MATH-414 — Stochastic simulation

Lecture 11-12: Markov Chain Monte Carlo

Prof. Fabio Nobile
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Problem setting
> X' state space

» 7 target probability measure on X, possibly known only up to a
multiplicative constant (i.e. # = C# and only 7 is accessible).

Goals:
» sample from 7
» Given ¢ : X — R with finite first moment wrt 7, compute
p=Ex[]
Idea of MCMC:

» Construct a Markov Chain {X,, n > 0} ~ Markov (A, P) ergodic
and with 7 as invariant measure

> Approximate p = E,[¢)] by ergodic estimator

N
MC
KN, b - I+b

2 \

b is called the burn in time (initial length of the chain disregard%jpi%

the temporal average)
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Metropolis-Hastings algorithm — discrete state space

» Take a stochastic matrix Q s.t.

Q,'j:O — Qj,'ZO

» For any i,j € {1,...,d}, define the acceptance probability

a(u):min{L”fo"} if Qj #0,  a(i,j)=0, if Q;=0.
;i Qjj

> Given X,
> generate proposal state )’Zn+1 ~ Qx,,:
> with probabiliy a(Xn,, )N(,,H) accept the move and set Xpy1 = Xni1.
Otherwise, set X,11 = X,

. . . %
No need to know the normalization constant — only the ratio % needs

Xn

to be evaluated

If Q is symmetric, then a(i,j) = min{1, ZZ} — moves to higher
probability states are always accepted. EPFL @



Metropolis-Hastings algorithm — discrete state space

Algorithm: Metropolis-Hastings

Given: ) (initial distribution), @ (proposal), 7 (target distribution)
1 Generate Xp ~ A
2 forn=0,1,..., do
3 Generate candidate new state )~<n+1 ~ Qx,.:
4 Generate U ~ U([0, 1])

5 | if U< (X, Xop1) then

6 ‘ set Xpp1 = )N(n+1 // X, accepted with prob. a(X,,,)?,H.l)
7 else

8 ‘ set Xpr1 =X, // X, rejected with prob. 1— a(Xn,)?nH)

9 end
10 end
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Transition matrix of the Metropolis-Hastings algorithm
Lemma
Let af = Zj a(i,j)Qj. The transition matrix of the chain produced by

the Metropolis-Hastings algorithm is given by
Pij = a(i,j)Qj + (1 — a7 )dj.
Proof
fori#j Pj=PXps1=Jj| Xo=i)=P ()?,,+1 = Xp1 = Kns1 | Xn = i)

=P (Xosr = Kot | Kot =, Xo = 1) P (Rnir = | Xo=1) = a(i.))Q;

fori=j Pi=PXpi1=1i| Xp=1)

=P <)~<n+1 =i, Xpy1 = Xop1 | Xn = f) +P (Xn+1 # Xny1 | Xn = i)
=a(i, Qi+ Y P (;(nﬂ = J Xns1 # Xog1 | Xo = i)
J
=a(i, Qi+ Y _(1—a(i,i)Qj = (i, Qi + (1 — af)
J
>k

a; represents the probability of accepting a new state when being in=p=| @
state J.



Detailed balance condition

Lemma

The transition matrix P of the Metropolis-Hasting algorithm is in
detailed balance with w. Hence, the chain produced by MH is reversible
and has  as invariant distribution.

Proof
We have to show that
miPyj = miPji, Vi,j

Obvious if i =j. For i # j

o . 7 Qji
miPy = mia(i, j)Qy = m Qy min {17 ) }
i (1,4)Qy y i Qj
= min {7 Qy, m; Q;i}

. miQy
= min 10w Qi = 7P
{ﬂ'iji } j & il

a(j,i)
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Ergodicity of the MH Markov chain

Let us assume that 7; > 0 for any i (otherwise the state i can be
removed from the state space).

» Irreducibility of P is implied by the irreducibility of Q. Hence we
should always consider proposals @ that are irreducible.

» Positive recurrence is verified since P admits an inveriant probability
measure by construction (remember that P has an invariant
probability measure if and only if it is positive recurrent)

» Aperiodicity is satisfied automatically if o < 1 for some i (positive
probability of staying in state / in the next iteration — this brakes any
periodicity).

