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Problem setting
▶ X : state space

▶ π: target probability measure on X , possibly known only up to a
multiplicative constant (i.e. π = C π̃ and only π̃ is accessible).

Goals:

▶ sample from π

▶ Given ψ : X → R with finite first moment wrt π, compute
µ = Eπ[ψ]

Idea of MCMC:

▶ Construct a Markov Chain {Xn, n ≥ 0} ∼ Markov (λ,P) ergodic
and with π as invariant measure

▶ Approximate µ = Eπ[ψ] by ergodic estimator

µ̂MCMC
N,b =

1

N

N∑
i=1

ψ(Xi+b)

b is called the burn in time (initial length of the chain disregarded in
the temporal average)



Metropolis-Hastings algorithm – discrete state space
▶ Take a stochastic matrix Q s.t.

Qij = 0 ⇐⇒ Qji = 0

▶ For any i , j ∈ {1, . . . , d}, define the acceptance probability

α(i , j) = min

{
1,
πjQji

πiQij

}
if Qij ̸= 0, α(i , j) = 0, if Qij = 0.

▶ Given Xn

▶ generate proposal state X̃n+1 ∼ QXn,:

▶ with probabiliy α(Xn, X̃n+1) accept the move and set Xn+1 = X̃n+1.
Otherwise, set Xn+1 = Xn

No need to know the normalization constant – only the ratio
πX̃n+1

πXn
needs

to be evaluated

If Q is symmetric, then α(i , j) = min{1, πj

πi
} – moves to higher

probability states are always accepted.



Metropolis-Hastings algorithm – discrete state space

Algorithm: Metropolis-Hastings

Given: λ (initial distribution), Q (proposal), π (target distribution)

1 Generate X0 ∼ λ

2 for n = 0, 1, . . . , do

3 Generate candidate new state X̃n+1 ∼ QXn,:

4 Generate U ∼ U([0, 1])
5 if U ≤ α(Xn, X̃n+1) then
6 set Xn+1 = X̃n+1 // X̃n accepted with prob. α(Xn, X̃n+1)

7 else
8 set Xn+1 = Xn // X̃n rejected with prob. 1− α(Xn, X̃n+1)

9 end

10 end



Transition matrix of the Metropolis-Hastings algorithm
Lemma
Let α∗

j =
∑

j α(i , j)Qij . The transition matrix of the chain produced by
the Metropolis-Hastings algorithm is given by

Pij = α(i , j)Qij + (1− α∗
i )δij .

Proof

for i ̸= j Pij = P (Xn+1 = j | Xn = i) = P
(
X̃n+1 = j ,Xn+1 = X̃n+1 | Xn = i

)
= P

(
Xn+1 = X̃n+1 | X̃n+1 = j ,Xn = i

)
P
(
X̃n+1 = j | Xn = i

)
= α(i , j)Qij

for i = j Pii = P (Xn+1 = i | Xn = i)

= P
(
X̃n+1 = i ,Xn+1 = X̃n+1 | Xn = i

)
+ P

(
Xn+1 ̸= X̃n+1 | Xn = i

)
= α(i , i)Qii +

∑
j

P
(
X̃n+1 = j ,Xn+1 ̸= X̃n+1 | Xn = i

)
= α(i , i)Qii +

∑
j

(1− α(i , j))Qij = α(i , i)Qii + (1− α∗
i )

α∗
i represents the probability of accepting a new state when being in

state i .



Detailed balance condition

Lemma
The transition matrix P of the Metropolis-Hasting algorithm is in
detailed balance with π. Hence, the chain produced by MH is reversible
and has π as invariant distribution.

Proof
We have to show that

πiPij = πjPji , ∀i , j
Obvious if i = j . For i ̸= j

πiPij = πiα(i , j)Qij = πiQij min

{
1,

πjQji

πiQij

}
= min {πiQij , πjQji}

= min

{
πiQij

πjQji
, 1

}
︸ ︷︷ ︸

α(j,i)

πjQji = πjPji



Ergodicity of the MH Markov chain

Let us assume that πi > 0 for any i (otherwise the state i can be
removed from the state space).

