim
h→0

P (NJn+t+h > n | NJn+t = n)
h (1 − Fn+1(t))

= lim
h→0

1 − P (NJn+t+h = n | NJn+t = n)
h (1 − Fn+1(t))

= λ(Jn + t)(1 − Fn+1(t))

Solving the ODE on Fn+1 gives the desired result.

Generation of non homogeneous Poisson process

Algorithm: Non-homogeneous Poisson process.
1 Set N0 = 0, J0 = 0, Y0 = 0
2 For n = 1, 2, . . .

3 Generate Sn ∼ Fn(t) = 1 − exp
{

−
∫ Jn−1+t

Jn−1
λ(s) ds

}
4 Set Jn = Jn−1 + Sn,
5 Set Nt = NJn−1 , t ∈ [Jn−1, Jn),
6 Set NJn = NJn−1 + 1

Alternative construction:
▶ Define Λ(t) =

∫ t
0 λ(s) ds

▶ Let Ñt be a homogeneous Poisson process with rate 1
▶ Then,

Nt = Ñt ◦ Λ = ÑΛ(t)

is a non-homogeneous Poisson process with rate λ(t).

General continuous time / discrete space Markov chain
Let {Xt , t ≥ 0} be a continuous time Markov chain on the discrete state
space X = {y1, y2, . . .}.
Then, {Xt} is fully characterized by
▶ distribution of initial state X0 ∼ µ (with µ a pmf on X)
▶ the transition probabilities (jump rates)

qij(t) = lim
h→0+

P (Xt+h = j | Xt = i)
h

qi(t) = lim
h→0+

1 − P (Xt+h = i | Xt = i)
h

The process is homogeneous if qij and qi do not depent on t.

Generator of the Markov process: Qij =
{

qij i ̸= j
−qi i = j

▶ Q is stable if qi < ∞, ∀i
▶ Q is conservative if qi =

∑
j ̸=i qij , ∀i

General continuous time / discrete space Markov chain
Definition. A homogeneous continuous time Markov chain
{Xt ∈ X , t ≥ 0} with initial state X0 ∼ µ and stable and conservative
generator matrix Q, is a right-continuous, piecewise constant process
denoted Markov (µ, Q) s.t.
▶ the jump process {Yn = XJn , n ∈ N0} is a discrete time Markov

chain with transition probability

πij = qij
qi

, i ̸= j , πii = 0, if qi ̸= 0

πij = 0, i ̸= j , πii = 1, if qi = 0.

▶ conditional on Y0, Y1, . . . , Yn−1, the holding times S1, . . . , Sn are
independent random variables, Si ∼ Exp(qYi−1), i = 1, . . . , n.

Generation of cont. time / discrete space Markov chain

Algorithm: Markov (µ, Q).
1 Generate X0 ∼ µ and set J0 = 0, Y0 = X0
2 For n = 1, 2, . . .
3 Generate Sn ∼ Exp(−QYnYn) and set Jn = Jn−1 + Sn,
4 Generate Yn+1 ∼ πYn,·
5 Set Xt = Yn, t ∈ [Jn−1, Jn), and XJn+1 = Yn+1

Example – Poisson process

Generator (Q-matrix) of a homogeneous Poisson process of rate λ > 0:

Q =

−λ λ 0 . . .
0 −λ λ . . .

0
. . .

. . .
. . .


Indeed

qi = −Qii = lim
h→0+

1 − P (Nt+h = i | Nt = i)
h = λ

qi,i+1 = Qi,i+1 = lim
h→0+

P (Nt+h = i + 1 | Nt = i)
h = λ

qi,j = Qi,j = 0, j ̸= i , i + 1.

Meaning of the generator Q
Let
▶ pi(t) = P (Xt = yi)
▶ p(t) = (p1(t), p2(t), . . .) (row vector)

dpi
dt (t) = lim

h→0+

pi(t + h) − pi(t)
h = lim

h→0+

1
h (P (Xt+h = yi) − pi(t))

= lim
h→0+

1
h

(∑
j ̸=i

P (Xt+h = yj | Xt = yi)︸ ︷︷ ︸
=qij (t)h+o(h)

pj(t)

+ P (Xt+h = yi | Xt = yi)︸ ︷︷ ︸
=1−qi (t)h+o(h)

pi(t) − pi(t)
)

=
∑
j ̸=i

qij(t)pj(t) − qi(t)pi(t) =
∑

j
pi(t)Qij(t)

=⇒ d
dt p(t) = p(t)Q(t)

	Generation of Gaussian processes
	Wiener process
	Brownian bridge
	Stationary Gaussian processes – circulant embedding

	Generation of discrete time Markov processes
	Generation of continuous time - discrete state Markov processes
	Poisson processes
	General case

