
Lecture notes

Stochastic Simulation

Fabio Nobile

A.Y. 2023-2024
Last update: January 21, 2024

2

Contents

1 Uniform Pseudo Random Number Generation 5

1.1 Some common uniform Pseudo-RNG . 6

1.2 Empirical tests for RNG . 8

1.2.1 Non-parametric Goodness-of-Fit Tests 8

1.2.2 Empirical tests for independence 11

2 Random Variable Generation 13

2.1 Inverse-transform method . 13

2.2 Composition method . 15

2.3 Alias method . 15

2.4 Acceptance-Rejection method . 16

2.4.1 Squeezing . 19

2.4.2 Adaptive AR for log-concave densities 19

2.5 Ad Hoc methods . 20

2.5.1 Box-Muller method . 20

2.6 Multivariate Random Variable Generation 21

2.6.1 Independent components . 21

2.6.2 Generation from conditional distributions 22

2.6.3 Generation by transformation using copulas 22

3 Generation of Gaussain processes 25

3.1 Generation of multivariate Gaussian random variables 25

3.2 Generation from conditional Gaussian distribution 26

3.3 Gaussian process generation . 28

3.3.1 Wiener process (Brownian motion) 29

3.3.2 Brownian bridge . 30

3.4 Stationary Gaussian processes / random fields 31

4 Generation of Markov processes 35

4.1 Discrete time / discrete state Markov chains 35

4.2 Discrete time / continuous state Markov chains 36

4.3 Continuous time / discrete state Markov chains 37

4.4 Poisson process . 38

4.5 Non-homogeneous Poisson process . 40

3

4 CONTENTS

4.6 Compound Poisson process . 41
4.7 General continuous time / discrete space Markov process 41

5 Monte Carlo method 45
5.1 Confidence intervals . 45
5.2 Implementation aspects . 47
5.3 Non asymptotic error bounds . 49
5.4 Vector valued output . 50
5.5 Smooth functions of expectations and delta method 50
5.6 Monte Carlo to compute integrals . 51

6 Variance Reduction Techniques 55
6.1 Antithetic Variables . 56
6.2 Importance Sampling . 59

6.2.1 On the choice of the importance sampling distribution g 61
6.2.2 Weighted importance sampling . 64
6.2.3 Importance sampling for stochastic processes 64

6.3 Control variates . 68
6.3.1 Multiple control variates . 70

6.4 Stratification . 71
6.4.1 Proportional allocation . 73
6.4.2 Optimal allocation . 75

6.5 Latin Hypercube Sampling . 75

7 Quasi Monte Carlo methods 79
7.1 Low discrepancy sequences and point sets 82
7.2 Randomized QMC formulas . 85

8 Markov Chain Monte Carlo 89
8.1 Markov Chains on discrete state spaces (review) 90

8.1.1 Metropolis-Hastings algorithm in discrete state spaces 94
8.1.2 Convergence results . 96

8.2 Markov chains on general state space . 104
8.3 Metropolis-Hastings algorithm in general state space 108

8.3.1 Independence sampler . 110
8.3.2 Random walk Metropolis . 112
8.3.3 One Variable at a time Metropolis-Hastings 112
8.3.4 Gibbs sampler . 113
8.3.5 Metropolis Adjusted Langevin Algorithm (MALA) 114

8.4 Convergence diagnostics . 115
8.4.1 Estimating the asymptotic variance by covariance methods 118
8.4.2 Estimating the asymptotic variance by the batch means method . 118

Chapter 1

Uniform Pseudo Random Number
Generation

At the heart of any Monte Carlo method, is a Random Number Generator (RNG), i.e. a

procedure that produces an infinite stream of random variables U1, U2, . . .
iid∼ µ that are

independent and identically distributed (i.i.d.) according to some probability distribution
µ. In particular, if µ is the uniform distribution on [0, 1], i.e. µ = U([0, 1]), the generator
is called a Uniform Random Number Generator.

Although generators based on physical devices that exploit universal background ra-
diation or quantum mechanics effects exist, the vast majority of current random number
generators are based on algorithms that can be implemented on a computer. As such,
these algorithms produce a purely deterministic stream of numbers U1, U2, . . ., which,
however, resembles a stream of iid random variables in the sense that the stream is indis-
tinguishable from a random one according to a number of statistical tests. Algorithmic
generators are called Pseudo-Random Number Generators (Pseudo-RNG).

Pseudo-RNG have the general structure, illustrated in Algorithm 1.1, where S is a
finite state space, U the output space, f : S → S and g : S → U two given functions.

Algorithm 1.1: General structure of a Pseudo-RNG

1 take X0 ∈ S ; // seed

2 for k = 1, 2, . . . do
3 Xk = f(Xk−1) ; // recursion on state variable Xk ∈ S
4 Uk = g(Xk) ; // output Uk ∈ U
5 end

Few remarks are in order:

• The initial state X0 is called the seed. A Pseudo-RNG starting from a given seed
will always produce the same sequence U1, U2, This is actually a convenient
feature when testing or debugging a code.

• Since the state space S is finite, the generator eventually will repeat itself (i.e. it
will revisit an already visited state). All Pseudo-RNGs are periodic.

