APPENDIX A

PROBABILITY AND STOCHASTIC
PROCESSES

The purpose of this chapter is to review some fundamental concepts in probability
and stochastic processes, and to familiarize the reader with the notation in this
book.

A.1 RANDOM EXPERIMENTS AND PROBABILITY SPACES

The basic notion in probability theory is that of a random experiment: an
experiment whose outcome cannot be determined in advance. Mathematically, a
random experiment is modeled via a probability space (0, ’H,P), where:

e () is the set of all possible outcomes of the experiment, called the sample
space.

e H is the collection of all subsets of {2 to which a probability can be assigned;
such subsets are called events. The collection H is assumed to contain §2
itself, be closed under complements (A € H = A° € H), and be closed under
countable unions (A1, As,... € H = U;4; € H). Such a collection is called a
o-algebra.

e P is a probability measure, which assigns to each event A a number P(A)
between 0 and 1, indicating the likelihood that the outcome of the random
experiment lies in A.
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606 PROBABILITY AND STOCHASTIC PROCESSES

Any probability measure P must satisfy the following Kolmogorov axioms: .
1. P(A) >0 for all A e H.
2. P(Q2) =1.

3. For any sequence A, As,... of disjoint (that is, nonoverlapping) events,
]P’(UAz-) =3 Pa). (A.1)
i i

The axioms ensure that the probability of any event lies between 0 and 1. An
event that happens with probability 1 is called an almost sure (a.s.) event. The
requirement (A.1) is often referred to as the sum rule of probability. It simply
states that if an event can happen in a number of different but not simultaneous
ways, the probability of that event is the sum of the probabilities of the comprising
events.

B EXAMPLE A.1 (Discrete Sample Space)

In many applications the sample space is countable, that is, Q = {a1,aq,...}.
In this case the easiest way to specify a probability measure P is to first assign a
probability p; to each elementary event {a;}, with ), p; = 1, and then to define

P(A)= > p; forall ACQ,
ira; EA

Here the collection of events H can be taken to be equal to the collection of all
subsets of 2. The triple (2, H,P) is called a discrete probability space.

This idea is graphically represented in Figure A.1. Each element a;, represented
by a black dot, is assigned a probability weight p;, indicated by the size of the dot.
The probability of the event A is simply the sum of the weights of all the outcomes
in A.
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Figure A.1 A discrete sample space.

Remark A.1.1 (Equilikely Principle) A special case of a discrete probability
space occurs when a random experiment has finitely many and equally likely out-
comes. In this case the probahility measure is given by

_ A

(A.2)
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where |A| denotes the number of outcomes in A and |§2| the total number of out-
comes. Thus, the calculation of probabilities reduces to counting. This is called
the equilikely principle.

A.1.1 Properties of a Probability Measure

The following properties of a probability measure follow directly from the Kol-
mogorov axioms. Proofs can be found, for example, in [5, 25].

1.

2.

Complement: P(A°) =1 - P(A).
Monotonicity: A C B = P(A) < P(B).

Sum rule: {A;} disjoint = P (U;4;) = >, P(4,).

. Inclusion—exclusion:

P(Uid:) = P(A) - Y P(ANA)+ > PANANA)—- .

i<g i<j<k

In particular, P(AU B) = P(4) + P(B) — P(AN B).

. Continuity from below: Let A;, Aa,... be an increasing sequence of events,

that is, Ay C A, C --- C A, with A = U,A,. Then, the sequence
P(A;),P(A3), ... increases monotonely to P(A).

. Continuity from above: Let A;, As,... be a decreasing sequence of events,

that is, 4y 2 Ay 2 --- 2 A, with A = N,A,. Then, the sequence
P(A;),IP(As),... decreases monotonely to P(A).

Boole’s inequality: P(U; A;) <5, P(4;).

Borel-Cantelli: Let A1, Aa,... be a sequence of events, and let limsup 4,, =
M Unzm Ay denote the event that infinitely many A, occur. Then,

> P(A,)<oo = P(limsupA,)=0.

Under the additional assumption that the {A;} are pairwise independent, = 616

> P(A4,)=c0 = P(limsupA,)=1.

A.2 RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

It is often convenient to describe a random experiment via random variables,
representing numerical measurements of the experiment. Random variables are
usually denoted by capital letters from the last part of the alphabet. A vector

X =

(X1,...,Xy) of random variables is called 2 random vector. A collection

of random variables {X;,t € 7}, where 7 is any index set, is called a stochastic
process. The set of possible values for X; (assuming this is independent of t)
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is called the state space of the process. Stochastic processes are discussed in
Sections A.9-A.13. Chapter 5 is devoted to random process generation.

From a mathematical point of view, a random variable X taking values in some
set F is a function X : Q — F such that

(XeB} Y {(weQ:Xw)eB}eH foral BEE,

where £ is a o-algebra on E. The pair (E,€) is called a measurable space. If
not otherwise specified we assume that X is a numerical random variable; that is,
E =R. Tt is sometimes useful to have F as the extended real line R = R U {#o00}.
In either case, £ is the corresponding Borel o-algebra. The Borel o-algebra is the
smallest o-algebra on R or R that contains all intervals (or, equivalently, all open
sets). Elements of this o-algebra are called Borel sets — for example, a countable
union of intervals is a Borel set. The Lebesgue measure m is the unique measure
on the Borel o-algebra such that m([a,b]) = b — a. Similar definitions hold for
n-dimensional Euclidean spaces, replacing intervals by rectangles, etc.
Define
Px(By=P(XeB), Bekf.

Then, Px is a probability measure on (E,£). It is called the distribution of X.
The probability distribution Px of a numerical random variable X is completely
determined by its cumulative distribution function (cdf), defined by

F(z) = Px([-00,z]) =P(X <z), z€R.

The following properties of a cdf ' are a direct consequence of the Kolmogorov
axioms. For proofs see, for example, [25].

1. Right-continuous: limy o F(z + h) = F(x).
2. Increasing z < y = F(z) < F(y).
3. Bounded: 0 < F(z) < 1.

Conversely, to each function F' satisfying the above properties corresponds exactly
one distribution Pyx; see, for example, [5, Theorem 2.2.2]. Figure A.2 shows a
generic cdf.

Figure A.2 A cumulative distribution function (cdf).
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A cdf Fj is called discrete if there exist numbers z1,Z2,... and probabilities
0 < f(z;) € 1 summing up to 1, such that for all z

Faz)= > flz:). (A.3)

T 8T

Such a cdf is piecewise constant and has jumps of sizes f(x1), f(x2),... at points
x1,T2,..., respectively.

A cdf F, is called absolutely continuous if there exists a positive function f
such that for all

Fo(z) = /_I flu)du . (A.4)

Note that such an F; is differentiable (and hence continuous) with derivative f.
However, in general the derivative F of a continuous cdf Fi. does not necessarily
satisfy (A.4). A typical example of a continuous cdf whose derivative is 0 almost
everywhere — and hence violates (A.4) — is the Cantor function, depicted in
Figure A.3. Such continuous cdfs are said to be singular. Most distributions used
in practice are either discrete or absolutely continuous, or a mixture thereof.

B EXAMPLE A.2 (Cantor Function)

The Cantor function is constructed in the following way. Let F(1) = 1. Divide the
interval [O 1) into three equal parts: [0, %), [%, %), and [2,1). Deﬁne F(:v) = 3 for

z e (s, 2’5) Next, d1v1de [0 3) into three subintervals [0, g) [3, %), and [, 9) and
d1v1de ,1) into [&, 1), [Z, g) and [§,1). Let I have the value j i on [é, 2) and g on

[g, 8) Now d1v1de each of the four remaining subintervals again into three parts.

Assign the values 1 35 g, 2 and I g to the middle intervals, and continue this process

indefinitely. This cdf is contlnuous, but its derivative is 0 almost everywhere.

0.8

06

0.4

62

02 04 0.6 0.8 1
Figure A.3 The Cantor function is a continuous singular cdf.

It can be shown (see, for example, [5, Chapter 1]) that every cdf F can be
written as the unique convex combination, or mixture, of a discrete, an absolutely



I= 85

610 PROBABILITY AND STOCHASTIC PROCESSES

continuous, and a continuous singular cdf:
F(z) = o) Fi(z) + az F.(z) + az Fs(z), where aj+as+az=1,

and a, 2 0 for £k =1,2,3.

A.2.1 Probability Density

A probability distribution on some measurable space (£, £) is often of the form

Px(B) = fB f(e)dm(z), Bef,

where m is some measure on (E,£). We say that Px has a probability density
function (pdf), or simply density, f with respect to m.

B EXAMPLE A.3 (Discrete Distribution)

Suppose a random variable X has a discrete cdf, as in (A.3). Thus, X takes values in
some finite or countable set of points E = {z1, za,...}, with P(X = z;) = f(z;) > 0,
i=1,2,.... Define f(z) =0forallz ¢ E. Let £ denote the collection of all subsets
of E and let m be the counting measure on (F,£), that is, m({B) is the number
of points in £ that lie in the set B. Then, we see that the distribution Py of X
satisfies

Px(B)=P(X € B) = 3 flw:) = fB f(z)dm(z) forall BCE.  (A.5)
z,€EB

In other words, X has a density f with respect to the counting measure m. Such a
random variable is called discrete and Px is called a discrete distribution. Such
a distribution is thus completely specified by its (discrete) pdf, and probabilities
can be evaluated via summation, as in (A.5). This is illustrated in Figure A.4.
Many specific discrete distributions are given in Chapter 4.

f(z)

~ -

Figure A.4  Discrete probability density function (pdf). The shaded area corresponds to
the probability P(X € B).
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B EXAMPLE A.4 (Absolutely Continuous Distribution)

Suppose a random variable X has an absolutely continuous cdf, as in (A.4). Then,
the distribution Px of X satisfies

Px(B)=P(X € B) = fB flz)de = /B f(z) dm(x) (A.6)

for all Borel sets B, where m is the Lebesgue measure. The distribution Px is
said to be absolutely continuous with respect to the Lebesgue measure, and
f is the corresponding pdf. As a consequence, such a distribution is completely
specified by its pdf, and probabilities can be evaluated via integration. This is
illustrated in Figure A.5. Many specific absolutely continuous distributions are
given in Chapter 4.

Figure A.5  Absolutely continuous probability density function (pdf). The shaded area
corresponds to the probability P(X € B).

We can view f(z) as the probability “density” at X = z, in the sense that, for

small h,
z+h

]P’(anggas+h):/ fluydu=h f(z) .

T

Remark A.2.1 (Probability Density and Probability Mass) It is important
to note that we deliberately use the same name, “pdf”, and symbol, f, in both
the discrete and the absolutely continuocus case, rather than distinguish between a
probability mass function (pmf} and probability density function (pdf). The reason
is that from a measure-theoretic point of view the pdf plays exactly the same role
in the discrete and absolutely continuous cases. The only difference is the measure
m. We use the notation X ~ Dist, X ~ f, and X ~ F to indicate that X has
distribution Dist, pdf f, and cdf F.

A.2.2 Joint Distributions

Distributions for random vectors and stochastic processes can be specified in much
the same way as for random variables. In particular, the distribution of a random
vector X = (X1,...,X,) is completely determined by specifying the joint cdf F,
defined by

F(:L‘l,...,xn):IP’(XlS:z:l,...,XHan), CEiER,iZI,...,n.

0= 85
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Similarly, the distribution of a stochastic process {X;,t € J}, with 7 C R,
is completely determined by its finite-dimensional distributions; that is, the
distributions of the random vectors (Xy,, ..., X;, ) for any choice of n and ¢, ..., t,.

