APPENDIX B

ELEMENTS OF MATHEMATICAL
STATISTICS

B.1 STATISTICAL INFERENCE

Statistics deals with the gathering, summarization, analysis, and interpretation of
data. The two main branches of statistics are:

1. Classical statistics: Here the data object x is viewed as the outcome of a
random object X described by a probabilistic model — usually the model is
specified up to a (multidimensional) parameter; that is, X ~ f(:; 8) for some
6. The statistical inference is then purely concerned with the model and in
particular with the parameter 8. For example, on the basis of the data one
may wish to

(a) estimate the parameter,
(b) perform statistical tests on the parameter, or
(c) validate the model.
2. Bayesian statistics: In this approach the model parameter @ is itself ran-

dom: 6 ~ f(6). Bayes’ formula f(@|x) x f(x|8)f(8) is used to update the
distribution of the parameter based on the observed data x.

Mathematical statistics uses probability theory and other branches of math-
ematics to study data from a purely mathematical standpoint.
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B.1.1 Classical Models

Let x represent the observed data, viewed as the outcome of the random data X.
For example, X could be a random vector (X;,..., X,)". A real- or vector-valued
function of the data is called a statistic. For example, if X = (X1,...,X,)",
then the sample mean T = T(X) = (X; + --- + X,,)/n is one such statistic. It is
customary to use the same letter for both the function T' and the random variable
T(X). We write T for statistics taking values in R and T for statistics taking values
in R? for some d > 2. It is important that a statistic be computable; that is, it
cannot depend on any unknown parameters.
We summarize some classical models for data.

B.1.1.1 lid Sample The data Xi,..., X, are independent and identically dis-
tributed: i
Xi1,...,X, ~ Dist,
according to some known or unknown distribution Dist. Often the sampling dis-
tribution is specified up to an unknown parameter 8, with 8 € ©. An iid sample
is often called a random sample in the statistics literature. Note that the word
“sample” can refer to both a collection of random variables and to a single random
variable. It should be clear from the context which meaning is being used.
A standard model for data is:
Xla- .- aX'n 1{_‘8 N(HaC"?) )
in which case @ = (u,0%) and © = R x Ry.

B.1.1.2 Analysis of Variance In a one-way analysis of variance the objective is
to compare the means p1,...,ur of k independent groups (or levels) of normal
responses, all responses having the same variance o?. Specifically, denoting the
i-th response at level j by X;;, i =1,...,n;, j = 1,...,k, where n; is the sample
size of the j-th group, the model is

. . iid
Xij:pj+6ij, 121,...,71]-, i=1,...,k, {Eij}NN(O,O'z),
or, equivalently,
X ~N(uj,0%), i=1,...,n;, j=1,...,k, independently .

B.1.1.3 Regression Regression models are used to describe functional relation-
ships between explanatory variables and response variables. In a linear re-
gression model, the relationship is linear. Defining Y; as the i-th response variable
and z; as the fixed (that is, deterministic) i-th explanatory variable, a standard
model is

Yi=fo+baiten, i=1...,n {a}¥N0O0? (B.1)
for certain unknown parameters Gy, 31, and o?. The line
y=06o+bx (B.2)

is called the regression line. By replacing it with a general curve y = ¢(z;0)
one obtains a general regression model. For example, y = 8y + Bz + Bax? gives
a quadratic regression model, and y = x'3, where x is a multidimensional
explanatory variable and 3 a parameter vector, gives a multiple linear regression
model.
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B.1.1.4 Linear Model A data vector Y = (Y1,...,Y,) " is said to satisfy a linear
model if
Y=A48+¢e, &~ N(0,06%1) (B.3)

for some n x k matrix 4 (the design matrix), a k-dimensional vector of param-
eters 3= (31,...,8) ", and a vector € = (£1,...,&,)" of iid N(0, 52)-distributed
error terms. The analysis of variance and regression models are special cases.

For an outcome y, the least squares method can be used to fit the model to
the data. In particular, the optimal ﬂ is chosen such that the Euclidean distance
between y and A,@ is minimal. Equivalently, ,@ is the solution to

Vely —AB|)* =AT(y -~ 48) =0.

These linear set of equations are called the normal equations. Therefore, if ATA
is invertible (A can always be chosen such that this is the case), then

B=(ATA) ATy
In practice, we never compute the inverse (ATA)_I, but compute E from the nor-
mal equations using, for example, Gaussian elimination. Geometrically, 3 is the
projection of y onto the subspace spanned by the columns of A. Moreover, it is

not difficult to show that 3 is precisely the maximum likelihood estimate of 3 (see
Section B.2.1).

B.1.2 Sufficient Statistics

A sufficient statistic for a parameter (vector) 8 is a statistic that captures all the
information about @ contained in the data. This means that we can summarize the
data via a sufficient statistic, sometimes giving a tremendous reduction in data.

If T(X) is a sufficient statistic for &, then any inference about 8 depends on
the sample X = (X1,...,X,)" only through the value T(X). More precisely, a
statistic T(X) is called a sufficient statistic for 8 if the conditional distribution
of X given T(X) does not depend on 8. The workhorse for establishing sufficiency
is the following theorem. A proof can be found, for example, in {4].

Theorem B.1.1 (Factorization Theorem) Let f(x;8) denote the joint pdf of
the data X = (X1,..., Xn)". A statistic T(X) is sufficient for 6 if and only if there
exist functions g(t, 8) and h{x) such that for all deta points x and all parameter
points 8,

f(x;8) = g(T(x),8) h{x) . (B4)

M EXAMPLE B.1 (Sufficient Statistics for Exponential Families)

Sufficiency is particularly easy to establish for exponential families. Suppose that
Xi1,...,X, is an iid sample from the exponential family with pdf
F(2:8) = c(8) 5T O L@ ()

where {7;} are linearly independent. The pdf of X = (X,..., X,,) T is therefore

f(x; 9) - 0(9)" eZ?L 7:(0) 2k ti2n) H h(iﬂk
4(T(x).0) = —
h(x)

= 701
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A direct consequence of the factorization theorem is that

T(X) = (Ztl(Xk Ztm(Xk )

is a sufficient statistic for 8.