5

6 CHAPTER 1. UNIFORM PSEUDO RANDOM NUMBER GENERATION

We call period the largest number of steps ℓ taken before visiting an already visited
state. The maximal period that a generator can have is ℓ = |S| (where |S| denotes
the cardinality of the state space).

A good uniform Pseudo-RNG should possibly:

1. Have a large period : if we need to run a Monte Carlo analysis using M (pseudo)
random variables, the period ℓ of the generator should be ℓ ≫ M (otherwise the
property of independent samples is clearly broken).

2. Pass a battery of statistical tests for uniformity and independence.

3. Be fast and efficient : many MC techniques require the generation of billions of
random variables. In certain fields (e.g. finance) the generation time is a big issue.

4. Be reproducible: in certain cases it is important to be able to reproduce a stream
U1, U2, . . . without the need of storing it (debugging purposes, advanced MC vari-
ance reduction techniques etc.)

5. Have the possibility to generate multiple streams. This is important when running a
Monte Carlo analysis in a parallel environment: each processor should use a stream
not overlapping with the ones used by the other processors.

6. Avoid producing the numbers 0 and 1. The value zero might produce undesirable
results as “division by zero”. Since the event “U = 0” has zero probability, the
Pseudo-RNG should never produce the value zero.

1.1 Some common uniform Pseudo-RNG

The most commonly used generators are based on linear recurrences. We present hereafter
some examples.

Linear Congruential Generator (LCG)

It is characterized by a state space S = {0, 1, . . . ,m− 1} (m is called the modulus), two
natural numbers a, b ∈ N and the following recurrence and output

Xk = (aXk−1 + b) mod m, Uk =
Xk

m
, k ≥ 1.

LCG have been popular for many years but are now somewhat outdated (e.g. Matlab ver-
sions up to 5 were using one of those). LCG can generate any number in {0, 1

m , . . . ,
m−1
m }

andm−1 should be chosen of the order of the floating point machine precision (ε-machine).

A popular choice is the Lewis-Goodman-Miller LCG with a = 75 = 16807, b = 0,
m = 231−1 ≈ 2 ·109, which has a maximal period of m−1 ≈ 4 ·109, too small for today’s
applications.

1.1. SOME COMMON UNIFORM PSEUDO-RNG 7

Multiple recursive generator (MRG) of order q

For natural numbers a1, . . . , aq ∈ N and seeds X0, X−1, . . . , X−q+1 ∈ {0, . . . ,m− 1}, it is
defined by the recurrence and output

Xk = (a1Xk−1 + a2Xk−2 + · · ·+ aqXk−q) mod m, Uk =
Xk

m
, k ≥ 1. (1.1)

A MRG can be written in the general form of Algorithm 1.1 by introducing the vector
X(k) = (Xk−q+1, . . . , Xk)

⊤ and the integer matrix A ∈ Nq×q,

A =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
aq aq−1 . . . a1

 .

As such, the recurrence (1.1) can be written equivalently as

X(k) = AX(k−1) mod m, Uk =
(X(k))q
m

, k ≥ 1, (1.2)

for which the state space is S = {0, 1, . . . ,m− 1}q and the maximal period can be up to
mq − 1. For a more general integer valued invertible matrix A, a generator of the form
(1.2) is called Matrix Congruential Generator of order q.

Combined Generators

Here, the idea is to combine the output of several generators which, individually, may be
of poor quality, to make a superior quality generator.

Example 1.1 (Wichman-Hill). This combines 3 LCGs

Xk = (171Xk−1) mod m1 (m1 = 30269)

Yk = (172Yk−1) mod m2 (m2 = 30307)

Zk = (170Zk−1) mod m3 (m3 = 30323)

(1.3)

with

Uk =
Xk

m1
+
Yk
m2

+
Zk
m3

mod 1.

It has a period of ℓ ≈ 6.95 · 1012 (which is not very large for today’s applications) and
performs quite well in simple statistical tests.

Example 1.2 (MRG32k3a). This is a combination of 2 MRGs:

Xk = (a2Xk−2 + a3Xk−3) mod m1

Yk = (b1Yk−1 + b3Xk−3) mod m2

with

Uk =


Xk−Yk+m1

m1+1 , if Xk ≤ Yk

Xk−Yk
m1+1 , if Xk > Yk

8 CHAPTER 1. UNIFORM PSEUDO RANDOM NUMBER GENERATION

and suitable values of a2, a3, b1, b3,m1,m2. This has a period of ℓ ≈ 3 · 1057 and passes
all statistical tests. It has been implemented in many packages including Matlab, Mathe-
matica, Intel’s MKL library etc.