By analogy to the one-dimensional case, a random vector X taking values in R™
is said to have a pdf f with respect to some measure m, if

P(X ¢ B) = /B f(x) dm(x) | (A7)

for all n-dimensional Borel sets B. The important cases are when m is either the
counting measure or the Lebesgue measure.

The marginal pdfs can be recovered from the joint pdf by “integrating out the
other variables”. For example, for a random vector (X,Y) with pdf f with respect
to the Lebesgue measure on R?, the pdf fx of X is given by

fx(z) = f f(z,y)dy .

Remark A.2.2 (Multivariate Singular Distributions) Continuous singular
distributions are much more likely to be encountered in the multidimensional set-
ting. For example, if a numerical random vector takes values exclusively in a lower
dimensional subset, then the distribution has a derivative of 0 almost everywhere
with respect to the Lebesgue measure and so is singular.

A.3 EXPECTATION AND VARIANCE

It is often useful to consider various numerical characteristics of a random variable
or its distribution. For example, two such quantities are the expectation and vari-
ance. The first measures the mean value of the distribution; the second measures
the spread or dispersion of the distribution. The intuitive definition of the expecta-
tion of a discrete random variable X is that it is the average of the possible values
that X can take, weighted by the corresponding probabilities; that is,

EX =Y zP(X=ux).

Similarly, for an absolutely continuous random variable X the expectation is given
by

]EX:[scf(z)d:c.

Both definitions are part of a more general framework, in which the expectation
of X is defined as the abstract integral

EX = /XdIP , (A.8)

which is defined in four steps (see, for example, [5, Chapter 3] and [12]):
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1. If X is an indicator function of some event A, that is,

¥ =1 def 1 fweAd (Ag)
4 o otherwise , '

then
EX ¥ P4). (A.10)
2. If X is positive and simple, that is, X = E?:l a;14, for some positive
(possibly infinite) numbers a,,...,a, and events Ay, ..., A,, then
Tt
EX E Y a0, P(A) (A.11)

=1
with oo x 0 and 0 % oo defined to be 0.
3. If X is a positive random variable, then

def

EX = lim EX,, , (A.12)
n—o
where X;, Xo,... is any sequence of simple random variables that increases
almost surely to X. We write = 623
a.8.
X, X

It can be shown [12] that such a sequence exists, and that the limit in (A.12)
exists (possibly infinity) and does not depend on the increasing sequence of
simple random variables.

4. Finally, for a general (not necessarily positive) random variable X, write
X = Xt — X7, where X* = max{X,0} and X~ = max{—X,0} are the
positive and negative parts of X (note that both are > 0), and define

EX ¥ Ext EX—,

provided that at least one of the right-hand-side terms is finite (00 — 0o is not
well-defined).

Random variables X for which E|X| < oo (and hence the expectation is finite)
are called integrable. It is not difficult to show [3, Page 216] that a random
variable X is integrable if and only if

lim Ele I{|X|>c} =0.

C— 00

A random variable X is said to be square integrable if EX? < co. A sequence
of random variables X, X5,... is said to be integrable if

supE|X,| < o0 .
ki)

A sequence of random variables X;, Xo,... is said to be uniformly integrable, if

lim supE|X,|Ifx, (> =0 .
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In particular, X, X5, ... must be integrable. Moreover, if for some € > 0

supE| X, 't < =,
n

then the sequence X;, X3,... is uniformly integrable. Another sufficient condition
for uniform integrability [2, Page 32] is the existence of an integrable random vari-
able Y such that P(|X,,| > ) < P(|Y] > z) for all z and n. For continuous-time
stochastic processes { X¢,t > 0}, integrability and uniform integrability are defined
in the same way, replacing the discrete n with a continuous ¢.

For the purpose of calculating expectations, the following theorem is indispens-
able.

Theorem A.3.1 (Expected Value) Let X be a random variable with distribu-
tion Px and cdf F, and let g be a numerical function, then (provided that the
integral exists)

Bg(X) = [a(0)ep = [g@)are@® [ g@ar@.

The last integral in (A.13) is called a Lebesgue—Stieltjes integral. In most cases
of practical interest this integral can be determined via elementary summation or
Riemann integration, in which it can be viewed as a Riemann-Stieltjes integral {3,
Page 228]. In particular, when X is discrete with pdf f, (A.13) reduces to

Eg(X)=>_glx)f(z), (A.14)
and in the absolutely continuous case {A.13) becomes
Eg(x) = [ g(e) fla)de. (A.15)

Theorem A.3.1 can be readily generalized to random vectors. In particular, if
X = (X1,...,X,) isarandom vector with (n-dimensional) c¢df F', and g a numerical
function on R”, then

E g(X) = [ g ARG (A.16)

A.3.1 Properties of the Expectation

Below, X, X;,X5,..., and Y are random variables, and X is a random vector. We
write X,,—> X to indicate that the sequence X, Xo,... converges almost surely

to X. Note that Properties 1, 2, 4, and 7 below follow directly from the definition
of the expectation. Proofs of the other properties can be found, for example, in [3,
Chapter 3]. See also Section A.8.

1. Positivity: For positive random variables the expectation always exists (pos-
sibly +o0).

2. Linearity. E(aX +bY) =aEX + bEY for a,b € R.
3. Monotonicity: If X > Y, then EX > EY.
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4. Indicator: If 14 is the indicator of the event A, then EI4 = P(A).

b. Jensen’s inequality: Let 2 be a convex subset of R and h : & — R be a
convex measurable function. Let X be a random vector taking values in &',
such that EX = (EX4,...,EX,,) is finite. Then, EA(X) exists and

Eh(X) > h(EX) .

6. Fatou’s lemma: If X,, > 0, then

Eliminf X,, < liminf EX,, .

n—ooo n—00

7. Monotone convergence theorem: Suppose EX,, exists for some n, then
a.s.
X, /X = EX, /EX.

8. Dominated convergence theorem: Suppose |X,| < Y for all n, where EY <
oo. Then,
X, X = EX,—EX.

A.3.2 Variance

The variance of a random variable X, denoted by Var(X) (or sometimes ¢?) is
defined by
Var(X) =E(X —EX)2 =EX? - (EX)%.

The square root of the variance is called the standard deviation.

In general, the mean and the variance do not give enough information to com-
pletely specify the distribution of a random variable. However, they may provide
useful bounds. We give three such bounds. A proof of Kolmogorov’s inequality
may be found in [5, Page 116].

1. Markov’s inequalily: For any positive random variable X with expectation u,

P(X>2z)<~=, z20. (A.17)

2. Chebyshev’s inequality: Let X be a random variable with finite expectation
and variance, u and o2, respectively. Then,

0.2

P(|X —ul =2 z) < pol x20. (A.18)
3. Kolmogorov’s inequality: Let X1, Xa,... be a sequence of independent ran-
dom variables. Let Si,S55,... be the sequence of partial sums, defined by

S, = X1+ ---+ X,, and assumed to have finite expectations and variances,
{un} and {02}, respectively. Then,

2
a
e > _n >
]13’(112135{"[.5'Z p,ll/a:>g$2, z>=20. (A.19)

= 679
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A.4 CONDITIONING AND INDEPENDENCE

Conditional probabilities and conditional distributions are used to model additional
information on a random experiment. Independence is used to model lack of such
information.

A.4.1 Conditional Probability

Suppose some event B C 2 occurs. Given this fact, event A will occur if and only
if AN B occurs, and the relative chance of A occurring is therefore P(AN B)/P(B),
provided P(B) > 0. This leads to the definition of the conditional probability
of A given B:

P(AN B)

P(A|B) =~

if P(B)>0. (A.20)
The above definition breaks down if P(B) = 0. Such conditional probabilities must
be treated with more care [3].

Three important consequences of the definition of conditional probability are:

1. Product rule: For any sequence of events A1, Az, ..., Ay,

P(A;---A,) =P(A))P(Az | A1) P(Az | A1Ag) - -P(A, | A1 Anr)
(A.21)
using the abbreviation Aj Az - Ay = A;NAx; N N Ag.

2. Law of total probability: 1f {B;} forms a partition of 2 (that is, B; N B; =
0,1 # 7 and U; B; = §2), then for any event A

P(A) = P(A|B;)P(B) . (A.22)

3. Bayes’ rule: Let {B;} form a partition of 2. Then, for any event A with
P(A) > 0,
P(A| B;) P(B;)
P(B;|A) = J 7 (A.23)
’ > P(A] B;) P(By)

A.4.2 Independence

Two events A and B are said to be independent if the knowledge that B has
occurred does not change the probability that A occurs. That is, A, B independent
< P(A| B) = P(A). Since P(A] B)P(B) = P(AN B), an alternative definition of
independence is

A, B independent < P(AN B) = P(A)P(B) .

This definition covers the case where P(B) = 0 and can be extended to arbitrarily
many events: events A;, A, ... are said to be independent if for any &k and any
choice of distinct indices 41, ..., i,

P(A;, N Az N--N Ay ) =P(A;) P(As,) - - P(Ag,) -
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The {A;} are said to be pairwise independent if every two events are indepen-
dent.

The concept of independence can also be formulated for random wvariables.
Random variables X, Xs,... are said to be independent if the events {X,, €
B1},...,{X;, € B,} are independent for all finite choices of n, distinct indices
i1,...,1n, and Borel sets By,..., B,.

An important characterization of independent random variables is the following
(for a proof, see [25], for example).

Theorem A.4.1 (Product of Marginal Pdfs) Random variables Xq,..., X,
with marginal pdfs fx,,..., fx, and joint pdf f are independent if and only if

flar,.yzn) = fx, (z1) -+ fx, (zn)  forallzy,...,z, . (A.24)

Many probabilistic models involve random variables X7, Xo,... that are indepen-
dent and identically distributed, abbreviated as iid. We will use this abbrevi-
ation throughout this book.

A.4.3 Covariance

The covariance of two random variables X and Y with expectations ux and uy,
respectively, is defined as

Cov(X,Y) = E[(X — ux)(¥ — py)] -

This is a measure for the amount of linear dependency between the variables. Let
0% = Var(X) and 0% = Var(Y). A scaled version of the covariance is given by the
correlation coefficient,

Cov(X,Y)

o(X,Y) =
Ox Oy

Below we use the notation ux = EX and 6% = Var(X). The following properties
follow directly from the definitions of variance and covariance.

1. Var(X) =EX? — u%.

2. Var(aX +b) = a?0%.

3. Cov(X,Y)=E[XY] — px py.

4. Cov(X,Y) = Cov(Y, X).

5. —oxoy < Cov(X,Y) < oxoy.

6. Cov(aX 4 bY,Z) =aCov(X,Z) + bCov(Y, Z).
7. Cov(X, X) = o%.

8. Var(X +Y) = 0% + 0% +2Cov(X,Y).

9. If X and Y are independent, then Cov{X,Y) = 0.
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As a consequence of Properties 2 and 8 we have that for any sequence of inde-

pendent random variables X, ..., X,, with variances 0%,...,02,
Var(a1 X7 + aaXa + -+ + ap, X)) = a% 0‘1? + ag Ug +. 4 afb Ui , (A.25)
for any choice of constants aj,..., Gn.
For random vectors, such as X = (X;,...,X,), it is convenient to write the

expectations and covariances in vector notation. It will usually be clear from the
context whether we interpret X as a row or a column vector. In some cases, for
example, with matrix multiplication, we make the distinction explicit. For a random
(column) vector X we define its expectation vector as the vector of expectations

= (p1,. . pn) =(EX, .. EX,)" .
The covariance matrix X is defined as the matrix whose (z, j)-th element is
Cov(X;, X;) = E[(X; — pa)(X; — p5)] -

If we define the expectation of a vector (matrix) to be the vector (matrix) of
expectations, then we can compactly write

p=EX

and
T=E[(X-m)(X-p)7].