B EXAMPLE B.2 (Sufficient Statistics for the Normal Distribution)

As a particular instance of Example B.1, consider the N(u,o?) case. Thus, 8 =
(1, 02), and from Table D.1 it follows that a sufficient statistic for 8 is T = (T1,T3),
with Ty = Y;_, Xx and Tz = Y, _, X7. This means that for the standard data
model, the data can be summarized via only T} and T5.

Moreover, it is not difficult to see that any 1-to-1 function of a sufficient statistic
again yields a sufficient statistic. Hence, the sample mean T, = X and the sample

variance
~ 1 <& _ 1 n _
— X. - X 2 — XZ . X2
n—1 Z( k ) n—1 (Z kT
k=1 k=1
also form a pair of sufficient statistics, because the mapping

~ T ~ 1
leg and TQZH(TZ—TIZ/TI)

is invertible.

B.1.3 Estimation

Suppose the distribution of the data X is completely specified up to an unknown
parameter vector 8. The aim is to estimate & on the basis of the observed data x
only. (An alternative could be to estimate 7 = g(8) for some vector-valued function
g.) Specifically, the goal is to find an estimator T = T(X) that is close to the
unknown 8. The corresponding outcome t = T(x) is the estimate of 8. The bias
of an estimator T of & is defined as T — 8. An estimator T of & is said to be
unbiased if EgT = 0. We often write 8 for both an estimator and estimate of 8.
The mean square error (MSE) of a real-valued estimator T is defined as

MSE = Ey(T — 6)?

An estimator T3 is said to be more efficient than an estimator 15 if the MSE of
T is smaller than the MSE of 75. The MSE can be written as the sum

MSE = (EgT — 6)* + Varg(T) .

The first term measures the unbiasedness and the second is the variance of the
estimator. In particular, for an unbtased estimator the MSE of an estimator is
simply equal to its variance.

For simulation purposes it is often important to include the running fime of the
estimator in efficiency comparisons. One way to compare two unbiased estimators
T, and 13 is to compare their relative time variance products,
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nVar(l) g, (B.5)
(ET;)?
where 7 and 75 are the times required to calculate the estimators 17 and 715,
respectively. In this scheme, T} is considered more efficient than T if its relative
time variance product is smaller.
Two systematic approaches for constructing sound estimators are:

e the maximum likelihood method; see Section B.2.1,

e the method of moments, discussed next.

B.1.3.1 Method of Moments Suppose x1,...,Z, are outcomes from an iid sample
X1,..., X, ~iq f(x;08), where 8 = (61,...,0¢) is unknown. The moments of the
sampling distribution can be easily estimated. Namely, if X ~ f(x;8), then the
r-th moment of X, that is, u,(0) = Eg X" (assuming it exists), can be estimated
through the sample r-th moment

The method of moments procedure involves choosing the estimate 9 of 0 such
that each of the first k£ sample and true moments are matched:

-~

m, = p(0), r=12,... k.

In general, this set of equations is nonlinear, and so its solution often has to be
found numerically.

B EXAMPLE B.3 (Sample Mean and Sample Variance)
Suppose the data is given by X = (Xi,...,X,)", where the {X;} form an iid

sample from a general distribution with mean g and variance 0? < oo. Matching
the first two moments gives the set of equations

1 n
- Ty =M,
=1
n
1
2 2 2
n Ty =u"+o
i=1

~~ = 1 =
u:x:EZZJi, (BG}

and

i ixf @ =LY w-0?. (B.7)
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The corresponding estimator for u, X, is unbiased. However, the estimator for o
is biased: Eo2? = ¢2(n — 1)/n. An unbiased estimator is the sample variance

The square root of the sample variance S = v/ 5? is called the sample standard
deviation.

B.1.3.2 Confidence Interval An essential part in any estimation procedure is to
provide an assessment of the accuracy of the estimate. Indeed, without information
on its accuracy the estimate itself would be meaningless. Confidence intervals
(sometimes called interval estimates) provide a precise way of describing the
uncertainty in the estimate.

Let X4,...,X, be random variables with a joint distribution depending on a
parameter § € 6. Let T1 < T, be statistics (thus, T; = T3(X1,..., X,), i = 1,2 are
functions of the data, but not of €).

1. The random interval (7}, 73) is called a stochastic confidence interval for
g with confidence 1 — « if

]Pg(Tl <0< Tz) 21l—«a forall 9 € ©. (BB)

2. If t; and t2 are the observed values of T1 and Tz, then the interval (¢;,¢3) is
called the (numerical) confidence interval for § with confidence 1 — « for
every 8 € ©.

3. If (B.8) only holds approximately, the interval is called an approximate
confidence interval.

4. The probability Py(T1 < 6 < T3) is called the coverage probability. For a
1 — « confidence interval, it must be at least 1 — .

For multidimensional parameters 8 € R? the stochastic confidence interval is
replaced with a stochastic confidence region ¢ C R® such that Pa(@ € €) > 1—a
for all 6.

The systematic construction of (approximate) confidence intervals often involves
likelihood methods, see Section B.2. Another approach is to use the bootstrap
method, see Section 8.6. The analogue of a confidence interval in Bayesian analysis
is called a credible interval; see Section B.3.

B EXAMPLE B.4 (Approximate Confidence Interval for the Mean)

Let X3, X9,..., X, be an iid sample from a distribution with mean u and variance
02 < 0o (both assumed to be unknown). By the central limit theorem and the law
of large numbers,

X — K approx.