▶ Irreducibility of P is implied by the irreducibility of Q. Hence we
should always consider proposals Q that are irreducible.

▶ Positive recurrence is verified since P admits an inveriant probability
measure by construction (remember that P has an invariant
probability measure if and only if it is positive recurrent)

▶ Aperiodicity is satisfied automatically if α∗
i < 1 for some i (positive

probability of staying in state i in the next iteration – this brakes any
periodicity).

Only if α∗
i = 1 for all i (e.g. in Gibb’s sampler) we need to check

that the chain is aperiodic



Markov Chains on continuous state space

Let X ⊂ Rd with Borel σ-algebra B(X ) (we could even work on an
arbitrary metric space (X ,B(X )))

Definition. A Markov transition kernel on (X ,B(X )) is a function
P : X × B(X ) → [0, 1] s.t.

1. for all x ∈ X , P(x , ·) is a probability measure on X ,

2. for all A ∈ B(X ), P(·,A) is measurable.

The transition density associated to P, if it exists, is a function

p : X × X → R+,

∫
X
p(x , y)dy = 1, ∀x ∈ X

such that P(x ,A) =
∫
A
p(x , y) dy for all A ∈ B(X ).

Definition. A sequence of random variables {Xn ∈ X , n ≥ 0} is a
homogeneous Markov chain with transition kernel P and initial
distribution λ, in short {Xn} ∼ Markov (λ,P) if

▶ X0 ∼ λ

▶ P (Xn+1 ∈ A | Xn, . . . ,X0) = P (Xn+1 ∈ A | Xn) = P(Xn,A)



Markov Chains on continuous state space

▶ n-step transition kernel

P(n)(x ,A) := P (Xn ∈ A | X0 = x) =

∫
X
P(n−1)(y ,A)P(x , dy), P(1) = P

▶ n-step transition density

p(n)(x , y) =

∫
X
p(n−1)(z , y)p(x , z) dz , p(1) = p.



Markov transition operator

▶ Markov transition operator acting on measures (to the left):
P : M1(X ) → M1(X )

µ = λP =⇒ µ(A) =

∫
X
P(y ,A)λ(dy), ∀A ∈ B(X ).

implies

λP2(A) =

∫
X

∫
X
P(x ,A)P(y , dx)λ(dy) =

∫
X
P(2)(y ,A)λ(dy)

and

λPn(A) =

∫
X
P(n)(y ,A)λ(dy)

▶ n-step distribution

πn,λ(A) = Pλ(Xn ∈ A) =

∫
X
P(n)(y ,A)λ(dy) = λPn(A)



Invarinat measure and detailed balance
▶ A measure π is called invariant (or stationary) if

π = πP =

∫
X
P(y , ·)π(dy)

If f is the density of π and p the transition density, then

f (x) =

∫
X
p(y , x)f (y) dy .

▶ A chain {Xn}n=0 ∼ Markov (λ,P) is reversible if, for any N > 0, the
chain {Yn = XN−n}Nn=0 ∼ Markov (λ,P).

▶ (λ,P) are said to be in detailed balance if∫
A

P(x ,B)λ(dx) =

∫
B

P(y ,A)λ(dy), ∀A,B ∈ B(X ).

If ℓ denotes the density of λ, then ℓ(x)p(x , y) = ℓ(y)p(y , x)

▶ If (P, λ) are in detailed balance, then P is reversible and λ is an
invariant measure. Indeed,∫

X
P(x ,B)λ(dx) =

∫
B

P(y ,X )︸ ︷︷ ︸
=1

λ(dy) = λ(B).



Irreducibility

Definition. A set A ∈ B(X ) is accessible if Px(σA <∞) > 0 for all
x ∈ X , where σA = inf{n > 0 : Xn ∈ A} is the return time to the set A.

