MATH-414 — Stochastic simulation

Lecture 2: Random variable Generation

Prof. Fabio Nobile
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Random Variable Generation

We have seen in the last lecture examples of uniform (pseudo)-random
number generators.

In this Lecture we ask the question how to construct a non-uniform
(pseudo)-random number generator, i.e. a generator that produces a
stream of iid random variables Xi, X5, ..., having a non uniform
cumulative distribution function F.

The idea will be to start from a uniform RNG and make suitable
transformations to obtain the desired non-uniform RNG.
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Inverse transform method — discrete rvs
> X: discrete rv taking values x; < xp < ... < X,
> probability mass function (pmf): p; =P (X = x;).
» cumulative probabilities: F; = Z}zl pi=P(X < x)

Algorithm: Discrete inverse-transform.

1 Generate U ~ U([0,1])
2 SetX:X,' ifF;_1< USF,

Indeed
]P)(X:X,'):]P)(F,'fl < US F,)
=P (U C (Fi—pi Fi])
= Pi

Example Bernoulli rv X ~ Be(p)

{x_1, fU>1—p U~ ti([0.1])

X =0, otherwise




Inverse transform method — continuous rvs

> X: continuous rv
» cdf F: [a, b] — [0, 1] continuous and strictly increasing

Algorithm: Continuous inverse-transform

1 Generate U ~ U([0,1])
2 Set X = F71(V)

Indeed

P(X <x)=P(F'(U) <
=P (U < F(x)) = F(x)

X

Example Exponential, X ~ Exp(}),
cdf: F(x)=1—e ™

X=FYU)= —i log(1 — U)




Inverse transform method — general case

The discrete and continuous cases can be combined in a unifying formula
by defining a generalized inverse cdf

F~(u) =inf{x: F(x) > u}

Then
U~U(0,1]) = X=F (U)~F
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Composition method
Consider a rv X with a mixture distribution

cdf F(x) = Zp,-F,-(X)

» F;, i=1,...,n are cdf functions
> p;>0,i=1,...,nand Y |  pi=1

Algorithm: Composition method

1 Generate discrete r.v. Y, P(Y =1i) = p;
2 Generate X ~ Fy e.g. by inversion

Example: sampling from Laplace distribution

A 1 1
X ~ Lapl()), pdf f(x) = Ee*w =3 Ae M1, 50 +5 AeM T ooy -

~ Exp(1) ~ —Exp(1)

Y, ifB=1
—Y, ifB=0

BN&gy Y ~ Exp(\), xz{
Equivalently, X = (2B -1)Y Bkl @



Acceptance-Rejection method

Consider a continuous rv X with pdf f and cdf F. Inverse transform
method not applicable if

» F is difficult to invert
» f known only up to a multiplicative constant (e.g. in Bayesian
statistics, statistical physics, etc.)

How to generate X in this case? AR could be a good option.

Assume that

» We can access a non-normalized version fof f. Let
k= ([ f(x)dx)~t so that f(x) = kf(x)
» There exists a pdf g and C > 0 such that

f(x) < Cg(x), VxeR

» sampling from g is “easy”
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Acceptance-Rejection method

Algorithm: Acceptance-Rejection (AR) algorithm

1 Generate Y ~ g
2 Generate U ~ U([0,1]) independent of Y

F(Y) .
3IfUL set X =Y, otherwise return to step 1
Cg(Y)

Why does it work?

f(y
Observe that X ~ Y|{U < )
Ce(Y)

}. Therefore

. i)
F(v) _P(YSX’US Cg(Y)) -
Ce(Y)

N_/_OO]P’<U§ Cfg((yy))v—y> g(y)dy:/_oo Cf;(yy))g(y)dy:%/_oo?(y)dy

B )\ f(y) Y _ 1
DIP’(U§ Cg(y)) 7/Hgmg(y)dy—E/Rf(y)dy7E

Hence P(X < x) = fj f(y)dy = F(x) =PrL @

oo

P(x<x):P<Y<x]U<




Acceptance-Rejection method
Remarks )
» Probability of acceptance: P (U < 1) ) =1

S G)) T ke
» The method is efficient if C ~ k!