T:S/\/ﬁ ~7N(0,1)
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for large n, where S is the sample standard deviation. Rearranging the approximate
equality P(|T'| < z1_as2) &~ 1 — a, where 2;_,/ is the 1 — /2 quantile of the
standard normal distribution, yields

_ S _ S
P(X_ZI—Q/Q’\‘]—;]: < H §X+Zl—a/2ﬁ) ~l-a,

so that
. S S = S
(X Z1— a/2\/— X+z_ /2 \/_) ., abbreviated as X + zl,a/zﬁ, (B.9)

is an approximate stochastic 1 — ¢ confidence interval for p.

Since (B.9) is an asymptotic result only, care should be taken when applying
it to cases where the sample size is small or moderate and the sampling distri-
bution is heavily skewed. For one- and two-sample normal (Gaussian) data Ta-
ble B.1 provides exact confidence intervals for various parameters, The model for
the two-sample data is Xi,..., Xy ~iid N(ex,0%) and Y1,...,Yn ~iia N(uy,02),
where X1,..., X, Y1,..., Y, are independent. All parameters are assumed to be
unknownn.

Table B.1  Exact confidence intervals for normal data with unknown mean and
variance.

Parameter Exact 1 — « confidence interval Condition
_ Sy
Xty 11-nm—
tx m—1;1—a/2 \/ﬁ
9 (m — 1)S§( (m — 1)53(
9% 2 ) T2
Xm—l;l—a/? Xm—l;a/Z
v v 1 1 2 2
bx — ly X-Y+ tm+n—2;1‘a/2 Sp —+ = Ox = 0y
m n
52 S2
J?Y/U%' (Fn—l,m—l;a/2 '57/2‘:7 Fn—l,m—l;l—a/2 §‘2£>
- Y
T o\ 2
Here 52 = ZL (X=X +Z (5 =Y) is the pooled sample variance, ¢, is

the ~ quantlle of the t, dlstrlbutlon and F, .y is the v quantile of the F(m,n)
distribution.

For one- and two-sample data from the binomial distribution, described by the
model X ~ Bin(m,px) and Y ~ Bin(n,py) independently, approximate (1 — «)
confidence intervals for px and px —py are given in Table B.2. We use the notation
px = X/m and py =Y/n.
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Table B.2 Approximate confidence intervals for binomial data.

Parameter Approximate 1 — « confidence interval
. px(1—Dx)
px Bx £ 21_aypy 2o PX)
m
DU px(1-px) | pr(l—py)
Px — Dy Px — Dy izl—a/z\/ - + "

Finally, Table B.3 gives exact confidence intervals for various parameters of the
linear regression model (B.1).

Table B.3 Exact confidence intervals for normal regression data.

Parameter Exact 1 — « confidence interval
:c
Bo Go %t 2,1~ a/2 z !
A Bt t, %1-a/2 28
w — )2
Bo + Bz Yifn—zl —a/2 \/
52 (n—2)82 (n-2)5?
X%—Z;l—aﬂ Xn—2;a/2
Here El = %ify EO =Y - Bl z, §2 = %ﬂ Z?:l(y; - EO - Elmi)za Sex =
i (@i —2)?, and Spy =370, (s — 2)(Y: - Y).

B.1.4 Hypothesis Testing

Suppose the model for the data X is described by a family of probability distribu-
tions that depend on a parameter 8 € ©. The aim of hypothesis testing is to
decide, on the basis of the observed data x, which of two competing hypotheses,
Hy : 0 € O (the null hypothesis) and H, : 8 € ©; (the alternative hypothe-
sis), holds true.

In classical statistics the null hypothesis and alternative hypothesis do not play
equivalent roles. Hp contains the “status quo” statement, and is only rejected if
the observed data are very unlikely to have happened under Hp.

The decision whether to accept or reject Hy is dependent on the outcome of a
test statistic T = T(X). For simplicity, we discuss only the one-dimensional case
T =T. Two (related) types of decision rules are generally used:

1. Decision rule 1: Reject Hg if T falls in the critical region.
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Here the critical region is any appropriately chosen region in R. In practice
a critical region is one of the following:

o left one-sided: (—oc, c],

e right one-sided: [c,o0),

o two-sided: (—o0,c1]U [e2,00).
For example, for a right one-sided test, Hy is rejected if the outcome of the
test statistic is too large. The endpoints ¢, c1, and c; of the critical regions
are called critical values.

2. Decision rule 2: Reject Hy if the p-value is smaller than some pg.

The p-value is the probability that under Hy the (random) test statistic takes
a value as extreme as or more extreme than the one observed. In particular,
if ¢ is the observed outcome of the test statistic T, then

o left one-sided test: p =Py, (T < t),
o right one-sided: p = Pu,(T > t),
o two-sided: p = min{2Py, (T < t), 2Py, (T > t)}.

The smaller the p-value, the greater the strength of the evidence against Hy
provided by the data. As a rule of thumb:

p < 0.10 suggestive evidence,
p < 0.05 reasonable evidence,

p < 0.01 strong evidence.

Whether the first or the second decision rule is used, one can make two types of
errors, as depicted in Table B.4.

Table B.4 TypeI and II errors in hypothesis testing.

True statement

Decision Hy is true H, is true

Accept Hy || Correct ~ | Type II Error

Reject Hy || Type I Error | Correct

The power of the test at f € O; is defined as the probability that Hy is rejected
(correctly). That is,

Power(0) = Po(T € Critical Region) = 1 — Pg(Type II Error) .

The function 6 — Power(f), with 6 € O is called the power curve.

The choice of the test statistic and the corresponding critical region involves a
multiobjective optimization criterion, whereby both the probabilities of a type I
and type II error should, ideally, be chosen as small as possible. Unfortunately,
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these probabilities compete with each other. For example, if the critical region is
made larger (smaller), the probability of a type II error is reduced (increased), but
at the same time the probability of a type I error is increased (reduced).