Definition. A Markov chain {Xn}n ∼ Markov (λ,P) is irreducible if
there exists a (σ-finite) measure φ on (X ,B(X )), called irreducibility
measure such that any set A ∈ B(X ), with φ(A) > 0 is accessible.

The notion of irreducibility does not really depend on the measure φ as
lon as one irreducibilty measure exists.

Theorem
If {Xn}n ∼ Markov (λ,P) is irreducible for some irreducibility measure φ
on (X ,B(X )), then there exists a probability measure ψ on B(X ), called
maximal irreducibility measure such that

▶ {Xn}n is ψ-irreducible

▶ For any other measure φ′ on B(X ) for which {Xn} is φ′-irreducible,
one has φ′ ≫ ψ (i.e. for all A ∈ B(X ), ψ(A) = 0 =⇒ φ′(A) = 0)

▶ Any invariant measure is a maximal irreducibility measure.



Recurrence and a-periodicity
Definition. A Markov chain {Xn}n ∼ Markov (λ,P) is aperiodic if for
any x ∈ X and any accessible set A ∈ B(X )

∃n0 ≥ 0 : P(n)(x ,A) > 0 ∀n ≥ n0.

Let A ∈ B(X ) and VA =
∑

n≥0 1{Xn∈A} be the number of visits to A

Definition. A Markov chain {Xn}n ∼ Markov (λ,P) is recurrent if it is
irreducible and every accessible set A satisfies Ex [VA] = ∞, for all x ∈ A.

It is Harris recurrent if it is irreducible and every accessible set A satisfies
Px(VA = ∞) = 1, for all x ∈ A;

Harris recurrence is stronger and implies recurrence. In the discrete state
case, the two notions coincide.

Definition. A Markov chain {Xn}n ∼ Markov (λ,P) is positive
(recurrent) if it has an invariant probability measure.

Theorem
An irreducible, recurrent Markov kernel P admits a non-zero invariant
measure, unique up to a multiplicative constant.

If an irreducible Markov kernel P has an invariant probability measure
(i.e. is positive), then it is recurrent.



Convergence of Markov chains

Theorem
Let {Xn}n be irreducible, poisitive, Harris recurrent, and aperiodic, with
(unique) invariant distribution π. Then limn→∞ ∥λPn − π∥TV = 0 for
any λ ∈ M1(X ).

Theorem
Let {Xn}n be irreducible and positive, with invariant probability
distribution π and let ψ ∈ F(X ) be a π-integrable function with
Eπ[ψ] <∞. Then, for any λ ∈ M1(X )

Pλ

 lim
n→∞

1

n

n∑
j=1

ψ(Xj) = Eπ[ψ]

 = 1.

Central limit theorems can be established as well.



Metropolis-Hastings algorithm on continuous state space

▶ State space X ⊂ Rd , target distribution π with density f .

▶ Take a proposal Markov transition kernel Q : X × B(X ) → [0, 1]
with transition density q : X × X → R+ satisfying

Q(x ,A) =

∫
A

q(x , y)dy , x ∈ X , A ∈ B(X )

and q(x , y) = 0 ⇔ q(y , x) = 0.

▶ Define acceptance rate α : X × X → [0, 1]

α(x , y) = min

{
f (y)

f (x)

q(y , x)

q(x , y)
, 1

}
.

(if q(x , y) = 0 simply set α(x , y) = 0)

▶ Given Xn

▶ generate proposal state Yn+1 ∼ Q(Xn, ·)
▶ with probabiliy α(Xn,Yn+1) accept the move and set Xn+1 = Yn+1.

Otherwise, set Xn+1 = Xn



Metropolis-Hastings algorithm

Algorithm: Metropolis-Hastings.