A.4.4 Conditional Density and Expectation

Suppose X and Y are both discrete or both absolutely continuous, with joint pdf
f, and suppose fx(z) > 0. Then, the conditional pdf of Y given X = z is given

by
Frix(ylz) = f}%%l for all y . (A.26)

In the discrete case the formula is a direct translation of (A.20), with fyx(y|z) =
P(Y = y|X = z). In the absolutely continuous case a similar interpretation, in
terms of densities, can be used (see, for example, [25, Page 221]). The corresponding
distribution is called the conditional distribution of Y given X = z, and the
corresponding conditional expectation is

>, ¥ fyix(ylz)  discrete case,

A.27
vy fyix(y|z)dy absolutely continuous case. ( )

]E[Y|X:a:]:{

Note that E[Y | X = z] is a function of z. The corresponding random variable
is written as E[Y | X]. A similar formalism can be used when conditioning on a
sequence of random variables X;,..., X, or on a o-algebra; see, for example, [5,

Chapter 9]. The conditional expectation has similar properties to the ordinary
expectation in Section A.3.1. Other useful properties (see, for example, [28]) are:

1. Tower property: If EY exists, then

EE[Y|X]=EY . (A.28)
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2. Taking out what is known: If EY exists, then

E[XY | X] = XEY .

3. Orthogonal projection: If Y is square integrable, then E[Y]|X] is the function
h(X) that minimizes E(Y — h(X))2.

A5 LP SPACE

Let (Q,H,P) be a probability space and X a numerical random variable. For
p € [1,00) define
X, = (E[X|?)?
and let
I X |loo = inf{x: P(|X| < z) =1} .

For each p € [1, 0] we denote by L? the collection of all numerical random variables
X for which || X||, < oc. In particular L! is comprised of all integrable random
variables and L? is comprised of all square integrable random variables.

The following properties of LP spaces can be found, for example, in [26, Chapter
3].

1. Positivity: | X]lp 20, and | X|, =04 X =0 (as.).

2. Multiplication with a constant: ||c X||, = |c| || X||p-

3. Minkowski’s (triangle) inequality: || X + Y|, < | X|p + 1Y lp-
1

4. Hélder’s inequality: For p,q,r € [1,00] with % + "c1} =1

XY < 1Xlp [Ylq - (A.29)

The particular case with p = ¢ = 2 and r = 1 is called Schwarz’s inequality.

5. Monotonicity: If 1 < p < ¢ < oo, then || X||p, < || X|lq.

The space L? is a linear space. The first three properties above identify || - ||, as
a norm on this space, provided that random variables that are almost surely equal
are identified as one and the same. Of particular importance is L2, which is in fact
a Hilbert space, with inner product

(X,Y)=E[XY] .

We denote the L? norm simply by || - ||, suppressing the subscript.

For random variables in L? the concepts of variance and covariance have a geo-
metric interpretation. Namely, if X and Y are zero-mean random variables (their
expectation is 0), then

Var(X) = ||X||? and Cov(X,¥)=(X,Y).

Another important use of L? spaces is in conditioning. Let X and Y be random
variables. Define K to be the space of functions of X that are square integrable.
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There exists a unique (up to equivalence) element in X that solves the minimization
program

min ||Y — K] .

Kek

This is the orthogonal projection of Y onto X, and it coincides (up to equiva-
lence) with the conditional expectation E[Y | X]; see, for example, [28, Chapter 9].

A.6 FUNCTIONS OF RANDOM VARIABLES

A.6.1 Linear Transformations

Let x = (Zy,...,2,)' be a column vector in R® and A an m x n matrix. The
mapping x — z, with z = Ax, is called a linear transformation. Now consider a
random vector X = (Xi,...,X,)T, and let

Z=AX.

Then Z is a random vector in R™. If X has an expectation vector gy and covariance
matrix Xx, then the expectation vector of Z is

pz = Apx (A.30)
and the covariance matrix of Z is
Yr=A¥Xx AT . (A.31)

If, moreover, A is an invertible n x n matrix and X has a pdf fx, then the pdf
of Z is given by
_ fx(A'z)
J2(2) = [ qex ()]

where |det(A)| denotes the absolute value of the determinant of A.

z €R", (A.32)

A.6.2 General Transformations

For a generalization of the linear transformation rule (A.32), consider an arbitrary
mapping x — g(x), written out:

zy g1(x)
I _ g2(x)
:L:'n gn iX)

For a fixed x, let z = g(x)}. Suppose that the inverse mapping g~! of g exists;

hence, x = g~!(z). Let X be a random vector with pdf fx, and let Z = g(X).
Then, Z has pdf

fx(x)
| det(Jg(x))|’

where Jg(x) is the Jacobi matrix at x of the transformation g.

fz(z) = z€R™, (A.33)
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Remark A.6.1 (Coordinate Transformation) Typically, in coordinate trans-
formations it is g~! that is given — that is, an expression for x as a function of z,
rather than g. Note that |det(J,-1(2))| = 1/|det(Jg(x))|.

A.7 GENERATING FUNCTION AND INTEGRAL TRANSFORMS

Many calculations and manipulations involving probability distributions are facili-
tated by the use of transform techniques. All such transforms share two important
properties:

1. Uniqueness: Two distributions are the same if and only if their respective
transforms are the same.

2. Independence: If X and Y are independent with transform Tx and 7Ty, re-
spectively, then the transform Tx 4y of X +Y is given by the product

Txoy(t) = Tx(t) Ty (£) .

In this section the k-th derivative of a function g is denoted by g¢*).

A.7.1 Probability Generating Function

Let X be a random variable taking values in some subset of the positive integers,
N ={0,1,2,...}, with discrete pdf f. The probability generating function of
X is the function G defined by

G(z) =Ez¥ = 2" f(z).

The power series that defines G converges for all |z| < r, for some 7 > 1. Two
useful properties are (see, for example, [9, Chapter XI)):

G("‘)(O)
x!

1. Inversion: f(z) = , €N,

2. Moment property: E[X(X —1)---(X —k+1)] = lim,1; G¥)(2), k=1,2,....

A.7.2 Moment Generating Function and Laplace Transform

The moment generating function of a random variable X with cdf F' is the
function M : R — [0, oc], given by

M(t) =Ee* = / e*dF(z) .
-0
Note that the expectation always exists, but can be +oc. For a posttive random
variable X its Laplace transform is the function L : Ry — R,, defined by
L(t) = M(—-t), t 2 0. When X has an absolutely continuous distribution with
pdf f, the Laplace transform coincides with the classical Laplace transform of the
function f.
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If the moment generating function is finite in an open interval containing 0,
then the integer moments {EX*} exist, are finite, and uniquely determine the
distribution of X. Moreover, in that case the following properties hold (see, for
example, [5]):

1. Moment property: EX* = M®)(0), k > 1.

2. Taylor’s theorem:
EXE
{
k!

M(t) =
k=0

Remark A.7.1 (Infinite Moment Generating Function) If the moment gen-
erating function is not finite in any open interval containing 0, then the sequence of
integer moments, even if they are all finite, is not sufficient to uniquely characterize
the distribution of a random variable; see, for example, [13].

A.7.3 Characteristic Function

The most general transform concept is that of the characteristic function. Every
random variable has a characteristic function. It is closely related to the classical
Fourier transform of a function and has superior analytical properties to the moment
generating function.

The characteristic function of a random variable X with cdf F', is the function
¢ : R — C, defined by

P(t) = EeX = / e'®® dF (x), teR,
or, equivalently,
o(t) = Ecos(tX) +iEsin(tX), teR.

Note that ¢(0) =1 and |¢(¢)| < 1. Some other properties are (for proofs see [5],
for example):

1. Moment property: If E}X|" < oo, then, for k = 1,2,...,n, ¢{*) is finite and
continuous on R, with

oW (t) =i*E[X* ], teR,
and so, in particular, EX* = (—i)%¢(*)(0).

2. Taylor’s theorem: If E|X|™ < oo, then, in a neighborhood of 0,

n k
B8 = 3 ()t + olt™)

k=0
3. Continuity: Let Fy, Fy, ... be asequence of cdfs, with characteristic functions
é1,02,. ... If ¢,(t) — &(t), pointwise, and ¢(t) is continuous at ¢ = 0, then

there exists a cdf F' such that F,, converges weakly (see Page 623) to F, and
¢ is its characteristic function.
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4. ¢(t) is uniformly continuous on R.

5. ¢—x)(t) = ¢x(t), t € R, from which it follows that a random variable is
symmetric around 0 (that is, X and —X are identically distributed) if and
only if its characteristic function is real-valued.

A8 LIMIT THEOREMS

Let (2, H,P) be a probability space, and let X;, X2,...,X be random variables
taking values in a metric space F with distance p and equipped with a c-algebra £.
A typical example is E = R™ with p the Euclidean distance p(x,y) = ||x — y/||; see
also [2]. Recall that for numerical random variables E = R and o(z,y) = |z — y|.

A.8.1 Modes of Convergence

We have the following definitions of the different modes of convergence of random
variables.

1. Almost sure convergence: The sequence of numerical random variables
X1,X5,... is said to converge almost surely to a numerical random variable
a.s. .
X, denoted X,,— X, if

]P’(lim anX)zl.

n—0C

2. Convergence in LP-norm: The sequence of numerical random variables
X1,Xs2,... is said to converge in LP-norm to a numerical random variable

X, denoted X,, -5 X, if
lim E|X, - X[P=0,

n=—00

or, equivalently, if lim,_, || X;, — X||p = 0, where || - ||, denotes the L? norm.
Convergence in L?-norm is often called mean square convergence.

3. Convergence in probability: The sequence X;, Xo,... is said to converge in
probability to X, denoted X, — X, if
lim P(p(X,,X)<e)=1 foralle>0.

n—oo

4. Convergence in distribution: Let Px_ be the distribution of X, and Px the
distribution of X. The sequence X, X5, ... is said to converge in distribu-

tion to X, denoted X, 4 x , if the distribution Px,_ converges weakly
to Py, that is,

lim Px_(A) = Px(A)

nN=—00

for all sets A € £ such that Px(0A) = 0, where 04 € £ is the boundary of
A. An equivalent definition is that

lim EA(X,) = Eh(X)

n—oc

= 619
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for all bounded continuous functions A : £ — R.

5. Complete convergence: A sequence of random variables X, X, ... is said to

converge completely to X, denoted X, ol , if

> P(o(Xn,X)>e)<oo foralle>0.

The most general relationships among the various modes of convergence for nu-

merical random variables are shown on the following diagram. Proofs can be found
in [2] and [3]. See also [14].

cpl.

X, B X| = [ X,25 X

X, 2 x |2 x, Y x

A.8.2 Converse Results on Modes of Convergence

1. Convergence in distribution to a constant [2, Page 24]: Let ¢ be a constant
element of F. Then,

d P
X, —c¢ = X, —c.

2. Conwergence in probability combined with uniform integrability 28, Page 131]:
= 613 Suppose the numerical random variables {X,} are uniformly integrable.
Then, for p > 1,

X, 25X = x,2x.

This includes the case where |X,,] < Y for all n with EY < oo (dominated
convergence).