Since the type I error is considered more serious, Neyman and Pearson [8] sug-
gested the following approach: choose the critical region such that the probability
of a type II error is as small as possible, while keeping the probability of a type 1
error below a predetermined small significance level a.

Remark B.1.1 (Equivalence of Decision Rules) Note that decision rule 1
and 2 are equivalent in the following sense:

Reject Hy if T falls in the critical region, at significance level a.
~
Reject Hy if the p-value is < significance level a.

In other words, the p-value of the test is the smallest level of significance that would
lead to the rejection of Hy.

In general, a statistical test involves the following steps:

1. Formulate an appropriate statistical model for the data.
Give the null and alternative hypotheses.

Determine the test statistic.

Determine the distribution of the test statistic under Hj.

Calculate the outcome of the test statistic.

S

Calculate the p-value or calculate the critical region, given a preselected sig-
nificance level a.

7. Accept or reject Hy.

The actual choice of an appropriate test statistic is akin to selecting a good
estimator for the unknown parameter 8. The test statistic should summarize the
information about # and make it possible to distinguish between the alternative hy-
potheses. The likelihood ratio test provides a systematic approach to constructing
powerful test statistics; see Section B.2.3.

We conclude with a number of standard tests involving normal and binomial
data. Below, z, denotes the v quantile of the N(0,1) distribution. The v quantiles
of the x2, t,, and F(m,n) distributions are denoted by Xfm, triy, and Fp pen,
respectively. Details may be found in [1], for example.

Table B.5 Normal distribution, one sample: testing p.

Model: Xl,...,Xniif\(JiN(,u,az)

Hy: “= o

Test statistic: T= )S{—/‘\%

Null distribution: 7T ~ t,1

Reject Hy if: T2t 11—« Hy:p> pg
T < ~tho11-a Hy oy < o

T<~thyn-aportT 2ty 1102 Hi:p# o
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Table B.6 Normal distribution, one sample: testing .

Model: Xl,...,anrl\(»iN(u,az)

Hy: o? = 08

Test statistic: T =S8%n—1)/0}

Null distribution: T ~ xi_l

Reject Hy if: T > szz—l;l—a H,:02> 08
TL Xgl—l;a H):0%2 <02
T> Xi—l;l—a/2 or T< Xi—l;a/Z H,: o’ :/é 0(2]

Table B.7 Normal distribution, two samples: testing ptx — py .

iid

Model: X1, Xon M N(ux,02), Yi,....Y. © N(uy,o?)
Xi1,..., X, Y1,..., Y, are independent

Hy: bx =Py

Test statistic: T= X;IYI

Spy/E+1

Null distribution: T ~ tnym-2

Reject Hy if: T= tn+m—2;1—a Hy:pux > py
T < _tn+m-—2;1——a Hy: Ux < py
T< —tn+m—2;1—a/2 orT = tn+m—2;l—a/2 H: (2.4 ?é By

™ s—X)? n(Y;=Y)?% .
Here Sg = T )fn) +:§:2J:1( =Y) is the pooled sample variance. Note that

in Table B.7 the variances of the two samples are assumed to be equal. If {X;} and
{Y;} are assumed to have different variances and the sample sizes are large, then
one can use the test statistic

X-Y
T= 2 2 ]
5% 51

which under Hy approximately has a N(0, 1) distribution. An alternative approach
is to use Welch’s t-test [9].

Table B.8 Normal distribution, two samples: testing 0% /0%

Model: X1, X N(px,0%), Yi,...,Y, b N(py,o%)

X1,...,Xn,Y1,..., Y, are independent

Hy: 0% =oi

Test statistic: T =5%/5%

Null distribution: T ~ F(m —1,n—1)

Reject Hy if: T2 Fn_in-11-a Hy: 03?( > 0'%/
T < mel,n~1;a Hy: O'i— < U%’

. o2 2
T > Fm—l,n—l;l—a/Z or T < Fm—l,n—l;a/Z H,: Ox ?é Jy
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Table B.9 Binomial distribution, one sample: testing p.

Model: X ~ Bin(n,p)

Hy: p="o

Test statistic: T=X

Null distribution:  Bin{n,pg)

Reject Hy if: X > ¢, where c¢ is the smallest integer
such that Py (X > ¢) < & Hy:p>pg
X < ¢, where c is the largest integer
such that Py, (X <¢) < a Hy:p<pg

X < ¢y or X > cg, where c; is the largest integer
such that Py, (X < ¢1) < @/2 and c; is the smallest
integer such that Py (X > ¢2) < a/2 Hy:p+#po

For large n an alternative is to use the test statistic

X —npg
npo(1— po)

which under Hy approximately has a N(0,1) distribution. The null hypothesis is
then rejected if Z > 2z1_, for Hy : p > pg, Z £ —21_o for Hy : p < pg, and
[Z < —z1_q2 Or Z 2 21_qy9] for Hy @ p # po.

Table B.10 Binomial distribution, two samples: testing px — py.

Model: X ~ Bin(m,px) and Y ~ Bin(n, py) independent
Hy: Px =py
Test statistic: T — ___PX-Py

p1-P)(A+%)
Null distribution: N(0,1) (approx.)

Reject Hj if: Z > 210 Hi:px > py
LK 2 o Hy:px <py
Z 2 2wap O Z € —21-n/2 H, :px #py

Here px = X/m, py =Y/n,and p= (X +Y)/(m+n).

B.2 LIKELIHOOD

The concept of likelihood is central in statistics. It describes in a precise way the
information about model parameters that is contained in the observed data.