Given: λ (initial measure), q (proposal density), f (target density)
1 Generate X0 ∼ λ
2 for n = 0, 1, . . . , do
3 Generate Yn+1 ∼ q(Xn, ·) // proposal state

4 Generate U ∼ U(0, 1)
5 if U ≤ α(Xn,Yn+1) then
6 set Xn+1 = Yn+1 // accept proposal

7 else
8 set Xn+1 = Xn // reject proposal

9 end

10 end



Transition kernel of Metropolis-Hastings algorithm

▶ For x ∈ X , overall acceptance probability of accepting the move
being in x :

α∗(x) =

∫
X
α(x , y)q(x , y) dy

▶ Transition density of Metropolis-Hastings algorithm:

p(x , y) = α(x , y)q(x , y) + (1− α∗(x))δx(y), x , y ∈ X ,

where δx(y) is a Dirac mass in x .

▶ Markov transition kernel of Metropolis-Hastings algorithm:

P(x ,A) =

∫
A

α(x , y)q(x , y)dy + (1− α∗(x))1A(x), A ∈ B(X ).



Detailed balance condition

Lemma
The transition kernel P of the Metropolis-Hastings algorithm is in
detailed balance with the probability density f . Hence f is invariant
probability density for P.

Proof Consider first the part of the kernel that has a density

f (x)q(x , y)α(x , y) = f (x)q(x , y)min

{
f (y)

f (x)

q(y , x)

q(x , y)
, 1

}
= min{f (y)q(y , x), f (x)q(x , y)} = f (y)q(y , x)α(y , x).

Hence∫
B
P(x ,A)f (x) dx =

∫
B

(∫
A
α(x , y)q(x , y) dy

)
f (x) dx +

∫
B
(1− α∗(x))1A(x)f (x) dx

=

∫
B

∫
A
f (y)α(y , x)q(y , x) dy dx +

∫
A∩B

(1− α∗(x))f (x) dx

=

∫
A

(∫
B
α(y , x)q(y , x) dx

)
f (y) dy +

∫
A
(1− α∗(y))1B(y)f (y) dy

=

∫
A
P(y ,B)f (y) dy .



On the convergence of the Metropolis-Hastings algorithm
▶ π-irreducibility. We have to check that each set A ∈ B(X ) with
π(A) > 0 is accessible.

This will be guaranteed if the proposal density satisfies for instance
q(x , y) > 0, ∀x , y ∈ X

▶ Recurrence: this is guaranteed automatically by the fact that the
chain has an invariant probability measure, π, hence it is positive.
However, for convergence in total variation, we have to check Harris
recurrence, which can be complicated.

▶ a-periodicity: This is guaranteed if α∗(x) < 1 for any x ∈ X .
Indeed, in this case, by definition of accessible set,

∀x ∈ X and A ∈ B(X ) accessible, ∃n0 : P(n0)(x ,A) > 0.

Hence

P(n0+1)(x ,A) =

∫
X
P(y ,A)P(n0)(x , dy) ≥

∫
A

P(y ,A)P(n0)(x , dy)

≥
∫
A

(1− α∗(y))P(n0)(x , dy) > 0.

Iterating the argument, we see that P(n)(x ,A) > 0 for any n ≥ n0



Independence sampler
Idea: take proposal density q(x , y) = g(y) independent of current
state x , where g : X → R+ is a probability density function on X that
dominates f (i.e. g(x) = 0 ⇒ f (x) = 0)

Algorithm: Independence sampler Metropolis-Hastings

Given: X0 ∼ λ, supp(λ) ⊂ supp(f )
1 for n = 0, 1, . . . , do
2 Generate Yn+1 ∼ g

3 Compute α(Xn,Yn+1) = min
{

f (Yn+1)
f (Xn)

g(Xn)
g(Yn+1)

, 1
}

4 Generate U ∼ U(0, 1) and set

Xn+1 = Yn+1, if U ≤ α(Xn,Yn+1), Xn+1 = Xn, otherwise

5 end

Similar to Acceptance-Rejection sampling but:
▶ Whenever the proposal is rejected, the current state is repeated in

the chain, contrary to AR (⇝ induces correlation in the sequence)
▶ No need to estimate the constant C = supx∈X g(x)/f (x)



Convergence of Independence sampler

Lemma
Let P : X × B(X ) → [0, 1] be a Markov transition kernel with invariant
measure π. If there exists ϵ ∈ (0, 1) and a probability measure ν on
(X ,B(X )) such that

P(x ,A) ≥ ϵν(A), ∀x ∈ X , A ∈ B(X ), (1)

then
∥πn,λ − π∥TV ≤ 2(1− ϵ)n. (2)

▶ The condition (1) is called uniform minorizing condition.