3. Continuity theorem [2, Page 30]: Let h : E — E’ be a measurable function,
with (E’, £") a measurable space and F’ equipped with metric ¢’. Let Dy, € £
be the set of discontinuities of h. If P(X € Dy ) = 0 (in particular, when h is
continuous), then

X, -5 X = (X)) - h(X).
A special case is Slutsky’s theorem: if E = R? and F’ = R, then we have
(X0, Y) <, (X, ¢), where ¢ € R is a constant, implies h(X,,Y:) <, h(X,c)

for all continuous functions A : R?2 — R,

4. Finite expectation of infinite series: Let X,, > 0. If the infinite series > X,
has finite expectation, then X, Q.

5. Skorohod representation [11, Page 271]: If X, 9, X with corresponding
distributions Px,_, and Px, then there exist random variables X;, X5,..., X
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in (E,&) with distributions Px, for each n and Py, respectively, such that
X2 X,

6. Monotone convergence: Suppose EX,, exists for some n. Then, for any p > 1,
a.s. L?P
Xn /X = X /X
A.B.3 Law of Large Numbers and Central Limit Theorem

We briefly discuss two of the main results in probability: the law of large num-
bers and the central limit theorem. Both are associated with sums of independent
random variables. For details, see, for example, [3, Pages 85, 357, and 385].

Let X;,X>,... be iid random variables with expectation p. The law of large
numbers states that the sample average (Xj +---+ X, )/n is close to p for large n.

Theorem A.8.1 (Strong Law of Large Numbers) Let X;,...,X,, be iid with
expectation p. Then,

X1++Xn a.s.
_—
n

{4 as n— oo.

The central limit theorem describes the limiting distribution of the sum S,, =
X1+ -+ 4+ X,. Loosely, it states that the random sum S, has a distribution that
is approximately normal (Gaussian) when n is large. The more precise statement
is given next.

Theorem A.8.2 (Central Limit Theorem) Let X,,..., X, be iid with expec-
tation pu and variance o? < oo. Then,

g%_gﬁ—d—»YwN(O,l) as m— 0o .

In other words, for large n the random sum S, has a distribution that is approxi-
mately normal with expectation nu and variance no?. Under the extra condition
that E|X — u|? < oo, precise error bounds can be found on the standardized cdf of
Sp. Below, ® is the cdf of Y ~ N(0, 1).

Theorem A.8.3 (Berry—Esséen) Let Xy,...,X,, be iid with expectation p and
variance o2 < co. Then, for all n,
E|X: —pf

P(27R <) ol < kDL

for some constant K > 0 that does not depend on n or the distribution of X;.

sup <K

T

For a proof, see, for example, [5, Page 224]. The smallest constant K found to date
is K = 0.7056, see [27].

Theorem A.8.4 (Multivariate Central Limit Theorem) Let X,,...,X, be
11d random vectors with expectation vector g and finite covariance matriz 2. Define
S, =X1+ - +X,. Then,

STL_TﬂMi»YNN(O,E) as n — 00 .
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A.9 STOCHASTIC PROCESSES

A stochastic process or random process is a collection of random variables
{X:,t € T} on a probability space (2, H,P), where Z is any index set. The
set £ of possible values for X; (assuming this is independent of ¢) is called the
state space of the process. The index set 7 is often taken to be a countable or
continuous subset of R, and so a stochastic process is often thought of as a random
variable evolving through time, with X; representing the state of the process at
time ¢.

The distribution of a stochastic process X = {X;,t € J}, with 7 CR, is com-
pletely determined by its finite-dimensional distributions; that is, the distributions
of the random vectors (X;,,...,X; ) for any choice of n and #i,...,¢,. How-
ever, the finite-dimensional distributions do not completely determine the sample
path behavior of a stochastic process; see, for example, [3, Page 308]. Hence, ques-
tions of continuity and differentiability cannot be answered by examining the finite-
dimensional distributions alone. Processes that share the same finite-dimensional
distributions are called versions of each other. If, in addition, the processes share
the same probability space, then they are called modifications of each other.
For a consistent system of finite-dimensional distributions it is always possible to
choose a version of the stochastic process that (almost surely) has separable paths
(3, Pages 526-527]. A path {z;,t € J} is said to be separable if there exists a
countable dense subset 2 of 7, such that for each ¢ € J there exists a sequence
l1,t2, - € @ with t, — t and z;, — x;. The sample path behavior of a separa-
ble process is determined by its finite-dimensional distributions. We will assume
henceforth that we are dealing with the separable versions of stochastic processes.

B EXAMPLE A.5 (Bernoulli Process)

A basic example of a stochastic process is any collection {X;, Xo, ...} of iid random
variables. When X; ~;q Ber(p) for ¢ = 1,2,... the process is called a Bernoulli
process. Here the state space is £ = {0,1} and the index set is = {1,2,...}.
The process models the random experiment where a biased coin is tossed indefi-
nitely. The beginning of a typical sample path of the process for p = 0.5 is given
in Figure A.6.

Figure A.6 A typical sample path for a Bernoulli process with p = 0.5.

The description and study of real-valued stochastic processes that evolve over
time are facilitated by the following notions. In all cases 7 is assumed to be one
of NJZ R, or R.

A collection {H;} = {H;,t € T} of o-algebras of events, with the property that

H: € Hiqs for any s 2 0 and t € 7, is called a filtration or history. A filtration

is called right-continuous if H; = H;, def NgwiHs for all £. A filtration can be
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thought of as an increasing flow of information about some random phenomenon.
A stochastic process {X;,t € J} is called adapted to a filtration {H.} if X; is
{H:}-measurable, for every t € 7; that is, X; € H, for all {. Intuitively, H,,s <t
contains the complete history of the process up to time ¢. A random variable T € 7
is said to be a stopping time with respect to {H;} if for each ¢t € 7 the event
{7 < t} lies in H;. Intuitively, T is a stopping time if one can decide if it has
occurred by time ¢ on the basis of the information (contained in H;) up until time
t.

B EXAMPLE A.6 (Bernoulli Process Continued)

A rich variety of stochastic processes can be derived from a Bernoulli process
{X:,t =1,2,...}. For example, define So = 0 and Sz = Si—1 + X, t = 1,2,....
Process {S;} is an example of a random walk process. Let H; be the history
of the Bernoulli process up until time ¢. Note that {S;} is adapted to the fil-
tration {H;}, because all information regarding Si,...,S: can be obtained from
Xi,...,X; and vice versa. Let 7, be the first time that {S;} crosses level n, that is,
Tn, = inf{t : S¢ 2 n}. Then, 7, is a stopping time with respect to {H;}, because the
occurrence of {7, < t} can be decided upon using information about Xi,..., X
only.

A.9.1 Gaussian Property

A real-valued stochastic process {X:,t € Z} is said to be Gaussian if all
its finite-dimensional distributions are Gaussian (normal); that is, if the vector
(Xty,-..,X¢,) is multidimensional Gaussian for any choice of n and ¢, ...,t, € Z,
or equivalently, if any linear combination Z?:l b; X:, has a Gaussian distribution.
Gaussian processes can thus be thought of as generalizations of Gaussian random
vectors.

The probability distribution of a Gaussian process is determined completely by
its expectation function

He = IEXt, tc 9

and covariance function
O'S,t:COV(XS,Xt), s,tE T .

A zero-mean Gaussian process is one for which g = O for all £. The generation of
(GGaussian processes is discussed in Section 3.1.

B EXAMPLE A.7 (Wiener Process)

The Wiener process {W;,t > 0} can be defined as a zero-mean Gaussian process
with covariance function

0s¢ = min{s,t}, st20.

It forms the basis of a great variety of other stochastic processes; see Chapter 5
and Sections A.12-A.13. The Wiener process has many interesting properties and
characterizations, which are further discussed in Section 5.5.

0= 143

F 154

=177
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A.9.2 Markov Property

A stochastic process {X;,t € F} on (2, H,P), with index set .7 C R and state
space E (equipped with a c-algebra £), is said to be a Markov process if for
every s 20, t € &, and A € £ it satisfies the Markov property:

P(Xi4s € A|He) =P(Xiqs € A Xy), (A.34)

where H,; is the history of the process up until time . The Markov process is
said to be time-homogeneous if the conditional probability Ps(x, A) = P(X;ys €
A|X: = x) does not depend on ¢ for any fixed s. The function P; is called the
(s-step) transition kernel of the Markov process. When (A.34) holds for any
stopping time 7 instead of a fixed ¢, then {X,} is said to have the strong Markov
property.

The Markov property can be expressed as

(XH-S ]Xﬂ-v u g t) ~ (Xt-|-s ' Xt) ? (A35)

which emphasizes that the conditional future distributions of the sample path given
the entire sample path history are the same as those given only the present state.
In other words, for a Markov process the conditional distribution of the “future”
variable X, given the entire past of the process {X,,u < t} is the same as the
conditional distribution of X,  given only the “present” X,.

We assume from now on that the Markov process is time-homogeneous, unless
otherwise specified. Markov processes come in many different varieties, depending
on the choice of index set 7 and state space F. In most cases of practical interest
Z =Nor Ry and E C R". In addition, in many cases P; is of the form

Py(z, 4) = / el o PleA) =3 ne), (A.36)
ye yeEA

in the continuous and discrete case, respectively. Here, p;(z,y) is the transition
kernel density. In this case the finite-dimensional distributions of the Markov pro-
cess (and hence the distribution of the entire process) are determined by the family
of transition kernels {P;, ¢ > 0} and the distribution of Xy — the initial distribu-
tion of the Markov process. Namely, by the product rule (A.21) and the Markov
property the joint probability density f of any random vector (Xg, X¢,,...,Xt,)
satisfies

f($07£13 s 9I’n) - fXD(xU)ptl (moaxl)ptz—tl (./171,1'2) o 'ptn—tn_l(xn—1)$n) 3

where fx, is the density of Xy. The kernel P; can be viewed as a linear operator
f — P.f acting on suitable functions f, such that

def
Puf(@) = B2 () = [ Pila,an)f)
Here E* denotes the expectation operator under which the process starts in z at
time 0. An important property of {P;,¢ > 0} is the semigroup property:
Pt =PFP,P forallst>0. (A.37)

These are the Chapman—Kolmogorov equations.
Sections A.10 and A.11 discuss discrete-time Markov processes, often called
Markov chains, and continuous-time Markov processes in greater detail.
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A.9.3 Martingale Property

A martingale is a real-valued stochastic process X = {X;,t € J}, with 7 CR,
such that:

1. X is adapted to a filtration {H;}.
2. E|Xy| <ooforallte 7.

3. For any s <t € 7,
E[X:|Hs] =Xs, as. (A.38)

The state X; of the process can be interpreted as the fortune at time ¢ of a gambler
playing a game. In this context a martingale can be thought of as a “fair game”, in
the sense that the gambler’s fortune in the future is expected to be the same as the
gambler’s current fortune, given all the past and present information on the game.
In some cases it is important to stress the filtration {H;} and probability measure
P under which the above martingale conditions hold.

A process X is called a submartingale if (A.38) holds with “=" replaced by
“>”. An LP-(sub)martingale is a (sub)martingale for which E|X|? < oo for all ¢.
One usually distinguishes between discrete-time (7 = N or Z) and continuous-
time (7 = R, or R) martingales. The properties of continuous-time martingales
are similar to those of the discrete-time equivalents, but often additional regularity

conditions are required. We list a number of properties of martingales. For proofs,
see [7].

1. Sample path regularity: Let X = {X;,t 2 0} be a submartingale such that
t — EX; is continuous. Then, X has a modification that has right-continuous
and left-limited paths (this is automatically so if X is a martingale).

2. Maximum bound: Let {X,t =0,1,2,...} be an LP-martingale for some p > 1.
Then,

ElXn [P
xP

3
o

]P’( maxn\Xt| P> a:) <

3. Convergence: Let the process X = {X;,t =0,1,2,...} be a (sub)martingale.
If sup,, EX;" < oo, where z+ = max{z, 0}, then X converges almost surely
to an integrable random variable X .