Let X = (X1,...,X,)7 be a random vector that is distributed according to a
pdf f(x;8) (discrete or continuous) with parameter vector @ = (0y,...,64)" € ©.
Let x be an outcome of X. The function L£(8;x) = f(x;0), 8 € O, is called the
likelihood function of 8, based on x. The (natural) logarithm of the likelihood
function is called the log-likelihood function and is denoted by I. The gradient
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of the log-likelihood function { is called the score function, and is denoted by 8.
Hence,
Al(8;x)
50,
Al(8;x)

$@;x)=| °” |=Velni(6:x)=

Vo f(x;0)
—— B.10
: f(x;0) (8.10)
ICRS)
50,
If @ is one-dimensional, the score function is thus defined as

,_d o d Loy if(x;@)
8(0%) = 35l0%) = I L(0;x) = LT

~ de dé
The random vector §(8) = §(8;X) with X ~ f(-;8) is called the efficient score
or simply score. The covariance matrix J(8) of the score $(8) is called the Fisher
information matrix. Note that £ is a function of @ for fixed x, whereas f(x; )
is viewed as a function of x for fixed 8. Similarly, I and 8 and J are functions of 6.
The expectation of the score §(8) is equal to the zero vector:

Vo f(x;0)
f(x;8)

:fVef(x;O)dx=Vg[f(x;ﬂ)dx=V91=0,

EeS8(0) = f(x;0)dx

provided the interchange of differentiation and integration is justified. In particular,
this is allowed for natural exponential families; see [6]. We will assume henceforth
that EgS8(8) = 0.

Table B.11 displays the score functions 8(8;z) calculated from (B.10) for some
commonly used distributions. In this table v refers to the digamma function.

The concepts of likelihood and score are particularly useful in the case where
X1,..., X, form an iid sample from some pdf f; that is, X1, ..., X, ~iiq f(, 8). In
that case, the likelihood of @ given the data x = (z1,...,2,)" is the product

mn

£(6;x) =[] f(z:;0) . (B.11)

i=1

Consequently, the log-likelihood is the sum 1(8;x) = .., In f(z::9), and the score
is

$(6;X) = ié(a; X;), (B.12)

where g(@; z) is the score function corresponding to f (z;0). It follows that the
information matrix satisfies

1(8) =nJ(8),

where 3(0) is the information matrix corresponding to f.
Note that the random vectors {S(8; X;)} are independent and identically dis-

tributed with mean vector 0 and covariance matrix J(6). The law of large numbers
and the central limit theorem now lead directly to two important properties of the

= 716

T 625
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Table B.11 Score functions for commonly used distributions.

Distribution 6 $(6; )
Exp()\) A Mg
1 T
Gamma(a, A) (o, A) (In(Az) —¥(a), ar™! —z)
Nk, 02) (1) (0@ —p), o' + 0%z —w)?)"
Weib(ax, \) (a, M) (0™ +In(Az)[1 — (Az)?], 2[1 — (Az)]) "
. r—np
Bin{n,
(n,p) p o= p)
Poi(A A S
0i(A) 3
l1—px
Geom
() p g
score of an iid sample.
1. Law of large numbers;: As n — o0,
1 X
ES(B; X) > Eg8(8;X)=0, (B.13)
since the expected score is the zero vector,
2. Central limit theorem: For large n
$(8;X) N N(0,n7(8)) . (B.14)
B EXAMPLE B.5 (Bernoulli Random Sample)
Let Xi,..., X, ~iiq Ber(p). Then, for a given observation x = (x1,... ,Tn) ", the
likelihood of p is given by
Lipx)=][]p"(1-p)' ™ =p"(1-p"", 0<p<1, (B.15)

=1
where ¢ = 1 + --- + x,. The log-likelihood is {(p) = zlnp + (n — x)In(1 — p).
Through differentiation with respect to p, we find the score function:
T n—<« x n
S(p;z) == — = — 3 B.16
(#:2) p l-p pl-p) 1-p (B.16)
The corresponding score 8(p) is obtained by replacing « with X ~ Bin(n,p). The
expectation of 8(p) is 0 and its variance (the information matrix/number) is
Var(X) n
Ip) =53 = T
PP(1-p)?* p(l-p)
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Hence, for large n, 8(p) approximately has a N(0,n/(p(1 — p))) distribution.

Other properties of the likelihood and score include (for proofs see, for example,

[]):

1. Natural exponential family: For an exponential family in canonical form
flm) = et =AM p(xy) | (B.17)

with A as in (D.3), the log-likelihood function is I{(n;x) = " t(x) — A(n) +
In h(x), so that the score function becomes

$(m5%) = b() — VA(n) = (x) — Eqt(X) (B.18)
It follows that the information matrix is the covariance matrix of t(X):
J(n) = Cov(t(X)) = V2A(n) . (B.19)
2. Information matriz: An alternative expression for the information matrix is
1(0) = —Ee H(0; X) , (B.20)
where H(8; X) is the Hessian of {(8; X}; that is, the (random) matrix

where §; denotes the i-th component of the score. This alternative expression
is valid under mild conditions (which are satisfied for exponential families)
that allow the interchange of the order of integration and differentiation [6].

3. Cramér-Rao: Let X ~ f(x;0). The variance of any unbiased estimator
Z = Z(X) of g(8), where g is a €! function, is bounded from below by

Var(Z) > (Vg(0))" 771(8) Vg(8) . (B.21)

4. Location-scale families: For location—scale families {f(z;u,0)} the Fisher
information does not depend on g. In particular, for location families it is
constant.

B.2.1 Likelihood Methods for Estimation

Let x be the observed data from the model X ~ f(x;8), yielding the likelihood
function L£(8;x) = f(x;0). The maximum likelihood estimate (MLE) of 8 is
a vector 8 such that L(@;x) > L(6;x) for all 8 in the parameter space ©. The
corresponding random variable (a function of X}, also denoted 5, is called the
maximum likelihood estimator (also abbreviated as MLE).

Since the natural logarithm is an increasing function, maximization of L(6;x)
is equivalent to maximization of the log-likelihood [(#;x). This is often easier,
especially when X is an iid sample from some sampling distribution.