Modulo 2 Linear Generators

These are Matrix Congruential Generators with modulus m = 2. Since binary operations
are in general faster than integer operations, these generators are usually fast. To have
long periods, the order q has to be large (the maximal period is 2q − 1). Among these
generators a popular one is the Linear Feedback Shift Register (LFSR) Generator
also called the Tausworthe generator. The recurrence formula is in the form of a MRG
(1.1) with m = 2, whereas the output is given by

Uk =
w∑
ℓ=1

Xkw+ℓ−12
−ℓ,

where each word of w bits (X0, . . . , Xw−1), (Xw, . . . , X2w−1), . . . is interpreted as a binary
representation of a number in [0, 1]. For fast generation, most of the aj are zero. In many
cases there is only one non-zero multiplier ar apart from aq, and the operation in the
recurrence correspods to a (modulo 2) bit addition Xk = Xk−r

⊕
Xk−q. Generalizations

of the LFSR generator include the Mersenne Twister generator that is now the default
generator in Matlab, and R. It has a period of 219937 − 1, is very fast and passes all prac-
tical statistical tests. The default generator in Python (numpy) is instead a Permuted
Congruential Generator (PCG). It uses a “medium quality” LCG with m = 2128 (un-
signed long long long integers represented by 128 bits) and improves its performance by
preforming a state dependent permutation on the 128 bit and outputing only the first 64
of them. It has period of 2128, excellent statistical properties and is very fast with jump
ahead and multiple straming possibilities.

1.2 Empirical tests for RNG

Several statistical tests have been proposed to asses the quality of a RNG. Today’s most
comprehensive test suite is TestU01 developed by L’Ecuyer and Simard [3]. In the next
section we review some non-parametric Goodness-of-Fit tests that can be used to assess
the uniformity of the sequence U1, U2, . . . produced by a Pseudo-RNG. For generality
purposes, we present these tests assuming that Uj has a general cumulative distribution
function F not necessarily uniform. Then, in Section 1.2.2, we discuss some tests to assess
the independence of the sequence.

1.2.1 Non-parametric Goodness-of-Fit Tests

Let U be a random variable with values in a certain interval I ⊂ R, and cumula-
tive distribution function (CDF) F (x) = P (U ≤ x). We will assume that F is abso-
lutely continuous so that a probability density function f : I → R+ exists, such that∫
[a,b]⊂I f(x) dx = F (b)− F (a).

1.2. EMPIRICAL TESTS FOR RNG 9

U(1) U(2) U(3) . . . U(n)

F̂n

1

n−1
n

2
n

1
n

Figure 1.1: Empirical cumulative distribution function.

Let U = (U1, . . . , Un) be a random sample and denote by F̂n(x) the empirical distri-
bution function

F̂n(x) =
1

n

n∑
i=1

1{Ui≤x} =
#{Ui ≤ x, i = 1, . . . , N}

n
.

See Figure 1.1 for an illustration. In the figure, (U (1), U (2), . . . , U (n)) denote the ordered
sample U . We want to test the hypothesis H0 that U has been drawn independently
from the distribution F .

Q-Q plot

A first simple graphical test to see if the sample U has been drawn from the distribution
F is to plot the quantiles of F̂n versus the corresponding quantiles of F . We recall that
the t-quantile of F is defined as

qt = argmin
x

{F (x) ≥ t},

and similarly for empirical distribution q̂t = argminx{F̂n(x) ≥ t}, which leads to q̂ j
n
=

U (j), ∀j = 1, . . . , n, i.e. the j
n quantile of the empirical distribution is the j-th value in

the ordered sample U . A better quantile estimator is actually given by q̂ j
n+1

= U (j).

If the sample U is indeed drawn from the distribution F independently, the empirical
quantiles q̂ j

n+1
, when plotted against the corresponding true quantiles q j

n+1
, should be

well aligned on the diagonal, as in Figure 1.2.

10 CHAPTER 1. UNIFORM PSEUDO RANDOM NUMBER GENERATION

q 1
n+1

U(1) = q̂ 1
n+1

q 2
n+1

U(2) = q̂ 2
n+1

q n
n+1

U(n) = q̂ n
n+1

Figure 1.2: Q-Q plot.

Kolmogorov-Smirnov Test

This is a more quantitative test that compares the empirical distribution F̂n with the true
one F (see Figure 1.3). Let Dn = supx |F̂n(x) − F (x)| (which is a random variable as it
depends on the random sample U). For a continuous distribution F , and under the null
hypothesis H0, it is known that

√
nDn

d−→ K independently of F

where K is a Kolmogorov random variable with CDF

FK(x) = P (K ≤ x) =

1 + 2
∞∑
j=1

(−1)je−2j2x2

1{x>0}

and corresponds to the distribution of maxt∈[0,1] |B(t)| where B(t) is a Brownian bridge

in [0, 1]. This result shows that, under H0, F̂n → F uniformly at a rate O(1/
√
n) in a

probabilistic sense. Based on this result, we can reject H0 at level α if
√
nDn > Kα with

Kα the α-quantile of K: P (K ≤ Kα) = 1− α. The quantiles Kα are tabulated.

χ2 Test

We split I in m+ 1 non-overlapping subintervals (classes) Ij , j = 1, . . . ,m+ 1 such that⋃m+1
j=1 Ij = I. For each j, let pj = P (U ∈ Ij) be the probability that U is in Ij and define

Nj =
n∑
i=1

1{Ui∈Ij} = #{Ui that fall in Ij},

Then, under H0, we have E [Nj] = npj . We define then the statistics

Q̂m =
m+1∑
j=1

(Nj − npj)
2

npj

1.2. EMPIRICAL TESTS FOR RNG 11

x1 x2 x3 xn

F (·)

F̂n

x

Figure 1.3: Kolmogorov-Smirnov test

I1 I2 I3 Ik

N1

N2

N3

Nk

Figure 1.4: χ2 test

which has an asymptotic χ2(m) distribution with m degrees of freedom (m = # classes−
1). We can then reject the null hypothesis H0 at level α if Q̂m > q1−α where q1−α is the
1−α quantile of the χ2(m) distribution. Notice that {(Ij , Nj), j = 1, . . . ,m+1} defines
a histogram of the sample and Q̂m estimates the deviation from the “true” histogram
{(Ij , npj), j = 1, . . . ,m+ 1}, as in Figure 1.4.

