
MATH-414 – Stochastic simulation

Lecture 2: Random variable Generation

Prof. Fabio Nobile

Outline

Inverse transform method

Composition method

Acceptance-Rejection method

Box-Muller method for normal distribution

Multivariate random variable generation

Multivariate Gaussian random variable generation

Random Variable Generation

We have seen in the last lecture examples of uniform (pseudo)-random
number generators.

In this Lecture we ask the question how to construct a non-uniform
(pseudo)-random number generator, i.e. a generator that produces a
stream of iid random variables X1, X2, . . ., having a non uniform
cumulative distribution function F .

The idea will be to start from a uniform RNG and make suitable
transformations to obtain the desired non-uniform RNG.

Inverse transform method – discrete rvs
▶ X : discrete rv taking values x1 < x2 < . . . < xn
▶ probability mass function (pmf): pi = P (X = xi).
▶ cumulative probabilities: Fi =

∑i
j=1 pj = P (X ≤ xi)

Algorithm: Discrete inverse-transform.

1 Generate U ∼ U([0, 1])
2 Set X = xi if Fi−1 < U ≤ Fi

Indeed

P (X = xi) = P (Fi−1 < U ≤ Fi)
= P (U ⊂ (Fi − pi , Fi])
= pi

Example Bernoulli rv X ∼ Be(p){
X = 1, if U > 1 − p
X = 0, otherwise

U ∼ U([0, 1]) x1 x2 x3

X = x3

. . . xn

F̂n

1

F3

U
F2

F1

Inverse transform method – continuous rvs
▶ X : continuous rv
▶ cdf F : [a, b] → [0, 1] continuous and strictly increasing

Algorithm: Continuous inverse-transform
1 Generate U ∼ U([0, 1])
2 Set X = F −1(U)

Indeed

P (X ≤ x) = P
(
F −1(U) ≤ x

)
= P (U ≤ F (x)) = F (x)

Example Exponential, X ∼ Exp(λ),
cdf: F (x) = 1 − e−λx

X = F −1(U) = − 1
λ

log(1 − U)

∼ − 1
λ

log(U)
a b

U

X

F (x)

Inverse transform method – general case

The discrete and continuous cases can be combined in a unifying formula
by defining a generalized inverse cdf

F −(u) = inf{x : F (x) ≥ u}

Then
U ∼ U([0, 1]) =⇒ X = F −(U) ∼ F

Composition method
Consider a rv X with a mixture distribution

cdf F (x) =
n∑

i=1
piFi(x)

▶ Fi , i = 1, . . . , n are cdf functions
▶ pi > 0, i = 1, . . . , n and

∑n
i=1 pi = 1

Algorithm: Composition method

1 Generate discrete r.v. Y , P (Y = i) = pi
2 Generate X ∼ FY e.g. by inversion

Example: sampling from Laplace distribution

X ∼ Lapl(λ), pdf f (x) = λ

2 e−λ|x | = 1
2 λe−λx1{x≥0}︸ ︷︷ ︸

∼ Exp(1)

+1
2 λeλx1{x<0}︸ ︷︷ ︸

∼ −Exp(1)

.

B ∼ Be(1
2), Y ∼ Exp(λ), X =

{
Y , if B = 1
−Y , if B = 0

Equivalently, X = (2B − 1)Y

Acceptance-Rejection method

Consider a continuous rv X with pdf f and cdf F . Inverse transform
method not applicable if
▶ F is difficult to invert
▶ f known only up to a multiplicative constant (e.g. in Bayesian

statistics, statistical physics, etc.)

How to generate X in this case? AR could be a good option.

Assume that
▶ We can access a non-normalized version f̃ of f . Let

κ = (
∫
R f̃ (x) dx)−1 so that f (x) = kf̃ (x)

▶ There exists a pdf g and C > 0 such that

f̃ (x) ≤ Cg(x), ∀x ∈ R

▶ sampling from g is “easy”

Acceptance-Rejection method
Algorithm: Acceptance-Rejection (AR) algorithm

1 Generate Y ∼ g
2 Generate U ∼ U([0, 1]) independent of Y

3 If U ≤ f̃ (Y)
Cg(Y) set X = Y , otherwise return to step 1

Why does it work?