▶ An exponential convergence of the type (2) is called geometric
ergodicity



Proof
Consider two coupled chains {Xn} ∼ Markov (λ,P) and {Yn} ∼ Markov (π,P)
constructed using the following algorithm. (Rk. {Yn} is at stationarity)

1 Let X0 ∼ λ, Y0 ∼ π
2 for n = 0, 1, . . . , do
3 Draw Zn ∼ Be(ϵ), P (Zn = 1) = ϵ, P (Zn = 0) = 1− ϵ
4 if Zn = 1 then
5 draw W ∼ ν and set Xn+1 = Yn+1 = W
6 else

7 draw Xn+1 ∼ P(Xn,·)−ϵν(·)
1−ϵ

and Yn+1 ∼ P(Yn,·)−ϵν(·)
1−ϵ

independently

8 end

9 end

▶ It is easy to verify that {Xn} ∼ Markov (λ,P) and {Yn} ∼ Markov (π,P).

▶ Let T = inf{n ≥ 0 : Zn = 1}, which satisfies P (T ≥ n) = (1− ϵ)n.

▶ After T , the two chains have the same distribution Xn ∼ Yn, n > T .

∥πn,λ − π∥TV = 2 sup
A∈B(X )

|πn,λ(A)− π(A)| = 2 sup
A∈B(X )

|P (Xn ∈ A)− P (Yn ∈ A) |

= 2 sup
A

|P (Xn ∈ A,T < n) + P (Xn ∈ A,T ≥ n)− P (Yn ∈ A,T < n)− P (Yn ∈ A,T ≥ n) |

= 2 sup
A

|P (Xn ∈ A,T ≥ n)− P (Yn ∈ A,T ≥ n) |

= 2 sup
A

|P (Xn ∈ A,Yn /∈ A,T ≥ n)− P (Xn /∈ A,Yn ∈ A,T ≥ n)| ≤ 2P (T ≥ n) .



Convergence of Independence sampler

Theorem
If there exists M < +∞ such that f (x) ≤ Mg(x) for all x ∈ X , then the
chain generated by the independence sampler is uniformly ergodic and

∥πn,λ − π∥TV ≤ 2

(
1− C

M

)n

, for any λ, with C =

∫
X
f (x) dx.

Proof: If f is not normalized, let f̃ = f /C , C =
∫
X f . Notice that

α(x , y)q(x , y) = g(y)min

{
f (y)

f (x)

g(x)

g(y)
, 1

}
= f (y)min

{
g(x)

f (x)
,
g(y)

f (y)

}
≥

1

M
f (y).

It follows that for any A ∈ B(X ),

P(x ,A) =

∫
A
α(x , y)q(x , y)dy + (1− α∗(x))1A(x) ≥

1

M

∫
A
f (y) dy ≥

C

M
π(A)

and the result follows from Lemma 8.



Random walk Metropolis (RWM)

Idea: perform only local moves with proposed increment distributions
identical and symmetric, i.e. q(x , y) = q(|y − x |).
Tipical case q(x , ·) = N(x , σ2Id×d).

This algorithm leads to geometric ergodicity under the following
(sufficient) conditions (see [Jarner-Hansen, 2000])

▶ f has super-exponential tails, i.e. it is positive, continuous and
satisfies

lim
|x|→∞

x

|x |
· ∇ log f (x) = −∞

▶ f satisfies

lim sup
|x|→∞

x

|x |
· ∇f (x)

|∇f (x)|
< 0

▶ q is bounded away from zero in some region around zero:

∃δq, ϵq > 0 s.t. q(x) ≥ ϵq, for |x | ≤ δq



One variable at a time
▶ Suppose X = X (1) × · · · × X (d) and x ∈ X has components

x = (x (1), . . . , x (d)); Notation: x (∼i) = (x (1), . . . , x (i−1), x (i+1), . . . , x (d)).