Only if af =1 for all i (e.g. in Gibb's sampler) we need to check
that the chain is aperiodic
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Markov Chains on continuous state space
Let X C R9 with Borel o-algebra B(X) (we could even work on an
arbitrary metric space (X, B(X)))
Definition. A Markov transition kernel on (X, B(X)) is a function
P X xB(X)—[0,1] s.t.
1. forall x € X, P(x,") is a probability measure on X,
2. for all A€ B(X), P(-,A) is measurable.
The transition density associated to P, if it exists, is a function

p: X xX =Ry, /p(x,y)dyzl7 Vx e X
X

such that P(x,A) = [, p(x,y) dy for all A € B(X).

Definition. A sequence of random variables {X, € X,n >0} is a
homogeneous Markov chain with transition kernel P and initial
distribution A, in short {X,} ~ Markov (A, P) if

> P(X,hq €A| Xn,...,Xo):]P(Xn+1 €A| Xn):P(XmA) EPFL@



Markov Chains on continuous state space

» n-step transition kernel

P (x,A) ;=P (X, €A| Xo=x) = / P=D(y, A)P(x,dy), PM =P
X

» n-step transition density

PG = [ H ez dn o <p
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Markov transition operator

> Markov transition operator acting on measures (to the left):
P M (X) — My (X)

p=\P = ,u(A):/XP(y,A))\(dy), VA € B(X).
implies
XP2(A) = /X /X P(x, A)P(y, dx)A(dy) = /X PO)(y, A)\(dy)

and
AP"(A) = / P (y, A)A(dy)

» n-step distribution

7AA) = P € A) = [ POy AN(dy) = 4P7(4)
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Invarinat measure and detailed balance
» A measure 7 is called invariant (or stationary) if

=P = /X P(y. )n(dy)

If f is the density of = and p the transition density, then
700 = [ plyx)f(y) dy.
X

» A chain {X,},=0 ~ Markov (\, P) is reversible if, for any N > 0, the
chain {Y, = Xy_n}N_, ~ Markov (), P).

» (X, P) are said to be in detailed balance if

/A P(x, B)A(dx) = /B P(y, AA(dy), VA, B e B(X).

If £ denotes the density of A, then £(x)p(x,y) = ¢(y)p(y, x)

» If (P, \) are in detailed balance, then P is reversible and X is an
invariant measure. Indeed,

/X P(x, B)A(dx) = /B P():,IX) A(dy) = A(B). — @



Irreducibility

Definition. A set A € B(X) is accessible if P, (o4 < 00) > 0 for all
x € X, where oo = inf{n > 0: X, € A} is the return time to the set A.

Definition. A Markov chain {X,}, ~ Markov (), P) is irreducible if
there exists a (o-finite) measure ¢ on (X,B(X)), called irreducibility
measure such that any set A € B(X), with ¢(A) > 0 is accessible.

The notion of irreducibility does not really depend on the measure ¢ as
lon as one irreducibilty measure exists.

Theorem
If {Xa}n ~ Markov (A, P) is irreducible for some irreducibility measure ¢
on (X,B(X)), then there exists a probability measure ¢ on B(X), called
maximal irreducibility measure such that
» {X,}n is y-irreducible
» For any other measure ¢’ on B(X) for which {X,} is ©'-irreducible,
one has ¢’ > 1 (i.e. forall A€ B(X), 9(A) =0 = ¢'(A)=0)

» Any invariant measure is a maximal irreducibility measure.
EPFL &



Recurrence and a-periodicity
Definition. A Markov chain {X,}, ~ Markov (), P) is aperiodic if for
any x € X and any accessible set A € B(X)

3no >0 P™M(x,A) >0 Vn> no.

Let A€ B(X) and Va =) -, 1lx,ca} be the number of visits to A
Definition. A Markov chain {X,}, ~ Markov (\, P) is recurrent if it is
irreducible and every accessible set A satisfies E,[Va] = oo, for all x € A.
It is Harris recurrent if it is irreducible and every accessible set A satisfies
Py(Va =00) =1, for all x € A;

Harris recurrence is stronger and implies recurrence. In the discrete state
case, the two notions coincide.

Definition. A Markov chain {X,}, ~ Markov (\, P) is positive
(recurrent) if it has an invariant probability measure.

Theorem

An irreducible, recurrent Markov kernel P admits a non-zero invariant

measure, unique up to a multiplicative constant.