Observe that X ∼ Y |{U ≤
f̃ (Y)

Cg(Y)
}. Therefore

P (X ≤ x) = P

(
Y ≤ x

∣∣ U ≤
f̃ (Y)

Cg(Y)

)
=

P
(

Y ≤ x , U ≤ f̃ (Y)
Cg(Y)

)
P

(
U ≤ f̃ (Y)

Cg(Y)

) = N
D

N =
∫ x

−∞
P

(
U ≤

f̃ (Y)
Cg(Y)

|Y = y
)

g(y)dy =
∫ x

−∞

f̃ (y)
Cg(y)

g(y) dy = 1
C

∫ x

−∞
f̃ (y) dy

D = P

(
U ≤

f̃ (Y)
Cg(Y)

)
=

∫
R

f̃ (y)
Cg(y)

g(y) dy = 1
C

∫
R

f̃ (y) dy = 1
κC

Hence P (X ≤ x) =
∫ x

−∞ f (y) dy = F (x)

Acceptance-Rejection method
Remarks
▶ Probability of acceptance: P

(
U ≤ f̃ (Y)

Cg(Y)

)
= 1

κC
▶ The method is efficient if C ≈ κ−1

Geometric interpretation

Cg(y)

f̃ (y)

y

u denote Af̃ = {(y , u) : 0 ≤ u ≤ f̃ (y)}
and ACg = {(y , u) : 0 ≤ u ≤ Cg(y)}

1. generate Y ∼ g , U ∼ U([0, 1])
2. set Ũ = Cg(Y)U Then

(Y , Ũ) ∈ ACg

3. if (Y , Ũ) ∈ Af̃ set X = Y ,
otherwise return to step 1

Indeed, the (black) point are uniformly distributed in ACg since their joint pdf
f•(y , u) = fŨ|Y (u|y)fY (y) = 1

Cg(y) g(y) = 1
|ACg | . Hence, the retained (blue)

points (X , Ũ) are uniformly distributed on Af̃ and their joint pdf is
f•(x , u) = 1

|Af̃ | = κ−1 and the X -marginal distribution is∫ f̃ (x)
0 f•(x , u)du = f̃ (x)

κ
= f (x) which shows that X has the correct pdf.

Acceptance-Rejection method
Example: Let Z ∼ N(0, 1): sample from X ∼ Z |{Z ≥ 1}

f̃ (x) = 1√
2π

e− x2
2 1{x≥1}

Approach 1: generate Y ∼ N(0, 1); if Y ≥ 1
set X = Y , otherwise repeat.
Corresponds to AR with g(x) = 1√

2π
e− x2

2 .
Acceptance rate ≈ 0.16

Approach 2: AR with g(x) = e−(x−1)1{x≥1}

C = supx≥1
f̃ (x)
g(x) = supx≥1

e− x2
2 +x−1

√
2π

= 1√
2πe

1. Generate Y = 1 + Exp(1)
2. Generate U ∼ U(0, 1)

3. If U ≤ f̃ (Y)
Cg(Y) = e−Y 2/2+Y −1/2 set

X = Y , otherwise return to step 1.
Acceptance rate ≈ 0.66

1

1 + Exp(1)

Acceptance-Rejection with squeezing

Suppose f̃ (x) is costly to evaluate. In the AR algorithm can we reduce
the number of evaluations of f̃ ?

Simple idea: if we have a lower bound ĝ(x) ≤ f̃ (x), ∀x , which is cheap
to evaluate, and in the AR step U ≤ ĝ(Y)

Cg(Y) , then we can accept Y
without evaluating f̃ .

Algorithm: AR algorithm with squeezing.

1 Generate Y ∼ g
2 Generate U ∼ U([0, 1])

3 If U ≤ ĝ(Y)
Cg(Y) set X = Y , otherwise, evaluate f̃ (Y)

4 If U ≤ f̃ (Y)
Cg(Y) set X = Y

5 else reject Y and go back to 1

Adaptive AR for log-concave densities

Let f̃ be log-concave and Zr = {z1, . . . , zr } be an initial set of points.
We can bound easily log f̃ from above and below by piecewise linear
functions (see Figure): e ŝ(x) ≤ f̃ (x) ≤ es(x)

log f̃(x)

z1 z2 zr

Ŝ(x)

S(x)

▶ use g(x) = es(x)/
∫

es(x)dx as a
proposal distribution in AR

▶ use ĝ(x) = e ŝ(x) as a lower
bound in the squeezing
algorithm.

▶ Once a new point zr+1 has
been created, it can be added
to Zr and the functions s(x)
and ŝ(x) recomputed.

Sampling from Normal distribution – Box-Muller method

Standard distributions often have specialized generators. We mention one
for the normal distribution (not the most efficient, though).