Geometric interpretation

denote Az = {(y,u): 0
and Acg = {(y,u): 0 <

1. generate Y ~ g, U ~ U([0,1])
2. set U= Cg(Y)U Then
(Y, U) S ACg
3.0 (Y, U) e Apset X =Y,
otherwise return to step 1
Indeed, the (black) point are uniformly distributed in Ac, since their joint pdf
fo(y,u) = E,‘y(u|y)fy(y) = &) = @. Hence, the retained (blue)
points (X, U) are uniformly distributed on A; and their joint pdf is
fo(x,u) = \Tlﬂ = x~ ! and the X-marginal distribution is

fo?(X) fuo(x, u)du = f(:) = f(x) which shows that X has the correct pdf. EPFL @



Acceptance-Rejection method

Example: Let Z ~ N(0,1): sample from X ~ Z|{Z > 1}

Y]

1 _51
X) = —e 2 x
(x) Wor {x>1}
Approach 1: generate Y ~ N(0,1);if Y > 1
set X =Y, otherwise repeat.
Corresponds to AR with g(x) = —=e~=.
Acceptance rate ~ 0.16
Approach 2: AR with g(x) = e*(xfl)]l{le}

F(x) AL

C = supcr 4] = St <5 = Vi
1. Generate Y =1+ Exp(1)
2. Generate U ~ 1(0,1)

31U < L0 = e 12 et

X =Y, otherwise return to step 1.

Acceptance rate ~ 0.66
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Acceptance-Rejection with squeezing

N

w

Suppose f(x) is costly to evaluate. In the AR algorithm can we reduce
the number of evaluations of ?

Simple idea: if we have a lower bound g(x) < f(x), Vx, which is cheap
to evaluate, and in the AR step U < g(( )) then we can accept Y

without evaluating f.

Algorithm: AR algorithm with squeezing.

Generate Y ~ g
Generate U ~ U([0, 1])

Y -
If U< C(( )) set X = Y, otherwise, evaluate (YY)
IfU< L5 set x =Y
else reject Y and go back to 1
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Adaptive AR for log-concave densities

Let f be log-concave and Z, = {z,...,

z,} be an initial set of points.

We can bound easily log f from above and below by piecewise linear

functions (see Figure): e

$(x) < ?(X) < e5(¥)

>

>

use g(x )/ [e™dx as a
proposal dlstrlbutlon in AR

use &(x) = e**) as a lower
bound in the squeezing
algorithm.

Once a new point z,,1 has
been created, it can be added
to Z, and the functions s(x)
and 5(x) recomputed.
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Sampling from Normal distribution — Box-Muller method

Standard distributions often have specialized generators. We mention one
for the normal distribution (not the most efficient, though).
It generates couples (X, Y) of independent standard Normal rvs and

. o . . iid
relies on a transformation in polar coordinates. Given X, Y =~ N(0,1)

> 2= X2+ Y2~ & = Expld)
» by radial symmetry, the distribution of (X, Y)|X? + Y2 is uniform in
[0,27] and independent of p.

Algorithm: Box-Muller method.

1 Generate U ~ U(0,1) and set p = /—2log U
2 Generate V ~ 1{(0,1) and set © =27V

3 Set X =pcos®, Y = psin©.
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Multivariate random variable generation

> X =(Xg,...,X,)" €R": vector of rvs.
» joint cdf: F(z) = F(z1,...,2,) =P (X1 < z,..., X, < z,)
> joint pdf (if it exists): f(x) = f(x1,...,%,) : R” — Ry such that

F(zl,...,z,,):/ / f(X1y .oy Xn) dxq ... dX,.

The inverse transform method is not applicable in the multivariate case
(F is not invertible)

The Acceptance-Rejection method generalizes straightforwardly to the
multivariate case. However, it might be difficult to find a “good” density
g which gives acceptable acceptance rates.
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Simple cases

1
2
3

Independent components

X = (Xi,...,X,) has independent components and cdf
F(z) = Fi(z1) ... Fa(zp).

Then one generates X; ~ F;, i =1,..., n independently.

Example: to generate X ~ U([0,1]"), we can generate
Xi; ~U([0,1]), i =1,...,n independently.

Generating from conditional distributions
Consider X with dependent components and factorize the pdf as

fx(z) = £ (21)fx, | (22 | 21) -+ x| xpoa (20 | Z1:0-1).

Assuming each conditional density fx,| x,,_,(zi | z1:i-1), i=1,...
known and easy to generate:

n

)

Algorithm: Conditional distribution generation.
Generate Xj ~ fx,(z)
Fori=2,...,n,
Generate Xi ~ fx, | x,,..x_(Z | X1,...,Xi_1) EpEL @




Example - generating order statistics
Let X = (Xi,...,X,) ~U((0,1)") and denote by
X1y < Xy < -+ < X(y) the ordered sample (ordered statistics).
The “sort” operation may be costly for a large sample. Can we generate
the order statistics without sort?

Yes, by conditioning. It can be shown (exercise) that
» X(n) = max;=1,.. ., X; has distribution FX(H)(z) =z"
> Xy | X(j+1)s - - - » X(ny has (conditional) distribution

Fxgy | XgsayoXon (Z | Xit15 - 05%0) = P (X(y < 2 | Xy = Xk, k > )
j
V4
=P (Xg) <z | Xgrn) = x01) = () Lizsan)

Xj+1

Algorithm: Generation of order statistics by conditioning.
1

1 Generate U, ~U(0,1) and set X, = (Un)?
2 Forj=n—-1,...,1,
3 Generate U; ~ U(0,1) and set Xy = X(j11)(U;)7 =pEL @
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Multivariate Gaussian random variable generation
Let X ~ N(u,X), mean p € R”, covariance matrix X € R"*" (spd).