If an irreducible Markov kernel P has an invariant probability measur% PEL
(i.e. is positive), then it is recurrent. @



Convergence of Markov chains

Theorem
Let {X,}n be irreducible, poisitive, Harris recurrent, and aperiodic, with

(unique) invariant distribution w. Then lim, o |[AP" — x|y =0 for
any A € My(X).

Theorem

Let {X,}, be irreducible and positive, with invariant probability
distribution w and let 1 € F(X) be a m-integrable function with
E.[¢] < co. Then, for any A € M;(X)

Py [ im TS w06) = Elul | =1
j=1

Central limit theorems can be established as well.
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Metropolis-Hastings algorithm on continuous state space

» State space X C RY, target distribution 7 with density f.

» Take a proposal Markov transition kernel Q : X x B(X) — [0, 1]
with transition density g : X x X — R satisfying

Q(x,A) = /Aq(x,y)dy, xe X, AeB(X)

and g(x,y) =0 + q(y,x) =0.

» Define acceptance rate a: X x X — [0, 1]

_in I ) aly.x)
otn) =m{ L1}
(if g(x,y) = 0 simply set a(x,y) = 0)
> Given X,

> generate proposal state Y,i1 ~ Q(Xn, )
» with probabiliy a(Xn, Yat1) accept the move and set Xp11 = Yii1.

Otherwise, set X,11 = X, =PEL @



Metropolis-Hastings algorithm

Algorithm: Metropolis-Hastings.

Given: )\ (initial measure), g (proposal density), f (target density)
1 Generate Xp ~ A
2 forn=0,1,..., do
3 Generate Y11 ~ q(Xy, ) // proposal state
4 Generate U ~ U(0,1)
5 if U< a(X,, Yot1) then
6
7
8

‘ set Xpr1 = You1 // accept proposal
else
‘ set Xpr1 = X, // reject proposal
9 end
10 end
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Transition kernel of Metropolis-Hastings algorithm

» For x € X, overall acceptance probability of accepting the move
being in x:

cmnzﬁpmm«&mw

» Transition density of Metropolis-Hastings algorithm:
p(X,y):Oé(X,y)q(X7y)—|—(1—Oé*(X))(SX(y), X7yEX7
where d,(y) is a Dirac mass in x.

» Markov transition kernel of Metropolis-Hastings algorithm:

H&MZAQWHM&HW+H*£&WM@,AGNX)
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Detailed balance condition

Lemma

The transition kernel P of the Metropolis-Hastings algorithm is in
detailed balance with the probability density f. Hence f is invariant
probability density for P.

Proof Consider first the part of the kernel that has a density

f(x)q(x, y)a(x,y) = f(x)g(x, y) min {% Zzi’;i ’ 1}

= min{f(y)a(y, x), f(x)q(x, y)} = f(y)aly, x)a(y, x).

Hence
/BP(X, A (x) dx:/B(/A (%, y)a(x,y) dy) F(x) dX—i—/B(l—a*(x))llA(x)f(x) dx
= [ [ f0atrnatr 0 dyacs [ @ a®()f(e) e
— [ ([ atratvxax) )y + |1 - ()17 dv
= [ Pu.BY ) dy.
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On the convergence of the Metropolis-Hastings algorithm

» m-irreducibility. We have to check that each set A € B(X) with
m(A) > 0 is accessible.
This will be guaranteed if the proposal density satisfies for instance
q(x,y) >0, Vx,y € X

» Recurrence: this is guaranteed automatically by the fact that the
chain has an invariant probability measure, 7, hence it is positive.
However, for convergence in total variation, we have to check Harris
recurrence, which can be complicated.

> a-periodicity: This is guaranteed if a*(x) < 1 for any x € X.
Indeed, in this case, by definition of accessible set,

Vx € X and A € B(X) accessible, 3ng : P(™)(x, A) > 0.