It generates couples (X , Y) of independent standard Normal rvs and
relies on a transformation in polar coordinates. Given X , Y iid∼ N(0, 1)
▶ ρ2 = X 2 + Y 2 ∼ ξ2

2 = Exp(1
2)

▶ by radial symmetry, the distribution of (X , Y)|X 2 + Y 2 is uniform in
[0, 2π] and independent of ρ.

Algorithm: Box-Muller method.

1 Generate U ∼ U(0, 1) and set ρ =
√

−2 log U
2 Generate V ∼ U(0, 1) and set Θ = 2πV
3 Set X = ρ cos Θ, Y = ρ sin Θ.

Multivariate random variable generation

▶ X = (X1, . . . , Xn)⊤ ∈ Rn: vector of rvs.
▶ joint cdf: F (z) = F (z1, . . . , zn) = P (X1 ≤ z1, . . . , Xn ≤ zn)
▶ joint pdf (if it exists): f (x) = f (x1, . . . , xn) : Rn → R+ such that

F (z1, . . . , zn) =
∫ z1

−∞
· · ·

∫ zn

−∞
f (x1, . . . , xn) dx1 . . . dxn.

The inverse transform method is not applicable in the multivariate case
(F is not invertible)

The Acceptance-Rejection method generalizes straightforwardly to the
multivariate case. However, it might be difficult to find a “good” density
g which gives acceptable acceptance rates.

Simple cases
Independent components
X = (X1, . . . , Xn) has independent components and cdf
F (z) = F1(z1) . . . Fn(zn).

Then one generates Xi ∼ Fi , i = 1, . . . , n independently.

Example: to generate X ∼ U([0, 1]n), we can generate
Xi ∼ U([0, 1]), i = 1, . . . , n independently.

Generating from conditional distributions
Consider X with dependent components and factorize the pdf as

fX(z) = fX1(z1)fX2 | X1(z2 | z1) . . . fXn | X1:n−1(zn | z1:n−1).

Assuming each conditional density fXi | X1:i−1(zi | z1:i−1), i = 1, . . . , n
known and easy to generate:

Algorithm: Conditional distribution generation.
1 Generate X1 ∼ fX1(z)
2 For i = 2, . . . , n,
3 Generate Xi ∼ fXi | X1,...,Xi−1(z | X1, . . . , Xi−1)

Example - generating order statistics
Let X = (X1, . . . , Xn) ∼ U((0, 1)n) and denote by
X(1) ≤ X(2) ≤ · · · ≤ X(n) the ordered sample (ordered statistics).

The “sort” operation may be costly for a large sample. Can we generate
the order statistics without sort?

Yes, by conditioning. It can be shown (exercise) that
▶ X(n) = maxi=1,...,n Xi has distribution FX(n)(z) = zn

▶ X(j) | X(j+1), . . . , X(n) has (conditional) distribution

FX(j) | X(j+1),...,X(n)(z | xj+1, . . . , xn) = P
(
X(j) ≤ z | X(k) = xk , k > j

)
= P

(
X(j) ≤ z | X(j+1) = xj+1

)
=

(
z

xj+1

)j
1{z≤xj+1}

Algorithm: Generation of order statistics by conditioning.
1 Generate Un ∼ U(0, 1) and set X(n) = (Un) 1

n

2 For j = n − 1, . . . , 1,
3 Generate Uj ∼ U(0, 1) and set X(j) = X(j+1)(Uj)

1
j

Multivariate Gaussian random variable generation
Let X ∼ N(µ, Σ), mean µ ∈ Rn, covariance matrix Σ ∈ Rn×n (spd).

joint pdf f (x) = 1√
(2π)n det Σ

exp
(

−1
2(x − µ)⊤Σ−1(x − µ))

)
, x ∈ Rn

Common way to generate X : factorize covariance matrix Σ = AA⊤

Algorithm: Multivariate Gaussian generator
Given: µ ∈ Rn and Σ = AA⊤ ∈ Rn×n (spd)

1 Generate Y ∼ N(0, In×n) (i.e. Y = (Y1, . . . , Yn), Yi
iid∼ N(0, 1))

2 Compute X = µ + AY

Indeed
▶ X is Gaussain (affine transformation of Gaussians)
▶ E [X] = µ

▶ Cov[X] = E
[
(X − µ)(X − µ)⊤]

= E
[
AYY ⊤A⊤]

=
AE

[
YY ⊤]

A⊤ = Σ

Multivariate Gaussian random variable generation

How to factorize Σ
▶ spectral decomposition of Σ: V matrix of eigenvectors;

D = diag(λ1, . . . , λn) matrix of eigenvalues

Σ = VDV ⊤ = (VD 1
2)(VD 1

2)⊤ = AA⊤, A = VD 1
2

Costly for large matrices; works also for singular (or nearly singular)
matrices.