- 1 _ n
joint pdf f(x) = Wexp <2(x —p) T (x — u))) , xeR

Common way to generate X: factorize covariance matrix ¥ = AAT

Algorithm: Multivariate Gaussian generator
Given: 1 € R" and ¥ = AAT € R™" (spd)
iid

1 Generate Y ~ N(0, /,%,) (ie. Y=(Y1,...,Ys), Yi~N(0,1))
2 Compute X = p + AY

Indeed
» X is Gaussain (affine transformation of Gaussians)
> EX]=pn

> Cov[X]=E[(X —p)(X—p)T ]| =E[AYYTAT] =
AE[YYT]AT =% EPFL @



Multivariate Gaussian random variable generation

How to factorize

» spectral decomposition of ¥: V matrix of eigenvectors;
D = diag(A1, . .., Ap) matrix of eigenvalues

¥ =VDVT =(VvD2)(VD?)T = AAT, A= VD:?
Costly for large matrices; works also for singular (or nearly singular)
matrices.

» Cholesky factorization: ¥ = AAT with A lower triangular

Cheaper than the spectral decomposition but works only for strictly
positive definite matrices

» A more robust version for nearly singular or singular matrices is the
pivoted Cholesky factorization
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Multivariate Gaussian random variable generation

Sometime one has access to the precision matrix ¥ ! instead of the
covariance matrix .

In such case, one can factorize the precision matrix ¥~ = AAT

Algorithm: Multivariate Gaussian generator from precision matrix
1 Compute the Cholesky factorisation ¥~1 = LLT
2 Generate Z ~ N(0,/) // n independent standard normals
3 Solve the linear system LTY = Z // upper triangular
4 Output X=p+Y

Indeed: Cov[X]=E[YYT| =E[L-T2ZTL Y =L"TL =%
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Generating conditional Gaussian random variables

Let X ~ N(p, ). Split X = (Ya,- .., Yo—ss Z1, ... Zk) = (Y. Z). Then
15% Yyy Yyz
X] <uz> ’ (Z;z Zzz>

The conditional distribution of Y given Z = z is again a multivariate
Gaussian N(py| z, Xy | z) with

By z =y +ZvzE75(z — pz) (1)
Yviz=Yvyy — Tyziz;¥zy. (2)

To generate Y | Z = z we can factorize the conditional covariance

2 y| z and use the previous algorithm.

However, in some cases, factorizing ¥ (or £~1) is cheap, (e.g. stationary
random fields, markov random fields, etc.), whereas factorizing Yy zis

costly (full O(n®) cost)
EPFL &



Generating conditinal Gaussian random variables

An alternative way to generate a conditional Gaussian random variable is
given by the following algorithm

Algorithm: Generation from conditional Gaussian distribution - |

Given: 1, Y and z € R¥
1 Generate X ~ N(u,X) // (unconditional distr.)
2 Set Y =(Xy,...,Xo—k) and Z = (Xp—k+1,-- -, Xn)
3 Output Y =Y + Zyzzgé(z - 2)

We can easily verify that Y has the correct distribution. Indeed,
E[Y]=E[Y] + Zvz%7;(z — E[Z]) = py + TvzE7z(z — pz).
Moreover, setting Y/ = Y —E[Y] = (¥ — py) — ZyzX73(Z — pz),
Cov(Y) =E[Y'YT] =E[¥YV| - £yzr 3B |2V
—E Y 27|57 Ty, + Tv2I R (22| 177 T8,

= Yyy — Tvz¥ 3% zy EPFL &



Conditioning on arbitrary linear observations

In the previous setting we assumed to observe some components of X.
We can generalize the argument by assuming that we observe (possibly
with noise) some linear combinations of X:

Z=HX+mn, H e R¥*" 5~ N(0,T) independent of X
Defining X = (X, Z) € Rk which has

. . T
E[X]—(:N>, Cov(X)—<HZZ Z’; > S—HSHT 4T

we obtain X | Z =z~ N(ux| z-2,Xx| z)
x| z—z = p+ETH STz —Hp), Txz=%X-TH'S'HL.

Algorithm: Generation from conditional Gaussian distribution - Il

Given: u, Y and z € R¥
1 Generate X ~ N(u,X)
2 generate n ~ N(0,T)

3 compute perturbed innovation d = z — HX + n
a Output X = X + Kd EPFL@
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