Hence

Pt (x, A) = / P(y, A)P™(x, dy) > / P(y, AP (x, dy)
x A

> [ @0 ()P™xay) >0

lterating the argument, we see that P(")(x, A) > 0 for any n > I%PFL @



Independence sampler
Idea: take proposal density g(x,y) = g(y) independent of current
state x, where g : X — R is a probability density function on X that
dominates f (i.e. g(x) =0 = f(x)=0)

Algorithm: Independence sampler Metropolis-Hastings
Given: Xy ~ A, supp(A) C supp(f)
1 forn=0,1,..., do
2 Generate Y11~ &g
(Vs Xn
3 Compute a(X,, Yyr1) = min { ﬁ(xt;) gg(g,n+i), 1}
4 Generate U ~ U/(0,1) and set

Xot1 = Yo, if U< a(X,, Yor1), Xni1 = X, otherwise

5 end

Similar to Acceptance-Rejection sampling but:
» Whenever the proposal is rejected, the current state is repeated in
the chain, contrary to AR (~ induces correlation in the sequencgp
» No need to estimate the constant C = sup, ¢ g(x)/f(x) @



Convergence of Independence sampler

Lemma
Let P: X x B(X) — [0, 1] be a Markov transition kernel with invariant

measure . If there exists € € (0,1) and a probability measure v on
(X,B(X)) such that

P(x,A) > ev(A), Vxe X, Aec B(X), (1)
then

I =l 7y < 2(1 — €)™ (2)

» The condition (1) is called uniform minorizing condition.

> An exponential convergence of the type (2) is called geometric
ergodicity
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Proof

Consider two coupled chains {X,} ~ Markov (A, P) and {Y,} ~ Markov (m, P)
constructed using the following algorithm. (Rk. {Y,} is at stationarity)

1 Let Xp~ A, Yo~

2 forn=0,1,..., do

3 Draw Z, ~ Be(e), P(Z, =1)=¢, P(Z,=0)=1—¢

4 if Z, =1 then

5 | draw W ~ v and set Xpq1 = Vo1 = W

6 else

7 ‘ draw X1 ~ %?V() and Y41 ~ %ZW() independently
8 end

9 end

> It is easy to verify that {X,} ~ Markov (A, P) and {Y,} ~ Markov (7, P).
Let T =inf{n > 0: Z, = 1}, which satisfies P(T > n) = (1 —¢)".
After T, the two chains have the same distribution X, ~ Y,, n > T.

vy

|7 —7lltv =2 sup |7 NA) —7w(A)| =2 sup |P(Xs € A)—P(Y, e A)]
AEB(X) AEB(X)
=2sup|P(X, €A, T <n)+P(Xa € AT>n)—P(Yo€AT<n) —P(Y,€AT>n)|
A
=2sup|P(Xn €A, T>n)—P(Y, €A T >n)|
A

=2sup[P(Xp EAYn 8 A T>n) —P(X, €A Yo €A T>n) <2P(T>mEPFL @
A



Convergence of Independence sampler

Theorem
If there exists M < +o00 such that f(x) < Mg(x) for all x € X, then the
chain generated by the independence sampler is uniformly ergodic and

7> — 7|7y < 2 (1 — C) , forany A\, with C = / f(x) dx
M x

Proof: If f is not normalized, let f= f/C, C= fX f. Notice that

(. y)atc.y) = () min { L3 61} = rly)min { 5. £ > L),

It follows that for any A € B(X),

P(x, A) = /A o Y)ale, V)dy + (1~ a*(D1AG) > - /A ) dy > in(A)

and the result follows from Lemma 8.
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Random walk Metropolis (RWM)

Idea: perform only local moves with proposed increment distributions
identical and symmetric, i.e. q(x,y) = q(|ly — x|).

Tipical case q(x,-) = N(x,0?lgxq).

This algorithm leads to geometric ergodicity under the following
(sufficient) conditions (see [Jarner-Hansen, 2000])

» { has super-exponential tails, i.e. it is positive, continuous and

satisfies
lim | -Vlogf(x) = -

|x|— o0 |X

» f satisfies

limsup — Vf(x) <0

X
|x| =00 |X| ‘Vf(X)l

» g is bounded away from zero in some region around zero:

104,64 > 0s.t.  g(x) >¢€q, for|x| <4

EPFL @



One variable at a time

w N =

» Suppose X = XD x ... x X and x € X has components

X = (X(l), ... ,X(d)); Notation: x(™) = (x(l)7 XN D 7x(d)).

» Consider a family of proposal transition densities

g x x x0) 5 R,

Idea: update one component at the time either chosen randomly or by
performing a systematic sweep over the components.