1.2.2 Empirical tests for independence

We consider here a sample U = (U1, U2, . . . , Un) produced by a uniform Pseudo-RNG and
present two statistical tests that can be used to test the null hypothesis H0 that {Ui}i
are mutually independent and uniformly distributed in (0, 1).

12 CHAPTER 1. UNIFORM PSEUDO RANDOM NUMBER GENERATION

Serial Test

We test whether groups of variables are jointly uniformly distributed. Namely we group
U in groups of length d: U1 = (U0, . . . , Ud−1), U2 = (Ud, . . . , U2d−1), . . . and test whether
{Uj , j = 1, . . . , nd} are drawn independently from a multivariate uniform distribution

U([0, 1]d), using for instance a χ2 test on the partition Ij1...jd = [j1−1
m , j1m]×· · ·× [jd−1

m , jdm],
(j1, . . . , jd) ∈ {1, . . . ,m}d. Of course, n/d should be sufficiently large compared to md so
that each class has enough samples and one can apply the asymptotic result.

Gap Test

Let T1, T2, . . . denote the times when the process {Ui}ni=1 visits a given interval (α, β) ⊂
[0, 1], namely Tj is such that UTj ∈ (α, β) and UK /∈ (α, β), K /∈ {T1, T2, . . .}. Let
Zi = Ti−Ti−1− 1 be the gap length between two consecutive visits (here T0 = 0). Under
H0, Zi are iid with a geometric distribution with parameter p = β − α, i.e.

P (Z = j) = p(1− p)j , j = 0, 1, 2,

One can use a χ2(m) test to test whether the {Zi}i have the correct geometric distribution,
using the classes Z = 0, Z = 1, . . . , Z = r, Z > r.

Chapter 2

Random Variable Generation

From a uniform (pseudo) random number generator one can construct (pseudo) random
generators for many other distributions. We discuss hereafter a few approaches.

2.1 Inverse-transform method

The inverse transform method is probably the most straightforward method to generate
a random variable with a given distribution and relies on the possibility to invert the
cumulative distribution function. We present it separately in the case of a discrete and a
continuous random variable.

Discrete random variable

Consider a discrete random variable X, which can take the values x1 < x2 < · · · < xn
with probability mass function (pmf) pi = P (X = xi). Let Fi =

∑i
j=1 pj = P (X ≤ xi),

i = 1, . . . , n and F0 = 0 be the cumulative probabilities. Then X can be generated
starting from a uniform random variable U ∼ U([0, 1]) by the following

Algorithm 2.1: Discrete inverse-transform.

Input: Values {xi}ni=1, cumulative probabilities Fi =
∑i

j=1 pj , i = 1, . . . , n

1 Generate U ∼ U([0, 1])
2 Set X = xi if Fi−1 < U ≤ Fi

That this algorithm generates the correct random variable is easily seen since P (X = xi) =
P (Fi−1 < U ≤ Fi) = P (U ⊂ (Fi − pi, Fi]) = pi. Figure 2.1 gives a graphical illustration
of the method.

Example 2.1 (Bernoulli). Let X ∼ Be(p) be a Bernoulli random variable that satisfies
P (X = 0) = 1− p, P (X = 1) = p. Given U ∼ U([0, 1]), one sets X = 1 if U > 1− p and
X = 0 otherwise.

13

14 CHAPTER 2. RANDOM VARIABLE GENERATION

x1 x2 x3

X = x3

. . . xn

F̂n

1

F3

U
F2

F1

Figure 2.1: Discrete inverse transform method.

Continuous random variable

Consider a continuous random variableX taking values in an interval [a, b] with continuous
and strictly increasing cumulative distribution function (cdf) F : [a, b] → [0, 1], F (x) =
P (X ≤ x), with F (a) = 0 and F (b) = 1. In this case the inverse function F−1 : [0, 1] →
[a, b] is uniquely defined and X can be generated starting from a uniform random variable
U ∼ U([0, 1]) by the following

Algorithm 2.2: Continuous inverse-transform

Input: Inverse CDF F−1

1 Generate U ∼ U([0, 1])
2 Set X = F−1(U)

Again, one verifies easily that this algorithm generates a random variable with the cor-
rect distribution. Indeed P (X ≤ x) = P

(
F−1(U) ≤ x

)
= P (U ≤ F (x)) = F (x). Figure

2.2 gives a graphical interpretation of the method.

Example 2.2 (Exponential). Let X ∼ Exp(λ) be an exponential random variable with pdf
f(x) = λe−λx and cdf F (x) = 1 − e−λx. Inversion gives X = F−1(U) = − 1

λ log(1 − U).