▶ Cholesky factorization: Σ = AA⊤ with A lower triangular
Cheaper than the spectral decomposition but works only for strictly
positive definite matrices

▶ A more robust version for nearly singular or singular matrices is the
pivoted Cholesky factorization

Multivariate Gaussian random variable generation

Sometime one has access to the precision matrix Σ−1 instead of the
covariance matrix Σ.
In such case, one can factorize the precision matrix Σ−1 = AA⊤

Algorithm: Multivariate Gaussian generator from precision matrix
1 Compute the Cholesky factorisation Σ−1 = LLT

2 Generate Z ∼ N(0, I) // n independent standard normals
3 Solve the linear system L⊤Y = Z // upper triangular
4 Output X = µ + Y

Indeed: Cov[X] = E
[
YY ⊤]

= E
[
L−⊤ZZ⊤L−1]

= L−⊤L−1 = Σ

Generating conditional Gaussian random variables

Let X ∼ N(µ, Σ). Split X = (Y1, . . . , Yn−k , Z1, . . . , Zk) = (Y , Z). Then

E [X] =
(

µY
µZ

)
, Σ =

(
ΣYY ΣYZ
Σ⊤

YZ ΣZZ

)

The conditional distribution of Y given Z = z is again a multivariate
Gaussian N(µY | Z , ΣY | Z) with

µY | Z = µY + ΣYZ Σ−1
ZZ (z − µz) (1)

ΣY | Z = ΣYY − ΣYZ Σ−1
ZZ ΣZY . (2)

To generate Y | Z = z we can factorize the conditional covariance
ΣY | Z and use the previous algorithm.
However, in some cases, factorizing Σ (or Σ−1) is cheap, (e.g. stationary
random fields, markov random fields, etc.), whereas factorizing ΣY | Z is
costly (full O(n3) cost)

Generating conditinal Gaussian random variables
An alternative way to generate a conditional Gaussian random variable is
given by the following algorithm

Algorithm: Generation from conditional Gaussian distribution - I
Given: µ, Σ and z ∈ Rk

1 Generate X ∼ N(µ, Σ) // (unconditional distr.)
2 Set Y = (X1, . . . , Xn−k) and Z = (Xn−k+1, . . . , Xn)
3 Output Y = Y + ΣYZ Σ−1

ZZ (z − Z)

We can easily verify that Y has the correct distribution. Indeed,

E [Y] = E [Y] + ΣYZ Σ−1
ZZ (z − E [Z]) = µY + ΣYZ Σ−1

ZZ (z − µZ).

Moreover, setting Y ′ = Y − E [Y] = (Y − µY) − ΣYZ Σ−1
ZZ (Z − µZ),

Cov(Y) = E
[
Y ′Y ′⊤]

= E
[
Y ′Y ′⊤

]
− ΣYZ Σ−1

ZZE
[
Z′Y ′⊤

]
− E

[
Y ′Z′T

]
Σ−⊤

ZZ Σ⊤
YZ + ΣYZ Σ−1

ZZE
[
Z′Z′T

]
Σ−⊤

ZZ Σ⊤
YZ

= ΣYY − ΣYZ Σ−1
ZZ ΣZY

Conditioning on arbitrary linear observations
In the previous setting we assumed to observe some components of X .
We can generalize the argument by assuming that we observe (possibly
with noise) some linear combinations of X :

Z = HX + η, H ∈ Rk×n, η ∼ N(0, Γ) independent of X

Defining X̃ = (X , Z) ∈ Rn+k which has

E
[
X̃

]
=

(
µ

Hµ

)
, Cov(X̃) =

(
Σ ΣH⊤

HΣ S

)
, S = HΣH⊤ + Γ

we obtain X | Z = z ∼ N(µX | Z=z , ΣX | Z)

µX | Z=z = µ + ΣH⊤S−1(z − Hµ), ΣX | Z = Σ − ΣH⊤S−1HΣ.

Algorithm: Generation from conditional Gaussian distribution - II
Given: µ, Σ and z ∈ Rk

1 Generate X ∼ N(µ, Σ)
2 generate η ∼ N(0, Γ)
3 compute perturbed innovation d̃ = z − HX + η

4 Output X = X + K d̃

	Inverse transform method
	Composition method
	Acceptance-Rejection method
	Box-Muller method for normal distribution
	Multivariate random variable generation
	Multivariate Gaussian random variable generation