Algorithm: One variable at a time MH with random selection.

end

Generate Xy ~ A
forn=0,1,... do

Draw index i, ~ 8 (p.m.fon {1,...,d}). Set x = x4
Draw y ~ g;,(X,. ") and set Yy1 = (v, X{™™)

H f Y,, in Yn X
Compute v, (Xp, Yni1) = min { f(‘(X:;)W’ 1}

Set X,11 = Yot1  with P".Ob- i, (Xn, Yni1)
Xn otherwise

EPFL @




One variable at a time

Algorithm: One variable at a time MH with systematic sweep.

Generate Xy ~ A
forn=0,1,... do
Set Ypi10=Xn
fori=1,...,d do
Draw y ~ gi(X,,-) and set Y = (y, YH(I{?,-,l)
Set Y11= {Y/’ with P_VOb- ai(Yor1i-1,Y)
' Yot1,i—1, Otherwise
end
X1 = Yoi1,d
end
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Gibbs sampler
Consider a one variable at a time sampler using the conditional
distributions as proposal densities g;(x,-) = fx() | x(~ (- | x(~1))

Given x = (x(0 x(™D) and y = (y(), x(~1), the acceptance rate is

(. v) = min 4 FY )fxu‘X(N,)(X() | x(~)
i(x,y) = { F(x) o xcn (D | xC0)
= min (y) ( )/fx(~f)(x(Nf)) B
- { F(x) fly )/fx(~i)(x(~i))’1} =1

hence, in Gibbs sampler all the moves are accepted, provided one is able
to generate exactly from the conditional distributions fx) | s (- ] x(),

Algorithm: Gibbs with random sweep.

1 Generate Xg ~ A

2 forn=0,1,... do

3 Draw i, from a pmf 3 on {1 .., d}

4 Generate y(n) ~ £(- | X{™~™)

5 | Set Xny1= (v, X\~ _
6 end EPFL &




Metropolis Adjusted Langevin Algorithm (MALA)

Let f : R — R, be our target probability density and consider the
following Stochastic Differential Equation (Langevin dynamics)

dXe = Vieg f(Xe) +V2dW,, t>0, Xo~ A (3)

with W, a standard Wiener process and A a probability measure on RY.

Let us denote by p(x, t) the probability denisty function of X; (provided
it exists):

/Ap(x, t)dx =Py (X; € A)

Under quite general consitions on f, one has lim;_ p(x, t) = f(x), i.e.
the distribution of X; converges to f and f is an invariant probability
density function for (3) (time continuous Markov chain)

Problem: usually, exact solutions of (3) are not available

EPFL &



Metropolis Adjusted Langevin Algorithm (MALA)

Remedy: use numerical discretization, e.g. Euler-Maruyama method

Xns1 = Xp + AtVlog f(X,) + V2AtE,, & ~ N(0,1) (4)
However, the discrete time Markov chain {X,}, will not have anymore f
as invariant distribution due to the numerical discretization error

Idea: use (4) as a proposal distribution within a Metropolis-Hasting
Algorithm

Algorithm: Metropolis Adjusted Langevin Algorithm (MALA).

Generate Xy ~ A
forn=0,1,... do
Generate Y ~ N(X, + AtV log f(X,),2Atl)

— f(Y) exp(—Xn—Y—ALV log £(Y)[|?/2At)
Compute a(Xn, Y) = min {1’ (Xn) ::;(—HY—XH—AtV |§ggf(xn)||2/2m)}

Y  with prob. a(X,,Y)
X, otherwise

Set Xn+]_ = {

end

» Similar to a RWM; but proposal is not symmetric and uses EPFL @
gradients information



Ergodic estimator

» Let {X,}, ~ Markov (), P) on X C R, with unique invariant
distribution 7

» We assume moreover that {X,}, is geometrically ergodic, i.e. there
exist y >0and h: X - R, s.t.