Since Ũ = 1 − U has the same distribution as U , an equivalent inversion formula is
X = − 1

λ logU with U ∼ U([0, 1]).

Both the discrete and the continuous case can be combined together by defining a
proper right inverse of F when it is not continuous or not strictly monotone. Let X be a
random variable with cdf F . Its Generalized inverse is defined as F−(u) = inf{x : F (x) ≥
u}. Actually, the infimum can be replaced by a minimum since F is right continuous.
Then X can be generated as X = F−(U) with U ∼ U([0, 1]). Notice that with this
definition of F− we recover the discrete inverse-transform as a particular case.

2.2. COMPOSITION METHOD 15

a b

U

X

F (x)

Figure 2.2: Continuous inverse transform

2.2 Composition method

Suppose that a random variable X has a mixture distribution, i.e. its cdf has the form
F (x) =

∑n
i=1 piFi(x) where Fi, i = 1, . . . , n are cdf functions and pi, i = 1, . . . , n are

positive weights such that
∑n

i=1 pi = 1. If the cdfs Fi are absolutely continuous with
corresponding densities fi, then X has a pdf f(x) =

∑n
i=1 pifi(x). The random variable

X can be generated by the following:

Algorithm 2.3: Composition method

Input: Mixture cdf F (x) =
∑n

i=1 piFi(x)
1 Generate discrete r.v. Y , P (Y = i) = pi
2 Generate X ∼ FY e.g. by inversion

Example 2.3 (Laplace distribution). Let X ∼ Lapl(λ) with pdf

f(x) =
λ

2
e−λ|x| =

1

2
λe−λx1{x≥0}︸ ︷︷ ︸

∼Exp(1)

+
1

2
λeλx1{x<0}︸ ︷︷ ︸
∼−Exp(1)

.

Then, X can be generated by the composition method by first generating B ∼ Be(12),
Y ∼ Exp(λ) and then setting X = Y if B = 1 and X = −Y if B = 0, or, equivalently,
X = (2B − 1)Y .

2.3 Alias method

A discrete random variable X taking the values x1 < x2 < · · · < xn with non-uniform
probabilities pi = P (X = xi) can be generated by the discrete inverse-transform method.

16 CHAPTER 2. RANDOM VARIABLE GENERATION

However, if n is large, the search for the interval (Fi−1, Fi] such that U ∈ (Fi−1, Fi],
where Fi =

∑i
j=1 pj , might be costly. In this case, an alternative approach consists in

representing the cdf F (x) as a mixture distribution F (x) =
∑n

i=1
1
nGi(x) such that each

Gi is a two points distribution (Bernoulli) and apply the composition method.

With little abuse of notation, we describe the algorithm using the probability “den-
sity” function which, in this case, is a linear combination of concentrated masses (delta
distributions) in the points {xi}, i.e. f(x) =

∑n
i=1 piδxi(x). We therefore aim at rewriting

it as f(x) =
∑n

i=1
1
ngi(x) where each gi, i = 1, . . . , n, has the form gi(x) = αiδxℓi (x) +

(1−αi)δxki (x), with ℓi, ki ∈ {1, . . . , n} and the distributions gi are constructed iteratively.

• Choose ℓ1 and k1 such that pℓ1 <
1
n and pℓ1 + pk1 ≥ 1

n (such a choice always exists
since {pi} are not uniform) and set α1 = npℓ1 . Then

f(x) = f (0)(x) = pℓ1δxℓ1 (x) + pk1δxk1 (x) +
∑

i ̸=ℓ1,k1
piδxi(x)

=
1

n
g1(x) +

n− 1

n
f (1)(x)

with

g1(x) = α1δxℓ1 (x) + (1− α1)δxk1 (x), α1 = npℓ1

f (1)(x) =
n(pℓ1 + pk1)− 1

n− 1
δxk1 (x) +

n

n− 1

∑
i ̸=ℓ1,k1

piδxi(x).

Notice that now f (1)(x) contains only point masses in {xi, i ̸= ℓ1}

• Iterate the procedure on f (1), f (2), . . . until we reach the desired form.

We can now construct the following algorithm which does not require a search (however
it requires to build in advance the table of distributions {gi})

Algorithm 2.4: Alias method

Input: Values {xi}Ni=1; probabilities {pi}ni=1

1 Build Bernoulli distributions gi = αiδxℓi + (1− αi)δxki , i = 1, . . . , n

2 Generate U ∼ U([0, 1]) and set Y = ⌈nU⌉ // hence Y ∼ U({1, 2, . . . , n})
3 Generate X ∼ gY // hence X ∼ Be(αY) with values {xℓY , xkY }

2.4 Acceptance-Rejection method

Consider a continuous random variable X with pdf f and cdf F . In cases where F is
difficult to invert, the inverse-transform method is not viable. Another situation which
may arise is when f is known only up to a multiplicative constant, i.e. f(x) = κf̃(x), with
κ = (

∫
R f̃(x) dx)

−1 and we only know f̃ whereas κ is difficult or impossible to evaluate.
In both cases, the acceptance-rejection method might represent a good alternative to
generate X.