4. Optional sampling: Let X = {X;,t > 0} be a (sub)martingale and 7, 2,...
be a sequence of stopping times such that 7, < K; for some deterministic
sequence K1, Ks,... < oo. Then, {X,,i = 1,2,...} is a (sub)martingale
with respect to filtration {H, }.

5. Optional stopping: Let the process X = {X;,t > 0} be a martingale and 7 a
finite stopping time. If X is uniformly integrable, then X, = E[X | H,] and
EX, = EX,.

6. Criterion for martingale: Let {X;,t > 0} be a process such that E|X,| < oo
and EX,; = EXy for every bounded stopping time 7 < K < 0o. Then, X is a
martingale.

7. Submartingale implying martingale: Let X = {X;,t > 0} be a submartingale
ont € [0,7]. If EXy = EXj, then X is a martingale on t € [0, 7).
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8. Martingale representation: Let {X¢,0 < ¢t < T} be a square-integrable mar-
tingale. Then there exists a unique process {¢:} adapted to {H;} such that:

(a) E [ ¢7dt < oo;

(b) X¢ = Xo+ [, ¢ dWs, t € [0,T], where {W;, ¢ > 0} is a Wiener process
adapted to {H;}.

A.9.4 Regenerative Property

A real-valued stochastic process X = {X;,t > 0} is said to be regenerative if
there exist times Ty < 71 < T» < T3 < ... of the form T,, = A + -+ + Ay,
n = 1,2,..., where the {A4;} are iid, such that conditional on X,,s < T,, the
process { X1 4¢,¢ > 0} has the same distribution as { X, 4+,¢ = 0}. In other words,
a regenerative process “regenerates” itself at times Tp,77,.... That is, given the
history of the process up to time T,,, the process after T;, behaves probabilistically
as if it has started afresh. The {7}, } are called regeneration times. When 7 = 0,
the process is called pure; otherwise, it is called delayed.

H EXAMPLE A8 (M/M/1 Queue)

The M /M /1 queueing system describes a service facility where customers arrive
at certain random times and are served by a single server. Arriving customers who
find the server busy wait in the queue. Customers are served in the order in which
they arrive. The interarrival times are iid exponential random variables with rates
A, and the service times of customers are iid exponential random variables with rates
. Finally, the service times are independent of the interarrival times. Assume that
at T, = 0 the system is empty and that mean service time is smaller than the
mean interarrival time. Let X; be the number of customers in the system at time
t. Then {X;,¢ > 0} is a regenerative process. Namely, let T} be the first time the
system becomes empty again after a service completion. The probabilistic behavior
of the process {X;} from T} onwards is exactly the same as from ¢t = 0 onwards,
even if we knew the complete history up to time T;. Let T3 be the next time the
system becomes empty after a service completion, and so on. Figure A.7 shows a
realization of this process.

X,

4l —

3t — o —

2k — o— o— —

1L — — — o

Ty =0 T, t

Figure A.7 The number of customers in an M/M/1 queue as a function of time.
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The process {1} of renewal times forms a so-called renewal process; the
corresponding {A,} are called cycle lengths. The following main property of
regenerative processes is derived from the properties of renewal processes; see, for
example, {4, Chapter 9]. A random variable A is said to have a lattice distribution
if A takes values in the lattice {a + bn,n € Z} for some values of a and b (b # 0);
b is called the period.

Theorem A.9.1 (Regeneration Theorem) Let {X,;} be a continuous-time re-
generative process with right-continuous paths and nonlattice distribution of the
cycle length with ezpectation p = EA; < co. Then, X; converges in distribution to
a random variable X, such that for all f

T
Ef(X)="E [ f(X.)ds., (A39)
®oJr,
provided that the expectation exists.

Let {X:} be a discrete-time regenerative process with cycle length distribution of
period b = 1 and expectation p = EA; < co. Then, X, converges in distribution to
a random variable X, such that for all f

T —1
EFX)=E Y f(X4), (A.40)
k=Tp

provided that the expectation exists.

In other words, if G; denotes the cdf of X; (G¢(z) = P(X; < z)), then under the mild
conditions above, there ezists a continuous cdf G such that lim;_, o, G¢(z) = G(z)
for all z.

Often G, is difficult to calculate, but G is usually much easier to find, via equa-
tion (A.39) or (A.40). Moreover, with the existence of G guaranteed, we can now
give a precise meaning to the behavior of the stochastic process “in the stationary
situation” or “in equilibrium”.

B EXAMPLE A9 (M/M/1 Queue Continued)

As in Example A.8, let X; denote the number of customers in an M/M/1 queueing
system at time ¢t. When the arrival rate is smaller than the service rate, {X;} is a
regenerative process, and hence X, converges in distribution to a random variable X
that can be interpreted as the number of customers in the system “in equilibrium”
or far into the future. Similarly, the expected steady-state number of customers in
the stationary situation simply refers to the expectation of X.

A.9.5 Stationarity and Reversibility

A stochastic process {X;,t € '} is said to be strongly stationary if the distri-
butions of the random vectors (Xy,,..., X, ) and (X¢,1s,...,Xs, +s) are the same
for any choice of n and s,t1,...,t, € Z.

A stochastic process {X;,t € '} is said to be weakly stationary if both the
expectation function {EX;} and covariance function {Cov(X, X¢1s)} do not de-
pend on t. The function R(s) = Cov(Xy, X¢+s) is then called the autocovariance
function.
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In other words, the distribution of a strongly stationary process is invariant under
time shifts (or space shifts in cases where J is a spatial index set). For weakly sta-
tionary processes the covariance function is invariant under time shifts. A strongly
stationary process is weakly stationary whenever its mean and covariance function
exist. In particular, this is the case when EX? < oo, t € 7. However, a weakly sta-
tionary process is not necessarily strongly stationary. A notable exception to this
are Gaussian processes (see Section A.9.1), as their finite-dimensional distributions
depend only on the corresponding means and covariances.

A strongly stationary stochastic process {X;} with index set Z or R is said
to be reversible if, for any positive integer n and for all ¢q,...,%,, the vector
(Xt,,...,X¢, ) has the same distribution as {(X_;,,..., X_; ). One way to visualize
reversible processes is to imagine that we have taken a video of the stochastic process
which we may run in forward and reverse time. If we cannot detect whether the
video is running forward or backward, the process is reversible.

A.10 MARKOV CHAINS

A Markov process (see Section A.9.2) with a countable index set & is called a
Markov chain. Below, we assume that the index set is either N or Z and that the
chain is time-homogeneous. Generating realizations of a Markov chain is discussed
in Section 5.2.

Recall from Section A.9.2 that the transition kernel Pi(z, A) of a general time-
homogeneous Markov process gives the probability that starting from = the chain
ends up in set A after £ discrete time steps. Of particular importance for Markov
chains is the one-step transition kernel P;. If the state space FE is countable, say
E =N, we can write its (discrete) density as

plz,y) =Pz, {y}) =P(Xpy1=vy| Xs=2), z,y€FE, teN. (A.41)

We can arrange these one-step transition probabilities in a one-step transition
matrix P with (z,y)-th entry given by p(z,y). Similarly, P; is represented by the
t-step transition matrix with (z,y)-th element p:(x,y) = Pi(z,{y}). Note that the
elements of Py in every row are nonnegative and sum up to unity. Such a matrix is
called a stochastic matrix. If additionally every column sums to unity, then the
matrix is called doubly stochastic.

By the Chapman—Kolmogorov equations (A.37), the ¢-step transition matrix is
in fact equal to the t-th power of P; that is, P, = P! It follows that if w; =
(P(X: = k}, k € E) is the row vector representing the probability distribution of
X, then

m=my P forallt=0,1,..., (A.42)

where PY is the identity matrix.

When FE' is nondenumerable, for example E = R, and P; has a density p; as in
(A.36), the one-step transition matrix is replaced by the one-step transition density
p(z,y) = p1(z,y). The Chapman—Kolmogorov equations for the transition densities
become

Deys(z,y) = / ps(z,2)pe(2z,y)dz, s,teN, z,yekFE. (A.43)
E

A convenient way to describe a discrete-state Markov chain X is through its
transition graph. States are indicated by the nodes of the graph (without the
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weight labels), and a strictly positive (> 0) transition probability p(z,y) from state
z to y is indicated by an arrow from z to y with weight p(z,y). An example of a
transition graph is given in Figure A.8.

I\‘__ﬂ
Figure A.8 A transition graph of a discrete-state Markov chain.

A.10.1 Classification of States

Let X = {X;,t =0,1,...} be a time-homogeneous Markov chain with state space
E. Let z and y be arbitrary states in E. Let T denote the time that the chain first
visits state y, or first returns to y if it started there; and let IV, denote the total
number of visits to y from time 0 onwards. We write PY(A) for P(A | Xy = y) for
any event A. We denote the corresponding expectation operator by E¥. The states
of a Markov chain are typically classified as follows.

1. A state y is called a recurrent state if P¥(T < oo) = 1; otherwise, it is called
transient. A recurrent state y is called positive recurrent if E¥T < oo;
otherwise, it is called null-recurrent.

2. A state y is said to be periodic with period 4, if § > 2 is the largest integer
for which P¥(T' = nd, for some n > 1) = 1. If § = 1, the state is said to be
aperiodic.

3. If ps(x,y) > 0 for some t > 0, then z is said to lead to y — written as z — y.
If z —» y and y — z, then = and y are said to communicate — written as
T < y. A set of states C C E is called a communicating class if, for any
pair z,y € C, z < y, and further that for every z € C thereisnoy € E\ C
such that z < y. If E is the only communicating class, the Markov chain is
said to be irreducible.

4. A set of states A C F such that >_ . ,p(z,y) = lforall z € A is called a
closed set. A state x is called an absorbing state if {z} is closed.

Recurrence and transience are class properties; that is, the elements in each
communicating class are either all recurrent or all transient. Figure A.8 shows the
transition graph of a Markov chain with three communicating classes.

A.10.2 Limiting Behavior

The limiting or steady-state behavior of Markov chains as f — oc is of considerable
interest and importance, and is often simpler to describe and analyze than the
transient behavior of the chain for fixed ¢.
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For simplicity, assume that the state space F is countable. Then, a Markov chain
{X:} is a discrete-time regenerative process, where possible renewal times are the
times when the process returns to a specific state. Irreducibility and aperiodicity
ensure, via Theorem A.9.1, that

tlilec}opt('T’y) = W(y) ’ (A44)

for some m(y) € [0,1]. Moreover, m(y) > 0 if y is positive recurrent and 7(y) = 0
otherwise. The intuitive reason behind this result is that the process “forgets”
where it was initially if it goes on long enough. Thus, provided that m(y) > 0 and
>, ™(y) = 1, the numbers {r(y),y € £} form the limiting distribution of the
Markov chain. Note that these conditions are not always satisfied. For example,
they are clearly not satisfied if the Markov chain is transient, and they may not be
satisfied even if the chain is recurrent (namely when the states are null-recurrent).
When £ = {0,1,2,...}, then the limiting distribution is usually identified with the
row vector m = (mp,#1,...). The following is proved, for example, in [4].

Theorem A.10.1 (Limiting Distribution) For an irreducible aperiodic Markov
chain with transition matriz P, if the limiting distribution m exists, then & is
uniquely determined by the solution of the constrained system of equations

T =mnP, Zwyzl, Ty 20 forall ye E. (A.45)
YEE

In fact, the solution of (A.45) will automatically be strictly positive (m, > 0).
Conversely, if there exists a row vector ™ satisfying (A.45), then m is the limiting
distribution of the Markov chain. In addition, m, > 0 for all y, and all states are
positive recurrent.