7% = sl < A(R)e ™", () = [ h(x)d(x)

Recall that for p, v € M1(X)

x)d d
vy =2 sup |u(A)—v(A) = sup aOCIIE) = [y S|
ACB(X) $EL®(X) Bl oo ()

> Given a 7-integrable function ¢ : X — R, we estimate p = E.[¢] by
the ergodic estimator

N
MC
Hn.b - I+b

» Question: how to monitor the approximation error \,uMCMC — pu|EPFL @
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Bias
If the chain is at stationarity (A = ), then fiy
X, ~ f, Vn and

MCMC is unbiased. Indeed,

L [h5] - NZJE [ (X)) =

If, instead, the chain is not at stationarity (A # 7), the estimator MMCMC

is biased ! However

=

EAIRNSC — pll =

Z )\[1/) /+b /U]

l+bA dy) / ,(/} d7T ‘

\ /\

SN Z; [l Lo 2y |l 22 = 7l vy
1

N
1 i e Pl A(h)
< Sl Alh) e < -
N ,-:Zb:ﬂ Noo1-eT EPRL@




Bias

> The Bias decays as O(+4), faster than the standard deviation (which
s 0(4)

» Moreover, it decays as O(e~7?) and can be dramatically reduced by
increasing the burn-in b.

» Reasonable values of b can be guessed from a trace-plot of the chain
{¥(Xn)}n (smallest time after which the chain looks at stationarity)

EPFL &



Asymptotic variance

Assume that a sufficient burn-in period has been removed and the chain
is essentially at stationarity. Then, the following result on the asymptotic
variance holds

Lemma
Let {X,} ~ Markov (m, P) with m invariant for P, and denote

c(k) = Covx(¥(Xo), Y(Xk)) = Covr(v(X;), Y(Xjsk))-
Then

0_2 N—-1 g
Var, S = TN with e = 012 Y (1 1) (0

Moreover, if Y 2 o |c(k)| < +oo, then
cmc

H ~ M 2
lim NVar I:/’[/N,b ] = OpcMC
N—oco



+5)>

Y(Xi+b))

N
- > B 06:0) ~ W CKess) ~ )
i
1 N N—1 N
Y ZVarw[w Xitb)] +2Z Z Covr (¥(X;
J:1T j=1 k=j+1
N—1N—j
= % % 2> <o)
j=1 £=1
c0) 2= N-—¢
=Ty ()
N N Zz:; N €
1 N—1 ) )
=5 (c0)+2 1— =) c0)
v (02X (- 5)e

Under the assumption > 72, |c(€)] < +oo, it follows that
limpy oo NVarW[,uMCMC] = U%/ICMC'

c(k—=j)

EPFL @



Asymptotic variance
» The quantity

omeme = <(0) + 22 c(k)
k=1
is called time-average variance constant (TAVC) or asymptotic
variance
» If {X,}n were iid and distributed as f (pure Monte Carlo sampling)

then the variance of the Monte Carlo estimator would be

Var [a€] = <P

» Given N, we call effective sample size (ESS) the sample size that a
Monte Carlo estimator would use to achieve the same variance as

the MCMC one:

R o c(0 c(0
i) B ) s SO

» For reversible, geometrically ergodic, Markov chains, a CLT holds

A d
m(/ﬁ;\vﬂ,%MC — ) — N(O»U%ﬂcmc)

EPFL &



Estimating the asymptotic variance — covariance method

Given a path {X,}, and a burn-in time, we can estimate the covariances
1 N—k
&) = 1 2 (W(X40) = ANG N (Xip4x) — N5 ")
j=1

and
N—2

Gracme = (0) +2>_ &(k).
k=1

However, the last terms in the sum are very unstable. Better estimator

M=

52, =¢(0)+2) ¢&(k), with M =2min{k: &(2k)+ &2k +1) < 0}.

k=1

(valid for reversible Markov Chains)
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Estimating the asymptotic variance - batch means

An alternative idea to estimate J%/,CMC is to split the sequence
{Xa}NF0. | into M blocks of size T = N/M
Then we can build M different sample averages
NOBER & AMCMC _
Iz :7‘ Z ¥(X;), and fiyp T =
J=({—1)T+b+1

-
=

If T is sufficiently large (larger than the relaxation time), the M blocks
are nearly independent so that

R 2 Var [
Var [N;\V/I([_;MC] ~ UMKIMC ~ /\[4 ]

and Var [ﬁ(l)} can be estimated by a sample variance estimator

1 M . 2
Var |0 = 630 = 3 3 (a0 - aNE)

=

. - 2 i
Finally, an estimator for oj;cp ¢ is

M
Shoue = %0 = oy O (10 - AHE). EPRL@
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