2.4. ACCEPTANCE-REJECTION METHOD 17

The idea is to find an auxiliary pdf g which is easy to sample from, and a constant
C ≥ κ−1 such that f̃(x) ≤ Cg(x) for all x ∈ R. Then, the acceptance-rejection algorithm
reads:

Algorithm 2.5: Acceptance-Rejection (AR) algorithm

Input: f̃ , g, C, such that f̃(x) ≤ Cg(x)
1 Generate Y ∼ g
2 Generate U ∼ U([0, 1]) independent of Y

3 If U ≤ f̃(Y)

Cg(Y)
set X = Y , otherwise return to step 1

Lemma 2.1. The acceptance-rejection Algorithm 2.5 generates a random variable X with
the desired pdf f(x) = κf̃(x) (even without knowing κ), as long as f̃ ≤ Cg.

Proof. Observe that the distribution of X is the distribution of Y conditional to the event

U ≤ f̃(Y)

Cg(Y)
. Therefore P (X ≤ x) = P(Y ≤ x | U ≤ f̃(Y)

Cg(Y)) =
P
(
Y≤x, U≤ f̃(Y)

Cg(Y)

)
P
(
U≤ f̃(Y)

Cg(Y)

) . Now,

P

(
Y ≤ x, U ≤ f̃(Y)

Cg(Y)

)
=

∫ x

−∞

∫ f̃(y)
Cg(y)

0
du

 g(y) dy =

∫ x

−∞

f̃(y)

Cg(y)
g(y) dy =

1

C

∫ x

−∞
f̃(y) dy

(notice that g = 0 ⇒ f̃ = 0 and we can set arbitrarily f̃(y)
Cg(y) = 1 if g(y) = 0) and

P

(
U ≤ f̃(Y)

Cg(Y)

)
=

∫
R

f̃(y)

Cg(y)
g(y) dy =

1

C

∫
R
f̃(y) dy

so that

P (X ≤ x) =

∫ x
−∞ f̃(y) dy∫
R f̃(y) dy

=

∫ x

−∞
f(y) dy = F (x).

The probability of acceptance in Algorithm 2.5 is P
(
U ≤ f̃(Y)

Cg(Y)

)
= 1

κC and since

the trials (Y, U) are independent, the number of trials required to obtain a successful pair
(X,U) has a geometric distribution Geom(1

κC) with expected value κC. For the algorithm
to be efficient, C should be as close as possible to κ−1.

We now give a geometric interpretation of the acceptance rejection method, which is
illustrated in Figure 2.3. Such interpretation is based on following lemma.

Lemma 2.2. Consider a non-negative integrable function h̃ : R → R+, with
∫
R h̃ ̸= 0,

the region Ah̃ = {(x, u) : x ∈ R, 0 ≤ u ≤ h̃(x)}, and the (normalized) probability density

function h(x) = h̃(x)∫
h̃(x) dx

associated to h̃. A pair of random variables (X,U) is uniformly

distributed in Ah̃ if and only it X ∼ h and U |X ∼ U([0, h̃(X)]).

18 CHAPTER 2. RANDOM VARIABLE GENERATION

Cg(x)

f̃(x)

x

u

Figure 2.3: Graphical illustration of the Acceptance Rejection method: only the blue points are
retained and their abscissas are distributed according to f .

Proof. Assume first (X,U) ∼ U(Ah̃). Then, its probability density function is f(X,U)(x, u) =

1
|Ah̃|

= 1∫
R h̃(x) dx

. It follows that the pdf ofX is fX(x) =
∫ h̃(x)
0 f(X,U)(x, u) du = h̃(x)

|Ah| = h(x)

and the conditional probability density function of U |X is fU |X(u|x) =
f(X,U)(x,u)

fX(x) = 1
h̃(x)

,

hence U |X ∼ U([0, h̃(X)]).
Consider now the converse case, X ∼ h and U |X ∼ U([0, h̃(X)]). Then clearly

f(X,U)(x, u) = fU |X(u|x)fX(x) = 1
h̃(x)

h(x) = 1
|Ah| , hence (X,U) ∼ U(Ah).

This observation leads to the following geometrical interpretation of the AR algorithm:
in Steps 1-2 of Algorithm 2.5, one draws samples (Y, U) uniformly in the region ACg =
{(y, u) ∈ R2 : 0 ≤ u ≤ Cg(y)}. In step 3, one retains only those samples that fall in the
region Af̃ = {(x, u) ∈ R2, 0 ≤ u ≤ f̃(x)}. Hence, the abscissas of the retained points have

the desired density f̃(x)∫
f̃(x) dx

= f(x).

Example 2.4. Let Z ∼ N(0, 1) and suppose we want to sample from X = Z|(Z ≥ 1),
i.e. we want to sample the tail of a standard normal distribution for Z ≥ 1. The pdf
of X is f(x) ∝ e−x

2/21{x≥1}. We could take as proposal distribution g an exponential

Exp(1) translated in 1, i.e. g(x) = e−(x−1)1{x≥1} (see Figure 2.4). We have in this case

f̃(x) = e−x
2/21{x≥1} and f̃(x) ≤ g(x) 1√

e
for all x ≥ 1, hence we can take C = 1√

e
. The

AR Algorithm reads

1. Generate Y = 1 + Exp(1)

2. Generate U ∼ U(0, 1)

3. If U ≤ e−Y
2/2+Y−1/2 set X = Y , otherwise return to step 1.

2.4. ACCEPTANCE-REJECTION METHOD 19

1

1 + Exp(1)

Figure 2.4: Sampling the tail of a Normal distribution by AR with an exponential proposal

The acceptance probability is
√
e
∫∞
1 e−y

2/2 dy =
√
2πe(1− ϕ(1)) ≈ 0.66 with ϕ the cdf of

a standard normal distribution. Notice that if we just sample from N(0, 1) and reject all
samples less than 1, we would have an acceptance rate ≈ 0.16.