Let X be a Markov chain with limiting distribution 7. Suppose 7y = &. Then,
combining (A.42) and (A.45), we have w, = w . Thus, if the initial distribution
of the Markov chain is equal to the limiting distribution, then the distribution of
X, is the same for all ¢t and is given by this limiting distribution. For any Markov
chain, any 7 which satisfies (A.45) is called a stationary distribution, because
using 7 as an initial distribution renders the Markov chain a stationary process.

Noting that Ey p(x,y) = 1, we can rewrite (A.45) as the system of equations

Z?T(:E) plz,y) = Zw(y)p(y,m) forallz € E. (A.46)

Y

These are called the global balance equations. We can interpret (A.45) as the
statement that the “probability flux” out of « is balanced with the probability flux
into z. An important generalization, which follows directly from (A.46), states that
the same balancing of probability fluxes holds for an arbitrary set A. That is, for
every set A C E of states we have

> Y w@pley) =Y > wly)p(yw) . (A.47)

:EEAy&A IEEAy&A
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A.10.3 Reversibility

A good way to think of the global balance equations (A.46) is that they balance
the probability flux out of each state z with the probability flux into state z.
For reversible (see Section A.9.5) Markov chains a much stronger form of balance
equations holds, where the probability flux from state z to state y is balanced with
that from state y to state z. The following theorem is proved in [17, 20].

Theorem A.10.2 (Reversible Markov Chain) A stationary Markov chain is
reversible if and only if there exists a collection of positive numbers {n(z), z € E},
summang to unity that satisfy the detailed (or local) balance equations

m(z)p(z,y) ==(y)ply,z), z,ye E. (A.48)

Whenever there exists such a collection {m(z)}, it is the stationary distribution of
the process,

The following gives a simple criterion for reversibility based on the transition
probabilities. A proof can be found in [17, Page 21].

Theorem A.10.3 (Kolmogorov’s Criterion) A stationary Markov chain is re-
versible if and only if its transition probabilities satisfy

p(z1,22) p(2,%3) * + p(Tn—1, Tn) P(@Tn, 1) = p(T1,Zn) P(Tn; Tn-1) - - - p(T2, T1)
(A.49)

for all finite loops of states xy,...,Tn,T1.

The idea is quite intuitive: if the process in forward time is more likely to
traverse a certain closed loop in one direction than in the opposite direction, then
in backward time it will exhibit the opposite behavior, and hence we have a criterion
for detecting the direction of time. If such “looping” behavior does not occur, the
process must be reversible.

A.11 MARKOV JUMP PROCESSES

A Markov jump process is a Markov process (see Section A.9.2) with a con-
tinuous index set and a discrete (that is, countable) state space E. Generating
realizations of a Markov jump process is discussed in Section 5.3. For simplicity
we assume that the Markov jump process is time-homogeneous and that the index
set is either R or R.. Let pi(z,y) = Pi(z, {y}) = P(X¢ = y| Xo = z) denote the
transition probability from z to y in ¢t > 0 time units. Similar to a Markov
chain with a discrete state space, we can arrange the transition probabilities into a
matrix (p¢(z,y)). With a slight abuse of notation we will also write this matrix as
P.. We will call the family {F;,t > 0}, or P; viewed as a function ¢, a transition
function. It is said to be standard if lim;)o P» = I (the identity matrix) and
honest if P,1 = 1 for all ¢, where 1 is a column vector of ones. We will consider
only standard transition functions.

The analogue of the one-step transition matrix for Markov chains is the Q-
matrix defined as

Q:P[;:limpt_l.

tlo ¢ (A.50)

=" 166
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The (x,y)-th entry (x # y) of @, denoted g(z,y), is called the transition rate
from z to y. The z-th diagonal entry, q(x, z), is written as —g,. It can be shown
[1] that

(8) 0<q(z,y) < o0, x #y,

(b) 22,0 9(2,y) < Gz

A state z is said to be stable if g, < o¢; and instantaneous if g, = o0, If g, = 0
the state x is called absorbing.

A Markov jump process is usually defined by specifying a matrix @@ that satisfies
the properties (a) and (b) above. Such a matrix is again called a @Q-matrix. It is
said to be stable if all the states are stable, uniformly bounded if sup_ ¢, < o0,
and conservative if 1 = 0. Finally, ) is called regular if it is conservative and

RQz=Xz, —-1<z<1forall?,

has the unique trivial solution z = 0 for all A > (. The following theorem is proved
in [1].

Theorem A.11.1 (Sample Path Behavior) For each stable and conservative
Q-matrix there exists a Markov jump process X whose paths are right-continuous
step functions up to a certain random time T,. Moreover, the sample path behavior
up to T can be described as follows:

1. Given its past, the probability that X jumps from its current state = to state
y 15 K(z,y) = q(z,y)/qa-

2. The amount of time that X spends in state y has an Exp(q,) distribution,
mmdependent of the past history.

A typical sample path of X is sketched in Figure A.9. The process jumps at times
T1,T5, ... to states Y1, Ys, ..., staying an exponentially distributed length of time
in each state.

Xt
|
Ys | -~
Y1 L ~—
Y L > —
Yo
1 1 | - L
0 T Ts T3

Figure A.9 A sample path of a Markov jump process { X, t = 0}.

The first statement of Theorem A.11.1 implies that the process {Y,,n € N} is
in fact a time-homogeneous Markov chain, with one-step transition matrix K ==
(K(x,y)). This Markov chain is called the embedded Markov chain or the
jump chain.
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A convenient way to describe a Markov jump process is through its transition
rate graph (see, for example, Figure A.10). This is similar to a transition graph
for Markov chains. The states are represented by the nodes of the graph, and a
transition rate from state x to y is indicated by an arrow from z to y with weight
q(z,y).

Classification concepts such as irreducibility, communication, recurrence, and
transience are defined in the same way as for a Markov chain; see Section A.10.1.
Note, however, that there is no concept of periodicity for Markov jump processes.

B EXAMPLE A.10 (Birth and Death Process)

A birth and death process is a Markov jump process with a transition rate graph
of the form given in Figure A.10. Imagine that X; represents the total number of
individuals in a population at time ¢{. Jumps to the right correspond to “births”,
and jumps to the left to “deaths”. The birth rates {b;} and the death rates
{d;} may differ from state to state. Many applications of Markov chains involve
processes of this kind.

f)n fh bg

d 1 d;} I’J{;_q

Figure A.10 The transition rate graph of a birth and death process.

Note that the process jumps from one state to the next according to a Markov
chain with transition probabilities Ko1 = 1, K, ;41 = b;/(b; + d;) and K, ;1 =
d;/(b; +d;), i =1,2,.... Moreover, it spends an Exp(by) amount of time in state 0
and an Exp(b; + d;) amount of time in state ¢ # 0.

Theorem A.11.2 (Kolmogorov Equations) Any transition function Pp with
conservative Q-mairic Q) satisfies the Kolmogorov backward equations:

P=QP, t>0. (A.51)

This is easy to see when P; and @ are finite-dimensional, as, by the Chapman—
Kolmogorov equations (A.37), limp o(Piyr — Pr)/h = limp o P, — I)/A P, = QF;.
In a similar way, finite-dimensional transition functions satisfy the Kolmogorov
forward equations:

P/=PQ, t=0. (A.52)

The proof for infinite-dimensional transition functions is not as straightforward
and requires certain regularity conditions on ¢ — for example, () being conser-
vative, as in Theorem A.11.2. Indeed, for some transition functions the forward
equations may not hold at all. However, a converse result to the above theorem is
as follows [1, Page 70].



638 PROBABILITY AND STOCHASTIC PROCESSES

Theorem A.11.3 (Minimal Transition Function) For any stable Q-matriz Q
there exists a transition function PM that is the solution to both the backward and
forward equations and is minimal in the sense that PM < P; for any other solution
P; of either the backward or forward equation. If PM is honest, it is the unique
solution to the backward and forward equations.

The Markov jump process with P as its transition function is called the minimal
Q-process and corresponds to the Markov jump process X in Theorem A.11.1.

For a Markov jump process we usually only have knowledge of the Q-matrix @,
and so directly verifying whether or not PM is honest may not be easy or even
possible. However, it is often possible to determine the honesty of PM indirectly
via inspection of @, as is seen from the following theorem [1].

Theorem A.11.4 (Regular Q-matrix) IfQ is regular then the minimal solution
to the Kolmogorov backward equations is honest, and is therefore the unique solution
to the forward and backward equation. In particular, this is the case when Q is
conservative and uniformly bounded.

In most applications the Markov jump process is defined by a conservative uni-
formly bounded @Q-matrix (in particular, when the Q-matrix is of finite dimensions).
The transition matrix (function) is then the unique solution to the Kolmogorov dif-
ferential equations, and can be written in matrix-exponential form as

oo tk k
p=c=y L9

k!
k=0

A.11.1 Limiting Behavior

The limiting behavior of Markov jump processes is akin to that of the Markov
chains discussed in Section A.10.2.

Theorem A.11.5 (Limiting Distribution) Let {X;,¢ > 0} be an irreducible
Markov jump process with reqular Q-matriz Q. Then, irrespective of x,

tlim PX;=y|Xo=2)=n(y), (A.53)
for some number w(y) > 0. Moreover, the row vector m = {m(y)} is the solution to

wQ =0, Z m(y) =1, (A.54)

yckE

provided such a solution exists, in which case all states are positive recurrent. If
such a solution does not extst, then m = 0.

As in the Markov chain case, 7 defines the limiting distribution of X. Any
solution 7 of (A.54) with > w(y) = 1 is called a stationary distribution, be-
cause taking it as the initial distribution of the Markov jump process renders the
process stationary. Equations (A.54) are, as in the Markov chain case, called the
global balance equations, and can be written as

ZT((.’C) g(z,y) = Zw(y) q(y,z) forallz e £, (A.55)
yFx yFET
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balancing the “probability flux” out of  with that into z. The global balance equa-
tions are readily generalized to (A.47), replacing the transition probabilities with
transition rates. More importantly, if the process is reversible then the stationary
distribution can be found from the detailed balance equations:

m(z) q(z,y) = n(y)aly.z), z,y€E. (A.56)

Reversibility can be easily verified by checking that “looping” does not occur, that
is, via Kolmogorov’s criterion (A.49), replacing the probabilities p with rates gq.
The criterion in this case is thus given by

Q(ﬁlyxz) (I(332,933) . 'Q($n—1,$n) Q(%nzl) = Q(331793n) Q(95n7$n~1) o ‘Q($27$1)

for all finite loops of states x1,...,Zn, Z1.
B EXAMPLE A.11 (M/M/1 Queue Continued)

Let X; denote the number of customers in an M/M/1 queueing system at time
t > 0; see Examples A.8 and A.9. The process {X;,¢ > 0} is an irreducible birth
and death process with birth rates A and death rates p. The system of equations
(A.54) has a unique solution

m(y) =1 —-0¢¥, y=01,2,..., (A57)

where ¢ = A/u, if and only if p < 1. For A < u all the states are therefore positive
recurrent. Note that any birth and death process is reversible. As a consequence
(A.57) can be found directly from the local balance equations

Ty A=ay+1p, y=01,....

Theorem A.9.1 shows that for p < 1 the steady-state expected number of customers
in the system is EX = g/(1 — p).