If [(6;x) is a differentiable function with respect to € and the maximum is
attained in the interior of ©, and there exists a unique mazimum, then the MLE

= 701
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of 8 can be found by differentiating [(8; x) with respect to @ — more precisely, by
solving

Ve l(6;x)=0.

In other words, the MLE is obtained by finding a root of the score; that is, by
solving

8{(8;x)=0. (B.22)
Properties of the maximum likelihood estimator include (see, for example, [6,

Page 444)):

1. Consistency: The maximum likelihood estimator 0 is consistent. That is,
with probability tending to 1 as n — oo the likelihood equation has a solution
@ such that for alle > 0

P(|@ -8 >¢e)—0.

2. Asymptotic normality: Suppose that 51,52, ... is_a sequence of consistent
maximum likelihood estimators for 8. Then, /n (8, — @) converges in dis-
tribution to a N(0,J71(0))-distributed random vector as n — oc. In other
words

B, % NI @)

3. Invariance: Let O be the MLE of 0. Then, for any function g the MLE of

-~

g(8) is g(8).

Note that Property 1 only says that there erists a sequence of MLEs 61,62, .
that converge (in probability) to the true @. When there are multiple local maxima,
a particular sequence 84,8,, ... may in fact converge to a local maximum.

Theorem B.2.1 (Exponential Families) For natural erponential families of
the form (B.17) the MLE is found by solving

t(x) — VA(n) = t(x) —E, t(X) = 0. (B.23)

That is, ) is chosen such that the observed and expected values of t(X) are matched.

B EXAMPLE B.6 (MLE for the Gamma Distribution)

We wish to estimate both parameters of a Gamma{a, A) distribution, based on an

iid sample x = (z1,...,2n). The corresponding pdf is
R Aama—le—/\z
s \) = e 2320,

which is of the form (B.17) with t(z) = (z,Inz)", 7 = (=), a —1)7 and A(n) =
—(m2+1)In(—m )+ In T'(12+1); see also Table D.1. Consequently, the score function
is given by

Sma) = o) - Valm) = (,, S B
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where v is the digamma function. The information matrix is

J(n) = V2A(n) = ((mj/lgl/n% Wznlﬁll)) .

The score function corresponding to the iid sample is therefore

L i=1 Ti + (02 +1)/m
8(m; %) = ; S(m; i) = (Zle 1nzxi + n(ln(gzh) - )1/{872 + 1)))

and the information matrix is J(r7) = nJ(n). Estimates of the parameters are found
by numerically solving 8(7; x) = 0 (continued in Example B.8).

B.2.1.1 Score Intervals The score function can also be used to construct confi-
dence intervals. We consider only the one-dimensional case; that is, § € R. Let
X = (X1,...,X,)" be an iid sample from some sampling distribution f. Because
of the normal approximation (B.14), the statistic $(8;X)/+/J(8) is approximately
standard normal, and hence

8(4; X
0:—2z1 o2 < (—0) < Z1-a/2
nJ(6)

is an approximate 1 — « confidence set (not necessarily an interval).
B EXAMPLE B.7 (Score Interval for a Bernoulli Random Sample)

Let X be an iid sample from Ber(p). The information matrix is J(p) = n/(p(1 —p))

and the score is 8(p; X) = n(X — p)/(p(1 — p)); see (B.16). So the confidence set
becomes

n(X—-p _ [p(1—p)
i — g g —o

4
= p /% R 2< mgzl—a 2
{ 23 p(=p)/n ’}

By solving the quadratic equation (X — p)2 = a% p(1 — p)/n with respect to p, this
confidence set can be written as the interval {T; < p < Tz} with

a? +2nX Fav/a? — (X ~1)X
2(a? +n) ’

T2 =

where ¢ = z1_,/2. This score interval has much better coverage behavior than
the confidence interval in Table B.2, over the complete range of p.
B.2.2 Numerical Methods for Likelihood Maximization

It is frequently not possible to find the MLE 8 in an explicit form. In that case
one needs to solve the equation 8(8) = 8§(8;x) = 0 numerically via a root-finding

= 716
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procedure. A well-known method is the Newton-Raphson procedure (see also Sec-
tion C.2.2.1). Starting from a guess 8, a “better” guess is obtained by approximat-
ing the score via a linear function. More precisgly, suppose that @ is the initial guess
for the root. If the latter is reasonably close to 8, a first-order Taylor approximation
around 6 gives

S(8) ~ $(6) + VS(6)(8 — ) = $(8) + H(6)(6 — 0) ,

where H(0) = H(0;x) is the Hessian of the log-likelihood, that is, the matrix of
second-order partial derivatives of {. Since §(8) = 0, we have 8 =~ 8 — H~'(0) §(0).
This suggests the following iterative scheme.

Algorithm B.1 (Newton—Raphson Scheme for the MLE)
1. Start with an initial guess 8y. Set t = 0.

2. Set
0,..=0,—H'0,)8(8,). (B.24)

3. If 8(8:11) < € for some small e > 0, then return O¢11 as the MLE; otherwise,
sett =t+1 and go to Step 2.

To implement the Newton—Raphson scheme, it is often crucial to come up with
a good starting value for the parameter vector. One natural way to obtain a good
guess is to match the sample and theoretical moments via the method of moments;
see Section B.1.3.1.

Notice that H(8) = H(@;x) depends on the parameter 8 and data x, and may
be quite complicated. However, the expectation of H(6; X} under 6 is simply the
negative of the information matrix J(@), which does not depend on the data. This
suggests the alternative to (B.24):

0,01 =0,+771(0;) 88, , (B.25)
which may be easier to implement if the information matrix is readily available.