▶ Consider a family of proposal transition densities
q(i) : X × X (i) → R+

Idea: update one component at the time either chosen randomly or by
performing a systematic sweep over the components.

Algorithm: One variable at a time MH with random selection.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do

3 Draw index in ∼ β (p.m.f on {1, . . . , d}). Set x = X
(in)
n

4 Draw y ∼ qin(Xn, ·) and set Yn+1 = (y ,X
(∼in)
n )

5 Compute αin(Xn,Yn+1) = min
{

f (Yn+1)
f (Xn)

qin (Yn+1,x)
qin (Xn,y)

, 1
}

6 Set Xn+1 =

{
Yn+1 with prob. αin(Xn,Yn+1)

Xn otherwise

7 end



One variable at a time

Algorithm: One variable at a time MH with systematic sweep.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Set Yn+1,0 = Xn

4 for i = 1, . . . , d do

5 Draw y ∼ qi (Xn, ·) and set Ỹ = (y ,Y
(∼i)
n+1,i−1)

6 Set Yn+1,i =

{
Ỹ , with prob. αi (Yn+1,i−1, Ỹ )

Yn+1,i−1, otherwise

7 end
8 Xn+1 = Yn+1,d

9 end



Gibbs sampler
Consider a one variable at a time sampler using the conditional
distributions as proposal densities qi (x , ·) = fX (i) | X (∼i)(· | x (∼i))

Given x = (x (i), x (∼i)) and y = (y (i), x (∼i)), the acceptance rate is

αi (x , y) = min

{
f (y)

f (x)

fX (i) | X (∼i)(x (i) | x (∼i))

fX (i) | X (∼i)(y (i) | x (∼i))
, 1

}

= min

{
f (y)

f (x)

f (x)/fX (∼i)(x (∼i))

f (y)/fX (∼i)(x (∼i))
, 1

}
= 1

hence, in Gibbs sampler all the moves are accepted, provided one is able
to generate exactly from the conditional distributions fX (i) | X (∼i)(· | x (∼i)).

Algorithm: Gibbs with random sweep.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Draw in from a pmf β on {1, . . . , d}
4 Generate y (in) ∼ f (· | X (∼in)

n )

5 Set Xn+1 = (y (in),X
(∼in)
n )

6 end



Metropolis Adjusted Langevin Algorithm (MALA)

Let f : Rd → R+ be our target probability density and consider the
following Stochastic Differential Equation (Langevin dynamics)

dXt = ∇ log f (Xt) +
√
2 dWt , t > 0, X0 ∼ λ (3)

with Wt a standard Wiener process and λ a probability measure on Rd .

Let us denote by ρ(x , t) the probability denisty function of Xt (provided
it exists): ∫

A

ρ(x , t)dx = Pλ(Xt ∈ A)

Under quite general consitions on f , one has limt→∞ ρ(x , t) = f (x), i.e.
the distribution of Xt converges to f and f is an invariant probability
density function for (3) (time continuous Markov chain)

Problem: usually, exact solutions of (3) are not available



Metropolis Adjusted Langevin Algorithm (MALA)
Remedy: use numerical discretization, e.g. Euler-Maruyama method

Xn+1 = Xn +∆t∇ log f (Xn) +
√
2∆tξn, ξn ∼ N(0, I ) (4)

However, the discrete time Markov chain {Xn}n will not have anymore f
as invariant distribution due to the numerical discretization error

Idea: use (4) as a proposal distribution within a Metropolis-Hasting
Algorithm

Algorithm: Metropolis Adjusted Langevin Algorithm (MALA).