2.4.1 Squeezing

In certain cases, the expression f̃(x) might be complicated and costly to evaluate, whereas
g(x) has generally a simple expression. To minimize the number of evaluations of f̃ , one
could look for another auxiliary function ĝ, which is also inexpensive to evaluate, such
that ĝ(x) ≤ f̃(x) ≤ Cg(x) for all x ∈ R and modify the AR algorithm as follows:

Algorithm 2.6: AR algorithm with squeezing.

Input: f̃ , g, ĝ, C. such that ĝ ≤ f̃ ≤ Cg
1 Generate Y ∼ g
2 Generate U ∼ U([0, 1])

3 If U ≤ ĝ(Y)

Cg(Y)
set X = Y , otherwise, evaluate f̃(Y)

4 If U ≤ f̃(Y)
Cg(Y) set X = Y

5 else reject Y and go back to 1

2.4.2 Adaptive AR for log-concave densities

A particularly effective adaptive AR algorithm can be set up in the case where log f̃(x)
is a concave function. We illustrate the procedure graphically in Figure 2.5.

Let Zr = {z1, . . . , zr} be an initial set of points. Thanks to the log-concavity of f̃ ,
we have eŝ(x) ≤ f̃(x) ≤ es(x) for all x ∈ R, with s(x) and ŝ(x) as in the figure. Setting
now C =

∫
R e

s(x) dx, g(x) = C−1es(x), ĝ(x) = eŝ(x), we can apply the AR algorithm with
squeezing. Notice that g(x) is a piecewise exponential function and can be sampled effec-
tively by the composition method. Moreover, once a new sample X has been generated,
it can be added to the set Zr → Zr+1 = Zr ∪ {X} so that the squeezing becomes more
and more effective the more variables we generate.

20 CHAPTER 2. RANDOM VARIABLE GENERATION

log f̃(x)

z1 z2 zr

Ŝ(x)

S(x)

Figure 2.5: Graphical illustration of log concave density

2.5 Ad Hoc methods

The methods illustrated above are ‘general purpose’ methods, applicable to any distribu-
tion. However, for specific distributions such as Normal, Gamma, Possion, Binomial etc,
there are often much more efficient methods for random variable generation, which exploit
the special structure and probabilistic interpretation of the underlying distribution. (See
[2, Chapter 4]). We mention only one possible algorithm to generate variables from the
Normal distribution N(0, 1).

2.5.1 Box-Muller method

Let X,Y ∼ N(0, 1) be independent standard normal random variables, and (ρ, θ) their
representation in polar coordinates. Since X2 + Y 2 ∼ χ2

2 = Exp(12) (χ2
2 is a chi-square

distribution with 2 degrees of freedom, which coincides with an exponential of parameter
1
2), it follows that ρ

2 ∼ Exp(12). Moreover, by the radial symmetry of the bivariate normal
distribution N(0, I2), the distribution of (X,Y) given ρ2 = X2 + Y 2 is uniform in [0, 2π).
From these considerations, an algorithm to generate (X,Y) ∼ N(0, I2) is:

Algorithm 2.7: Box-Muller method.

1 Generate U ∼ U(0, 1) and set ρ =
√
−2 logU // hence ρ2 ∼ Exp(12)

2 Generate V ∼ U(0, 1) and set Θ = 2πV // hence Θ ∼ U([0, 2π])
3 Set X = ρ cosΘ, Y = ρ sinΘ.

2.6. MULTIVARIATE RANDOM VARIABLE GENERATION 21

2.6 Multivariate Random Variable Generation

We consider now the problem of generating from a multivariate distribution. Let X =
(X1, . . . , Xn)

⊤ ∈ Rn be a vector of random variables with joint cumulative distribution
function F (z) = F (z1, . . . , zn) = P (X1 ≤ z1, . . . , Xn ≤ zn) and probability density func-
tion f(x) = f(x1, . . . , xn), if it exists, such that

F (z1, . . . , zn) =

∫ z1

−∞
· · ·
∫ zn

−∞
f(x1, . . . , xn) dx1 . . . dxn.

The inverse transform method is not (directly) applicable in this case since the cu-
mulative distribution function F : Rn → R is not invertible. The acceptance-rejection
method, on the other hand, generalizes straightforwardly to the multivariate case. How-
ever, it is in general not an easy task to find an auxiliary function g(x) and a constant
C > 1 such that f(x) ≤ Cg(x), ∀x ∈ Rn, leading to reasonable acceptance rates.

In general, the problem of generating from a multivariate distribution can be very
hard. We mention, hereafter, few cases where generation is relativey easy.