B EXAMPLE B.8 (MLE for the Gamma Distribution)

We continue Example B.6 to find MLEs for the parameters of the Gamma(a, A)
distribution. The initial guess is obtained by matching the expectation and variance
to the sample mean and sample variance, T = Y., xz;/n and s? = > 7 (z; —

#)?/(n — 1), respectively. Since for X ~ Gamma(a, A), EX = a/)\ and Var(X)
/)2, thls leads to the initial guess n, = (~Ag, a0 — 1)7, where ap = 55% and
Ao = 3. The following MATLAB program implements the Newton-Raphson scheme
to ﬁnd the MLE for @ = 3 and A = 0.05.

%gammMLE . m
n = 100;
alpha = 3; lambda = 0.05;
= gamrnd(alpha,1/lambda,l,n);
sumlogx = sum(log(x)); sumx = sum(x);
alp = mean(x)"2/var(x); lam = mean(x)/var(x); % initial guess
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eta = [-lam;alp - 1]; S = Inf;
while sum(abs(8) > 10°(-5)) > 0

S = [sumx + n*(eta(2) + 1)/eta(l);

sumlogx + n*(log(-eta(1)) - psi(eta(2) + 1))];
I =n* [ (eta(2)+1)/eta(l)"2, -1/eta(l);
-1/eta(1) , psi(l,eta(2)+1)];

eta = eta + I\S;
end
fprintf(’lam_hat = %g , alpha_hat = %g \n’,-eta(l),1l+eta(2))

B.2.3 Likelihood Methods for Hypothesis Testing

Let Xq,...,X, be an iid sample from a distribution with unknown parameter
@ € ©. Write X for the corresponding random vector, and denote the likelihood
by L(6;x). Suppose O and ©; are two nonoverlapping subsets of O, such that
Oy UO; = 0.
The likelihood ratio statistic is defined as
maxgeo, L(0;X)  L(00;X)

A= = ~ )
maxgee L(8; X) L(6; X)

where @ is the maximum likelihood estimator of 8 and 50 the maximum likelihood
estimator of 8 over Oy only.

The likelihood ratio statistic A can be used as a test statistic for testing the
hypotheses

Hy . 96@0,
Hli 66(")1

The critical region is (0, A*]; that is, reject Hp if A is smaller than some critical
value A*. To determine A* one needs to know the distribution of A under Hy. In
general this is a difficult task, but it is sometimes possible to derive the distribution
of a function of A under Hy. This is then taken as the test statistic. The critical
region follows by inspection.

B EXAMPLE B.9 (Likelihood Ratio Method for Gaussian Data)

iid

Suppose X1,..., X, ~ N(u,c?), with u and ¢? unknown. We wish to test

HO: M= Ho
Hy: p#po.

The likelihood function is given by
n/2 mn 2
1 1o (X —p)
L 2. X)) = —— ] .
30 = () o (<53 )

Maximizing £ over © gives the maximum likelihood estimate (f, 55) given in (B.6)

and (B.7). Maximizing £ over ©g = {(o,0?),0? > 0} gives the estimate (p0,0?),
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with
—~ 1 n
o? = - ;(Xi - o)’
Hence,
Llpo, 05 X) (X0, (X - X2\’ R
A = — e n B = 1+ T ,
L, 0% X) > i=1(Xi — po) n—1

where T' = g—/“\/%o and S is the sample standard deviation. Rejecting Hy for small
values of A is equivalent to rejecting Hy for large values of |T'|. Moreover, under

Hy, T has a t,,_.; distribution. Thus, the likelihood ratio method yields the test in
Table B.5.

The asymptotic distribution of the likelihood ratio statistic under Hy can be
derived in several cases, in particular when ©g consists of only one point @y. Under
Hj the log-likelihood function satisfies

—~

—2InA = —2(1(69) — 1(6)) .

A second-order Taylor expansion at 8y around ) gives
~ ~ ~ 1~ ~ o~ ~
[(B0) = 1(0) + (VI(8)) (6 — o) + (8 — 60)" VI(8)(6 — 6o) + O([16 — 65]°) .

Because vz(ﬁ) = 0 and V2l(§) ~ —J(8¢), where J is the information matrix, we
have R R
—2InA =~ (0-60)77(60)(0 —0;) .

By the central limit theorem 6 — 6, has approximately a N(0,771(@¢)) distribution
under Hy. Thus, for a large sample size, we have that —2In A is approximately
distributed as X7J(89)X with X ~ N(0,7-1(8)), which has a x7 distribution,
where k is the dimension of . This gives the following theorem; see also [1].

Theorem B.2.2 (Asymptotic Distribution of Likelihood Ratio Statistic)
For a k-dimensional parameter space, if the null hypothesis has only one value
Hy : @0 = 6y and the alternative hypothesis is Hy, : 8 # 8q, then under some mild
regularity conditions (which are satisfied for exponential families):

approx.

—2InA RN 2 for large n .

B.3 BAYESIAN STATISTICS

Bayesian statistics is a branch of statistics that is centered around Bayes’ formula
(A.23). The type of statistical reasoning here is somewhat different from that in
classical statistics. In particular, model parameters are usually treated as random
rather than fixed quantities and Bayesian statistics uses different notational con-
ventions from those in classical statistics. The two main differences in notation
are:



BAYESIAN STATISTICS 673

1. Pdfs and conditional pdfs always use the same letter f (sometimes p is used
instead of f). That is, instead of writing fx (x) and fx |y (x|y) for the pdf of
X and the conditional pdf of X given Y, one simply writes f(z) and f(z|y).
If Y is a different random variable, its pdf (at y) is thus denoted by f(y).
This particular style of notation is typical in Bayesian analysis and can be
of great descriptive value, despite its apparent ambiguity. We will use this
notation whenever we work in a Bayesian setting.

2. Omne does not usually indicate random variables by capital letters and their
outcomes by lower case letters. It is assumed that it is clear from the context
whether a variable x or # should be interpreted as a number or a random
variable.