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Generate Y ∼ N(Xn +∆t∇ log f (Xn), 2∆tI )

4 Compute α(Xn,Y ) = min
{
1, f (Y )

f (Xn)
exp(−∥Xn−Y−∆t∇ log f (Y )∥2/2∆t)

exp(−∥Y−Xn−∆t∇ log f (Xn)∥2/2∆t)

}
5 Set Xn+1 =

{
Y with prob. α(Xn,Y )

Xn otherwise

6 end

▶ Similar to a RWM; but proposal is not symmetric and uses
gradients information



Ergodic estimator
▶ Let {Xn}n ∼ Markov (λ,P) on X ⊂ Rd , with unique invariant

distribution π.

▶ We assume moreover that {Xn}n is geometrically ergodic, i.e. there
exist γ > 0 and h : X → R+ s.t.

∥πn,λ − π∥TV ≤ λ(h)e−γn, λ(h) =

∫
X
h(x)dλ(x)

Recall that for µ, ν ∈ M1(X )

∥µ−ν∥TV = 2 sup
A∈B(X )

|µ(A)−ν(A)| = sup
ϕ∈L∞(X )

∣∣∫
X ϕ(x)dµ(x)−

∫
X ϕ(x)dν(x)

∣∣
∥ϕ∥L∞(X )

▶ Given a π-integrable function ψ : X → R, we estimate µ = Eπ[ψ] by
the ergodic estimator

µ̂MCMC
N,b =

1

N

N∑
i=1

ψ(Xi+b)

▶ Question: how to monitor the approximation error |µ̂MCMC
N,b − µ|?



Bias
If the chain is at stationarity (λ = π), then µ̂MCMC

N,b is unbiased. Indeed,
Xn ∼ f , ∀n and

Eπ[µ̂
MCMC
N,b ] =

1

N

N∑
i=1

Eπ[ψ(Xi+b)] = µ

If, instead, the chain is not at stationarity (λ ̸= π), the estimator µ̂MCMC
N,b

is biased ! However

|Eλ[µ̂
MCMC
N,b − µ]| =

∣∣∣∣∣ 1N
N∑
i=1

Eλ[ψ(Xi+b)− µ]

∣∣∣∣∣
≤ 1

N

N∑
i=1

∣∣∣∣∫
X
ψ(y)πi+b,λ(dy)−

∫
X
ψ(y)dπ(y)

∣∣∣∣
≤ 1

N

N∑
i=1

∥ψ∥L∞(X )∥πi+b,λ − π∥TV

≤ 1

N
∥ψ∥L∞(X )λ(h)

N∑
i=b+1

e−γi ≤ e−γb

N

∥ψ∥L∞(X )λ(h)

1− e−γ



Bias

▶ The Bias decays as O( 1
N ), faster than the standard deviation (which

is O( 1√
N
))

▶ Moreover, it decays as O(e−γb) and can be dramatically reduced by
increasing the burn-in b.

▶ Reasonable values of b can be guessed from a trace-plot of the chain
{ψ(Xn)}n (smallest time after which the chain looks at stationarity)



Asymptotic variance

Assume that a sufficient burn-in period has been removed and the chain
is essentially at stationarity. Then, the following result on the asymptotic
variance holds

Lemma
Let {Xn} ∼ Markov (π,P) with π invariant for P, and denote

c(k) = Covπ(ψ(X0), ψ(Xk)) = Covπ(ψ(Xj), ψ(Xj+k)).

Then

Varπ[µ̂MCMC
N,b ] =

σ2
MCMC ,N

N
, with σ2

MCMC ,N = c(0)+2
N−1∑
ℓ=1

(
1− ℓ

N

)
c(ℓ).

Moreover, if
∑∞

k=0 |c(k)| < +∞, then

lim
N→∞

NVar
[
µ̂MCMC
N,b

]
= σ2

MCMC

with σ2
MCMC = c(0) + 2

∑∞
k=1 c(k).