A.12 1TO INTEGRAL AND ITO PROCESSES

An important class of stochastic processes — that of It6 processes — is con-
structed from the Wiener process via the notion of the Ito integral. The Wiener
process is discussed in more detail in Section 5.5, but here we only consider its
role in Ito integration. The Itd integral provides the mathematical justification of

integrals of the form
T
/ Ft th )
0

where W = {W,} is a Wiener process and ' = {F;} is a stochastic process. In its
simplest form the It6 integral is defined for processes F' that are predictable [18]
with respect to the history of W and satisfy

T
IE/ F2ds < oo. (A.58)
0

B 177
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We will denote this class of integrands by #%. A sufficient condition for pre-
dictability is that the process is left-continuous and adapted — so, F; may depend
on {W,,s < t} but not on {Wy,s > t}. Let t < T and F € 5%. The Ité integral
of F' with respect to W over [0,t] is defined as

f F,dW, ¥ lim ZFtk(WtM—Wtk), O=to<---<th=t, (A.59)

where lim,_ o maxg{tx+1 — tx} = 0, and the convergence is in the mean square
sense (see Section A.8.1).

Remark A.12.1 (Stochastic Integral) The Ité integral is an example of a
stochastic integral. The general theory of stochastic integration [21, 23] allows
{W,} to be replaced by semimartingales — processes that can be decomposed as
the sum of a (local) martingale and a process of finite variation — and the integrand
process {F;} by predictable processes that satisfy weaker conditions than (A.58).
In particular, it can be shown that the limit (A.59) still exists, but in probability
rather than in the mean square sense, if (A.58) is replaced by

T
f F?ds< oo as. (A.60)
0

An It process is any stochastic process { Xy, 0 < t € T} that can be written
in the form

t ¢
thXO—{—f usds—{—/adeS, 0t T,
0 0

where {u.} is adapted, with fép |e]dt < oo and {o:} € 4. The above integral
equation is usually written in the shorthand differential form

dXt = Uy d¢ + (X3 th . (AG].)

Note that the coefficients p; and oy may depend on the whole path {W,, s < t}.
An m-dimensional Ité process {X,} = {(Xtvl,...,Xt’m)T} driven by an n-
dimensional Wiener process {W,;} = {(W;1,...,Wi,)T} can be defined analo-
gously via the differential expression

7
dXt’i = M dt + th,ij thJ’ i= 1’ e, M,
7=1

written in matrix—vector notation as

dxt = I“l‘t dt + Ty th , (A62)
where
Ht 1 11 0 Jtln
H: = E and gy =
Ht,m Tt,ml 7 Ttmn

An Itd process is an example of a semimartingale. As a special case of the
general theory of stochastic integration with respect to such processes one may
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define integration with respect to Itd processes. In particular, (see, for example,
[18]) if X = {X.} is an ItO process and F = {F}} € 4%, then the stochastic integral
of I with respect to X is defined as:

t t
deXs“iffFSusds+/FsadeS, 0<t<T.
0 0 0]

Let X = {X:} and Y = {Y;} be two processes adapted to the same filtration.
Then,

n—1
[X Y] nlLII;OZ th+1 th)(}/;«lﬂ»l }/tk) )
k=0
where 0 = tp < +-+ < t, =t and lim, oo maxg{tgy1 - tx} = 0, is called the

covariation between the processes X and Y. The special case [X, X];, denoted
[X]¢, is called the quadratic variation of X.

Below we list a number of properties of [t0 integrals and Itd processes. Proofs
may be found in [23], for example.

1. Isometry property: If F.G € %, then for any 0 <t < T,
i t i
IE] FodW, GdeS:IEf F;Gsds.
0 0 0
2. Martingale property: If F' € 5, then the 1t6 process defined by

I
YtZ/ FodWs, 0<t<T,
0

is a square-integrable martingale.

3. Quadratic variation and covariation: Let dX; = pu,dt + o, dW, and dY; =

vy dt+ o, AW, define two Itd processes with respect to the same Wiener process
{W:}. Then,

1
[X,Y]t:f O'SQSdS.
0
In shorthand differential form the covariation and the quadratic variation are

dX,Y]: =010 dt and d[X]; = oZdt, respectively.

4. Covariance for multivariate It process: Let {X;} be an m-dimensional It6
process. Then using the formal rules (see [18]) (dt)? = dtdW;,; = 0 and
dW, ; dW, ; = d;; dt, where ¢;; = 1 if i = j and 0 otherwise, we can write:

AX. 0 Xl =dX;dX; = oriporgedt, ije{l,...,m}.
k=1

5. Itd’s lemma: Let dX; = p, dt + o, dW; define an It6 process and let f(z) :
R — R be twice continuously differentiable with first and second derivatives
f" and f”, respectively. Then,

f(X) = f(Xo) f F(Xs)dX, + = f (X)) o2 ds (A.63)
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or, in differential form:
1
df (X)) = f'(Xe)dX, + 5/ (X0) oidt.
Compare this with the corresponding chain rule of ordinary calculus:
df (z(t)) = f'(=(t)) dz(2).

Ité’s lemma in R™: Let {X;} be an m-dimensional It6 process, and f : R™ —
R be twice continuously differentiable in all variables, then

f(Xe) = Za F(X)dXe,; + = ZZazjf(xt) d[X.;, X ;s - (A84)
=1 j=1
A special case is the product rule for It processes:
d(X:Y:) =Y dX; + XedY; +d[X, Y], . (A.65)

The corresponding integral form is the [t6 integration by parts formula.
Another special case is Xy = (X, t)", where ¢ (> 0) is deterministic and the
process {X;} is governed by dX; = ¢ dt + ¢ dW;. Then,

2
AF (Xt = (G000 + gl (%) + "—ti——oct)) at+ o L x)aw, .

(A.66)

Gaussian process for deterministic integrands: If f(t, s) is a nonrandom func-
tion with fo F2(t,8)ds < oo for any 0 < t < T, then the [t6 integral

Y, = [0 £(t,s)dW, (A.67)

defines a Gaussian process {¥;,0 < ¢t < T} with mean zero and covariance
function

min{s,t}
Cov(Ys, i) = f £(b,0) f(5,) du
0

Note that, unless f(¢,s) = f(s), {Y;} need not be a martingale. If f(¢,s) =
f(s), then by the integration by parts formula we also have

Y, = Wif(t) - fo W, df(s)

Time-change: Let {W,} be a Wiener process and define Z; = W¢,, ¢t 2 0, for
some given deterministic function C; = fo f%(s)ds < oo for all t < 7. Then,
the stochastic process {Z;,0 < ¢t < T} has the same distribution as the Ito
integral process {Y;} defined in (A.67) with f(t,s) = f(s).

Girsanov’s theorem: Let dX, = p,dt + dW, define a multidimensional
It6 process under probability measure P with respect to a filtration F =
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{Fi,t 2 0}. Assume that {g,,t = 0} satisfies Novikov’s condition:
Eexp(3 fot pt g, ds) < co. For each ¢ > 0 define

¢ 1/t
M; = exp (f u.;r dW, — if u.;ru.s ds) .
0 0

Then {M;,t > 0} is a martingale with respect to F. For a fixed T > 0 let Pr
denote the restriction of P to Fp. Define a new measure Pt by

I?F”T(A) =ErMrly, Ae Fr s

so that ~
Pr(A) =Epls/Mr.

Then under ﬁT the process {X;,0 < ¢ < T} is a Wiener process.

Remark A.12.2 (Stratonovich Integral) Let W be a Wiener process and X €
. For any 0 <t < T let

t n—1
. X + X
fXSodWSd:f hmE:M(th—Wtk), O=ty<- <tpn=t,
0

n—oo — 2

where limy,_, o maxg{tx+1 — tx} = 0 and convergence is in the mean square sense.
This defines the Stratonovich integral of X with respect to W over [0,¢]. This
integral does not in general define a martingale, and therefore most of the prop-
erties above do not directly apply. However, the Stratonovich integral has the
advantage that it formally obeys the standard calculus formulas. In particular,
for a three times continuously differentiable function f, the Stratonovich integral
formally satisfies the ordinary chain rule

df(Xt) = f’(Xt) e} dXt .

A.13 DIFFUSION PROCESSES

Let {W;} be a Wiener process, and a(xz,t) and b(z,t) be deterministic functions.
A stochastic differential equation (SDE) for a stochastic process {X;} is an
expression of the form

dXt = Q(Xt,t) dt+b(Xt,t) th . (A68)

The coefficient a is called the drift and 5% (or sometimes b) the diffusion coefficient.
When e and b do not depend on ¢ explicitly (that is, a(z,t) = @(x), and b(z,t) =
b(x)), the SDE is said to be autonomous or homogeneous. When a and b are
linear in z, the SDE is said to be linear.

Intuitively, the process { X;} is specified by a “noisy ODE”, relating its derivative
at t to a function of its present value X; and an additional noise term. Mathemat-
ically, {X:} is the solution to the integral equation

t t
X = Xy +f a(Xs,s)ds +f b(Xs, s) dW, , (A.69)
0 0
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where the last integral is defined in the It6 sense. Note that when b = 0, we obtain
an ordinary differential equation.

Remark A.13.1 (Diffusion-Type SDE) Although SDEs of the type above are
by far the most common, it should be noted that there exist more general SDEs
[18, 19], where, for example, a and b depend on the whole history of {X,,s < t}
rather than only on ¢ and X;. The special case (A.68) is also referred to as a
diffusion-type SDE.

A stochastic process {X;} is said to be a strong solution to the SDE (A.68) if
X is a function of ¢ and the underlying Wiener process {W,, s < t}, and satisfies
(A.69). Tt is called a weak solution if (A.69) holds for some Wiener process.

The following theorem gives conditions for existence and uniqueness of strong
solutions on an interval [0,T]. A proof can be found, for example, in [19].

Theorem A.13.1 (Existence and Uniqueness of Strong Solutions)
Suppose the following conditions are satisfied:

1. Linear growth condition: There is a constant C such that for allt € [0,T]

la(z,t)| + |b(x,t)| < C(Q + [z]) forallx. (A.70)

2. Local Lipschitz continuity in x: For every K > 0 there is a constant Dk
such that for allt € [0, T

la(z,t) — aly, )| + [b(z,t) — by, )| < Dxlz —y| forallz,ye[-K,K].
(A.71)

3. Xo is independent of {W:,0 <t < T} and has finite variance.

Then the SDE (A.68) has a unique strong solution on [0,T). In addition, the
solution has almost surely continuous paths, is a strong Markov process, and

Jy EX2ds < oo.

The linear growth condition ensures that each path of the SDE does not “ex-
plode”; that is, the path does not tend to oo within a finite interval of time.
Note that a similar condition is required for ordinary differential equations. For
example, the differential equation dx(¢) = 2%(¢) dt, (0) = a has a “local” solution
x(t) = a/(1—at) on the interval [0, 1/a) rather than a “global” solution on R.. Re-
moving Condition 1 still gives a unique strong solution, but only up to a (random)
time of explosion.

Local Lipschitz continuity ensures that solutions of SDEs can be constructed via
an iterative procedure, similar to that for ordinary differential equations (Picard it-
eration [23]). As a measure of smoothness of a function, this condition lies between
continuity and differentiability. In particular, if @ and b are continuously differen-
tiable in x, or, more generally, if their derivatives in x are uniformly bounded on
[0, 7], then they satisfy (A.71).

Weak solutions to the SDE (A.68) exist under slightly more general conditions;
see for example [23]. In particular, if for each t the functions a and b are bounded
and continuous in z. Such solutions are only defined through their probability
distributions, rather than pathwise via the Wiener process W.
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B EXAMPLE A.12 (Linear SDE)
For a linear SDE
dX; = (o + Be Xe) dt + (4 + 6: %) AWy,

the (strong) solution can be given explicitly as the product X; = U; V;, with

t t
U, = exp {/ (BS ~ %53) ds +f & dWS} ,
0 0

tas_75 t’Y
Vi=X 8 1878 18 ..
t 0+]0 i der_/0 USdW

In particular, if ; = 0 and 3; = 3 (constant), then

t i
X, = et (Xo +f e ?a,ds +/ ey, dWs) \
0 0

and {X;} is therefore a Gaussian process, provided that the distribution of Xy is
Gaussian (this includes the case where X, is a constant). See [19, Pages 110-113]
for more details.