In Bayesian statistics the data x is modeled via a conditional pdf f(x|8), called
the likelihood, that depends on a random parameter 8 taking values in some set
©. The a priori information about & (that is, the knowledge about 8 without using
any information from the data) is summarized by the pdf of 8, which is called the
prior pdf. Additional knowledge about @ obtained from the observed data x is
given by the conditional pdf f(8]x), called the posterior pdf. The posterior and
prior pdfs are related via Bayes’ formula (replace the integral with a sum in the

discrete case):
_ (x10) 4(0)
[ f(x|0) f(6)do
The denominator in (B.26),

f(@1x) x f(x|8) f(6) . (B.26)

56 = [ 7x10) 7(6) do,

is often called the marginal likelihood and is usually difficult to compute. A
Bayesian model specifies the prior pdf and likelithood. Once the model is given,
all inference is based on the posterior pdfin (B.26). For example, a vector for which
the posterior pdf is maximal yields a point estimate for 8, called the maximum a
posteriori estimate. Another estimate is obtained by taking the expected value of
0 under the posterior pdf. A Bayesian 1— & confidence region, or credible region,
is any subset ¥ C ©, such that

P(aefg|x)=fee<gf(e|x)do>1_a. (B.27)

Bayesian models are often constructed in a hierarchical way. For example, a
three-parameter hierarchical model could be specified as follows:

aN (a)’
(bla) ~ f(bla),
(cla,b) ~ f(c|a,b), (B.28)
(x|a,b,c) ~ f(x]a,b,c).

In other words, first specify the prior pdf of a, then given a specify the pdf of b,
etc., until finally the likelihood as a function of all the parameters is given. This
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procedure allows for a straightforward evaluation of the joint pdf as the product of
the conditional pdfs:

f(x,a,b,c) = f(x|a,b,c}) f(c|a,b) f(b|la)f(a).

To find the posterior f(a,b,c|x), simply view f(x,a,b,c) as a function of a, b, and
¢ for fixed x. To find the marginal posterior pdfs, f(a|x), f(b|x), and f(a|x), one
needs to integrate out the other parameters. For example,

f(c|x)z//f(a,b,c|x)dadb.

B EXAMPLE B.10 (Coin Flipping and Bayesian Learning)

Consider the random experiment where we toss a biased coin n times. Suppose

that the outcomes are z,,...,z,, with x; = 1 if the i-th toss is heads and z; = 0
otherwise, for + = 1,...,n. A possible Bayesian model for the data is

iid
(xla' - Tp lp) 1,.1\, Ber(p) -

The likelihood is therefore
fxlpy =[] a-p = =pQ-p",
i=1

where s = 1 + - - - + @, is the total number of heads. Since f(p} = 1, the posterior
pdf is
fle|x)=cp*(1—p)"*, pe(0,1],

which is the pdf of the Beta(s+1, n—s+1) distribution. The normalization constant
is ¢ = (n+1)(7). The maximum a posteriori estimate of p is s/n, which coincides
with the classical maximum likelihood estimate. The expectation of the posterior
pdf is (s +1)/(n+ 2). The graph of the pdf for n = 100 and s = 1 is given in
Figure B.1. For this case a left one-sided 95% credible interval for p is [0, 0.0461],
where 0.0461 is the 0.95 quantile of the Beta(2, 100) distribution.

35¢
30t
25¢
20t
15¢
10

5

0.02 0.04 0.06 0.08 0.1

Figure B.1 Posterior pdf for p, with n = 100 and s = 1.
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Evaluating or drawing from the marginal posterior distributions may not always
be easy or feasible. When this is the case, one often turns to Markov chain Monte
Carlo techniques; see Chapter 6. For example, in the three-parameter model (B.28)
one could use the Gibbs sampler to sample from the posterior pdf:

1. Initialize a, b, c. Then iterate the following steps:
2. Draw a from f(a|b,c,x).
3. Draw b from f(b|a,c,x).
4. Draw c from f(c|ea,b,x).

After we obtain a (dependent) sample {(a¢,bt,ct)} from f(a,b,c|x), process only

the variables of interest, for example, only the {c;} to obtain a dependent sample
from f(c|x).

B.3.1 Conjugacy

In Bayesian analysis it is convenient to have the posterior and prior pdfs in the
same family of distributions. This property is called conjugacy. The advantage
of conjugacy is that only the parameters of the distribution need to be updated.

Exponential families provide natural conjugate families. In particular, consider
the m-dimensional exponential family

£x18) = c(@)"eTH O s te0) T n(an) (8.29)
i=1
which is the joint pdf of an iid sample from an exponential family — see Exam-
ple B.1. Suppose the prior pdf is chosen of the form

£(8) x c(B)beXeiza M (O)ai

where the proportionality constant only depends on a = (ay,..., am,,b). Then, the
posterior pdf becomes

F(81) o< F(8)f(x|8) oc c(B)" X i @) o Ty o)),
where the proportionality constant does not depend on 8. Thus, f(8) and f(0|x)
are in the same (m + 1)-dimensional exponential family.

B EXAMPLE B.11 (Conjugate Prior for the Poisson Distribution)

Let x1,..., 2, ~iia Poi(\), with sample mean Z = (z; + - - + #,)/n. The joint pdf
can be written in the form (B.29) as

which suggests a conjugate prior of the form f(A) x e”®*e?®A = e=bA )2 corre-
sponding to the Gamma distribution. In particular, if we take a Gamma(a, 8) prior
for A, that is,

FO) x e Ayt

then the posterior pdf is
f()\ | X) x e—(n-f-ﬁ))\ Aa—l-l-nf’

which corresponds to the Gamma(a + nZ, 8 + n) distribution.
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Further Reading

For an accessible introduction to mathematical statistics with simple applications
see [5]. For more detailed overview of statistical inference, see Casella and Berger
[2]. A standard reference for classical or frequentist statistical inference is [6]. An
applied reference for Bayesian inference is [3]. For a survey of numerical techniques
relevant to computational statistics see [7].
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