Proof

Varπ[µ̂MCMC
N,b ] = Eπ

 1

N

N∑
j=1

ψ(Xj+b)− µ

2
=

1

N2

N∑
j=1

N∑
k=1

Eπ[(ψ(Xj+b)− µ)(ψ(Xk+b)− µ)]

=
1

N2

 N∑
j=1

Varπ[ψ(Xj+b)]︸ ︷︷ ︸
c(0)

+2

N−1∑
j=1

N∑
k=j+1

Covπ(ψ(Xj+b), ψ(Xk+b))︸ ︷︷ ︸
c(k−j)


=

c(0)

N
+

2

N2

N−1∑
j=1

N−j∑
ℓ=1

c(ℓ)

=
c(0)

N
+

2

N

N−1∑
ℓ=1

N − ℓ

N
c(ℓ)

=
1

N

(
c(0) + 2

N−1∑
ℓ=1

(
1−

ℓ

N

)
c(ℓ)

)
.

Under the assumption
∑∞

ℓ=0 |c(ℓ)| < +∞, it follows that

limN→∞ NVarπ[µ̂MCMC
N,b ] = σ2

MCMC .



Asymptotic variance
▶ The quantity

σ2
MCMC = c(0) + 2

∞∑
k=1

c(k)

is called time-average variance constant (TAVC) or asymptotic
variance

▶ If {Xn}n were iid and distributed as f (pure Monte Carlo sampling)
then the variance of the Monte Carlo estimator would be
Var

[
µ̂MC
N

]
= c(0)

N .

▶ Given N, we call effective sample size (ESS) the sample size that a
Monte Carlo estimator would use to achieve the same variance as
the MCMC one:

Var
[
µ̂MCMC
N,b

]
→ σ2

MCMC

N
=

c(0)

ESS
=⇒ ESS = N

c(0)

σ2
MCMC

▶ For reversible, geometrically ergodic, Markov chains, a CLT holds

√
N(µ̂MCMC

N,b − µ)
d−→ N(0, σ2

MCMC )



Estimating the asymptotic variance – covariance method

Given a path {Xn}n and a burn-in time, we can estimate the covariances

ĉ(k) =
1

N − k − 1

N−k∑
j=1

(ψ(Xj+b)− µ̂MCMC
N,b )(ψ(Xj+b+k)− µ̂MCMC

N,b )

and

σ̂2
MCMC = ĉ(0) + 2

N−2∑
k=1

ĉ(k).

However, the last terms in the sum are very unstable. Better estimator

σ̂2
M = ĉ(0) + 2

M∑
k=1

ĉ(k), with M = 2min{k : ĉ(2k) + ĉ(2k + 1) < 0}.

(valid for reversible Markov Chains)



Estimating the asymptotic variance - batch means
An alternative idea to estimate σ2

MCMC is to split the sequence
{Xn}N+b

n=b+1 into M blocks of size T = N/M

Then we can build M different sample averages

µ̂(i) =
1

T

iT+b∑
j=(i−1)T+b+1

ψ(Xj), and µ̂MCMC
N,b =

1

M

M∑
i=1

µ̂(i).

If T is sufficiently large (larger than the relaxation time), the M blocks
are nearly independent so that

Var
[
µ̂MCMC
N,b

]
≈ σ2

MCMC

N
≈

Var
[
µ̂(1)

]
M

and Var
[
µ̂(1)

]
can be estimated by a sample variance estimator

Var
[
µ̂(1)

]
≈ σ̂2

µ̂(1) =
1

M − 1

M∑
i=1

(
µ̂(i) − µ̂MCMC

N,b

)2

.

Finally, an estimator for σ2
MCMC is

σ̂2
MCMC =

N

M
σ̂2
µ̂(1) =

T

M − 1

M∑
i=1

(
µ̂(i) − µ̂MCMC

N,b

)2

.


	Markov Chain Monte Carlo in discrete state space
	Markov Chains on continuous state space
	Markov Chain Monte Carlo algorithms
	Convergence diagnostics