A solution {X;} to (A.68) or, more precisely to (A.69), is called a diffusion pro-
cess, or, more specifically, an Itdé diffusion. From Theorem A.13.1, It6 diffusions
are Markov processes with continuous paths. Let X = {X,} be an It6 diffusion with
drift and diffusion coefficients @ and b2, respectively. The meaning of these terms

becomes clear when counsidering the infinitesimal behavior of X. In particular, by
(A.69),

t+h t+h
Xt+h —Xt :[ (I(XS,S) d3+f b(XS,S) dWS .
i t
Taking the conditional expectation given X; = z on both sides yields
E[Xiyr —2| Xy =z]| =0alz,t) b+ o(h),

since the expectation of the second integral in the above integral equation is 0,
due to the martingale property of the 1t6 integral. Similarly, using the isometry
Property 1 on Page 641,

Var(X; h—z| X; = z) = E[(X¢yn—z—a(z,t) h)? | X; = z]+0(h) = b*(z,t) h+o(h) .

In other words, given that the process is at position x at time ¢, the displacement
of X in the next h < 1 time units has expectation a(z,t)h and variance b?(z,t)h.

Remark A.13.2 (Boundary Behavior) We have considered only diffusions on
the whole real line. Diffusions on a half-line or intervals are also possible. For
such processes the behavior at the boundary needs to be specified, in addition to
the behavior in the interior of the domain described by the SDE. See, for example
8, 16].

The analogue of (A.68) in R™ is given by the multidimensional SDE
dXt = a(Xt,t) dt + B(Xt, t) th y (A72)
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where {W,} is an n-dimensional Wiener process, a(x, ) is an m-dimensional vector
(the drift) and B(x,t) an m x n matrix, for each x € R™ and ¢ € R. The m xm
matrix C = BB is called the diffusion matrix.

As with the one-dimensional case, existence and uniqueness of strong solutions
to multidimensional SDEs relies on certain Lipschitz and linear growth conditions.
In particular, we have the following multidimensional version of Theorem A.13.1
(see [18, Page 173]):

Theorem A.13.2 (Strong Solutions of Multidimensional SDEs) Suppose

the following conditions are satisfied, where for a matriz A, ||A|| Lef tr(AAT):
1. Linear growth condition: There is a constant C such that for all t € [0, 7]

la(x, )|l + | B(x,t)| < C(1 + |x||) forallx. (A.73)

2. Local Lipschitz continuity in x: For every K > 0 there is a constant Dy
such that for allt € [0, T

la(x,t)—a(y, t)|| +1|B(x,1) = B(y, )|l < Dkl[x—yl  for all |x[}, Iyl < K .

(A.74)
3. Xg is independent of {W;,0 <t < T} and E[|Xp]|? < oc.
Then the SDE (A.68) has a unique strong solution on [0, T).
A.13.1 Kolmogorov Equations
For autonomous SDEs, that is, those of the form
dX; = a(X;)dt + b(X;) dW, , (A.75)

the corresponding diffusion process is a time-homogeneous Markov process. The
corresponding transition kernel P; can be found from the Kolmogorov backward
(and under more restrictive conditions) from the Kolmogorov forward equations.
To see this, let L be the linear elliptic differential operator

Lf(z) = a(@) '(z) + 5t*(z)/" () (A.76)

acting on all twice continuously differentiable functions on compact sets. Then, by
1td’s formula,

M )~ 10%0) - [ LX) ds
0

defines a martingale on [0,T]. In particular, denoting by E® the expectation oper-
ator under which the process starts at x, we have

B°f(X) = fla) + [ E*Lf(X.)ds, (A77)

where the interchange of expectation and integral is allowed by Fubini’s theorem.

It follows that I
Lf(z) = lim f(Xe) = J(=)
tl0 t

(A.78)
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The limit in (A.78) also defines the infinitesimal generator of the Markov pro-
cess. The domain of the infinitesimal generator consists of all bounded measurable
functions for which the limit exists — this includes the domain of L, hence the
infinitesimal generator extends L. Let P, be the transition kernel of the Markov
process and define the operator F; by

Pf(z) = f By, dy) f(y) = E* £(X,) -

Then, by (A.77), we obtain the Kolmogorov forward equations:
P/f=PLf. (A.79)

Moreover, by the Chapman-Kolmogorov equations we have Py, f(z) = PP, f(z) =
E*P, f(X;), and therefore

1 1
3 {Prysf(z) — Pif(z)} = 3 {E*P, f(Xs) — Pof(x)} .
Letting s | 0, we obtain the Kolmogorov backward equations:
P/f=LPf. (A.80)

If P, has a transition density p;, then we can write the last equation as

o pi(z,y) fy) dy =prt($,y)f(y) dy ,

so that p;(x,y) for fixed y satisfies the Kolmogorov backward equations:

15}
Ept(a:, y) = Lpy(z,y)
5 (A.81)

3} 1 19}
= a(x) apt(ﬂh y) + 2 52(17)@1%(93, y) -

Similarly, (A 79) can be written as & [p,(z,y)f(y)dy = [pe(a,y)Lf(y)dy =
[ f(y)L*py(x, y) dy, where L* (acting here on y) is the adjoint operator of L de-
fined by [ g(y)Lh(y)dy = [ h(y)L*g(y)dy. Hence, for fixed z the density p;(z,y)
satisfies the Kolmogorov forward equations, also called the Fokker—Planck equa-
tions:

)
apt(:c, y) = L*ps (2, )

=~ D nla) + 5 5 (FW)plew)

(A.82)

Sufficient conditions on a(x) and b(z) such that p,(x,y) exists and is the unique
solution to the forward and backward equations are that a(z) and b(x) have partial
derivatives up to order two, which are bounded and satisfy a Lipschitz condition;
see also [18]. This illustrates the important connection between partial differential
equations of the form «, = Lu; and diffusion processes. Indeed, given an elliptic
operator L, the pdf of the corresponding diffusion process gives the fundamental so-
lution (Green'’s function) of the partial differential equation — see also Chapter 17.

b= 577
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Remark A.13.3 (Operators for Multidimensional SDEs) For multidimen-
sional SDEs of the form (A.72) the infinitesimal generator extends the operator

m mom 2
L) = Yol 5 100+ 5 Y3 Culo) 5o,

i=1 i=1 j=1

where {a;} are the components of a and {C;;} the components of C = BB .

A.13.2 Stationary Distribution

Consider again the diffusion governed by the autonomous SDE (A.75). Suppose
that

m(y) = /pt(cv,y) m(z)dz,

where p, is the transition density of the diffusion. Then #(x) is called a stationary
or invariant density of the diffusion (A.75). If the initial state X has density
w(x), then {X;,¢ > 0} is a stationary process.

Theorem A.13.3 (Stationary Distribution) If the stationary density of
(A.75) exists and is twice continuously differentiable, then it solves the ODE

D=0 & 5oz () ) - 5 (@00 7)) =0,

where L* is the adjoint operator in (A.82). The stationary density that solves the

ODE is of the form
c “ 2a(y)
R P ( m dy) ’

where Tq is an arbitrary constant and c is a constant such that [ w(y)dy = 1.

For a rigorous discussion of the conditions for existence of 7, see [22].

Loosely speaking, if the diffusion process is in the stationary regime, its distri-
bution does not change in time. Hence, the transition density p; is independent
of time and the partial derivative with respect to ¢ in (A.82) is zero, giving the
equation L*m = 0 satisfied by the stationary density.

A.13.3 Feynman—Kac Formula

The Feynman-Kac formula establishes an important relationship between stochas-
tic processes and linear parabolic PDEs. The result can be used to approximate
the solution of a PDE via Monte Carlo methods. Alternatively, conditional expec-
tations of a diffusion process can be computed by solving a PDE, see Chapter 17.
For each t > 0 let L; be the linear elliptic differential operator
L _ d 1., 9*
cu(z, t) = a(w,t)ggu(:c, t) + 5 b*(z, t)@u(:c, t)

acting on all twice continuously differentiable functions on compact sets.
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Theorem A.13.4 (Feynman—Kac Formula) Let k(z,t) and f(z) be bounded
functions and let the process {X:,0 <t < T} evolve according to (A.68). Assume
that the solution to the PDFE

(Lt-}-%—k(u"(?,t)) U(-"L',t):(]» IER, te [OaT] y

with final condition u(z,T) = f(x) exists. Then, the solution is unique and gwen
by
u(z,t) =E [e_ I k(XS’S)de(XT)‘ Xy = :z:] , telo,7T].

We explain why the formula is plausible (for a detailed treatment see [10, 22]).
Define the process {Y;} via ¥; = e~ Jo ¥(Xs:5)ds  Then, applying the Ité formula
(A.66) we have

d(Yy u(Xs,t) = Y, ((Lt n % - k(Xt,t))u(Xt,t) dt + b(Xy, t) %(Xt,t) th) .

Since u is the solution to the PDE, the drift term is 0. Since Y; is bounded by
assumption, it can be shown [10] that existence and uniqueness of the solution of

the PDE implies that fOT E|Y; u(X:,t)] < oo. Therefore, the process
! Ju
Yy u(Xy,t) = / Y b(X o, ) o0 (X, 5) W,
0

is a martingale. Using the Markov property of the SDE (see Theorem A.13.1) and
the final condition we obtain

Yiu(Xi,t) =E[Yru(Xp,T)| X,, 0< s < t) =E[Yr f(X7)| X4],

which after rearrangement yields the desired result. For multidimensional analogues
of the Feynman-Kac formula see Chapter 17.

A.13.4 Exit Times

Diffusion processes are often studied through their exit times from an interval.
Below we assume that {X,} is a homogeneous diffusion process defined by the SDE
(A.75) and satisfying the existence and uniqueness conditions of Theorem A.13.1.

Let [I,r] (with I < 7) be an arbitrary interval, and let 7; and 7, be the first times
that the process hits [ and r, respectively. Let 7 = min{n, 7.} = 71 A7 be the first
exit time from the interval [, r].

The following results may, for example, be found in [18]. Central in the proof is
the fact that, by It6’s lemma, the process {M;} defined by

tAT
M; = f(Xinr) — / Lf(X,)du is a martingale.
0

Theorem A.13.5 (Exit Times) Let the diffusion coefficient b(z) be a strictly
positive and continuous function on [l,r], and let f be any twice continuously dif-
ferentiable function. Then the following holds:
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1. The function s given by s(x} = E®r satisfies the differential equation
Ls=-1, with s(I})=0, s(r)=0,
where operator L is given in (A.76).

2. Any nonconstant positive solution of Lh = 0 is of the form

T Yy 2
h(z;zo,y0) = / exp (—— a(u) du) dy ,

zo wo b¥(w)

for some arbitrary constants xo,yo. These are called harmonic functions for
L.

3. For any such harmonic function,

h(r) — h(z)

]P-T(Tl < Tr) = m .

Further Reading

An easy introduction to probability theory with many examples can be found in
[25]. More detailed textbooks include [11] and [28]. Classical references on probabil-
ity theory are [5] and [9]. A good non-measure-theoretic introduction to stochastic
processes is [24]. A detailed treatment of Markov processes can be found in [7], and
a handy text on Markov processes with countable state spaces is [1]. An accessible
measure-theoretic introduction to probability theory, including stochastic processes,
can be found in [3]. For many examples in probability theory and stochastic pro-
cesses, see Feller’s two volumes [8, 9]. Other good references for stochastic processes
are [4, 15, 16], and the classic [6].
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