2.6.1 Independent components

The simplest case is when the components X1, . . . , Xn of X are independent, each with
cdf Fi : R → [0, 1], so that F (z) = F1(z1) · · ·Fn(zn). (Similarly, if each Xi has a density
fi, there holds f(z) = f1(z1) · · · fn(zn).) In this case, each component Xi can be gener-
ated independently of the others by using any of the techniques described for univariate
functions.

Example 2.5. Suppose we would like to draw a point X = (X1, X2) that is uniformly dis-
tributed in the unit cube (0, 1)2. Since F (z) = P (X1 ≤ z1, X2 ≤ z2) = z1z2, we conclude
that X1, X2 are independent and Xi ∼ Fi(z) = z, i.e. each Xi is uniformly distributed in
(0,1). We can then draw X1, X2 ∼ U(0, 1) independently and set X = (U1, U2).

Example 2.6. Suppose now that we would like to draw a point X = (X1, X2) that is
uniformly distributed on the unit ball B = {(x, y) : x2 + y2 ≤ 1}. One possibility is to use
an acceptance-rejection method. For instance, we could draw Y uniformly on the cube
(−1, 1)2 and accept it by setting X = Y only if Y ∈ B. The acceptance rate is π

4 ≈ 78.5%.
(Try to do it now in dimension n≫ 2 and see what happens ...)

Alternatively, we could try to generate directly a point X with the correct distribution,
without the acceptance-rejection step. For this, let us consider a transformation in polar
coordinates, X1 = R cosΘ, X2 = R sinΘ. Then, if f(X1,X2) denotes the joint density of

(X1, X2) and f(R,Θ) the joint density of (R,Θ), we have f(X1,X2)(x, y) = 1
π , (x, y) ∈ B

and

f(R,Θ)(ρ, θ) = f(X1,X2)(ρ cos θ, ρ sin θ)

∣∣∣∣∂(x1, x2)∂(ρ, θ)

∣∣∣∣ = ρ

π
= 2ρ

1

2π
.

We see then that (R,Θ) are independent with Θ ∼ U(0, 2π) and R having pdf fR(ρ) = 2ρ
and cdf FR(ρ) = ρ2, which can be easily inverted. Therefore, starting from U1, U2 ∼ U(0, 1)
independent, we set R =

√
U1 and Θ = 2πU2 so that X = (R cosΘ, R sinΘ) is a uniformly

distributed point in the unit circle.

22 CHAPTER 2. RANDOM VARIABLE GENERATION

2.6.2 Generation from conditional distributions

Another situation which may lead to a relatively easy generation algorithm is when the
marginal and univariate conditional distributions of X are easily accessible. For instance,
let us assume that the conditional density of Xj |X1:j−1,

fXj |X1:j−1
(zj |z1, . . . , zj−1) =

∫
Rn−j f(z1, . . . , zj , zj+1, . . . , zn)dzj+1 . . . dzn∫

Rn−j+1 f(z1, . . . , zj , zj+1, . . . , zn)dzjdzj+1 . . . dzn

with X1:j a shorthand notation for (X1, . . . , Xj), is known explicitely for any j = 1, . . . , n.
Assume, moreover, that we know how to generate a variable from the density fXj |X1:j−1

(· | z1:j−1),

for any z1:j−1 ∈ Rj−1. We can then generate X with the following iterative Algorithm:

Algorithm 2.8: Generation from conditional distributions.

Input: conditional densities fXj |X1:j−1
(or cumulative distributions FXj |X1:j−1

)

1 Generate X1 ∼ fX1(z)
2 For i = 2, . . . , n,
3 Generate Xi ∼ fXi | X1:i−1

(· | X1, . . . , Xi−1)

Again, the generation of Xi from fXi | X1:i−1
(· | X1:i−1) can be done using any of the

techniques available for univariate variables.

Example 2.7 (Generating order statistics). Let X = (X1, . . . , Xn) ∼ U((0, 1)n) and
denote by X(1) ≤ X(2) ≤ · · · ≤ X(n) the ordered sample (order statistics). To generate

X(1), . . . , X(n), one can simply generate X = (X1, . . . , Xn) with Xi
iid∼ U(0, 1) and then

order the components of the vector. However, if n is large, the ‘sort’ operation might
become costly so one may prefer to generate directly X(1), . . . , X(n) from the distribution
of the order statistics.

Observe that X(n) = maxi=1,...,nXi ∼ FX(n)
(z) = zn so that X(n) can be generated

easily by inversion as X(n) = (Un)
1/n with Un ∼ U(0, 1). Moreover, it can be shown

(exercise) that for all j < n,

FX(j) | X(j+1),...,X(n)
(z | xj+1:n) = P

(
X(j) ≤ z | X(j+1) = xj+1, . . . , X(n) = xn

)
= P

(
X(j) ≤ z | X(j+1) = xj+1

)
=

(
z

xj+1

)j
, z ≤ xj+1,

where FX(j) | X(j+1),...,X(n)
(z | xj+1:n) =

∫ z
0 fX(j) | X(j+1),...,X(n)

(t | xj+1:n)dt is the cumula-
tive conditional distribution, which can be easily inverted. Hence, we can generate X(j)

as X(j) = (Uj)
1
jX(j+1) with Uj ∼ U(0, 1) independent of the previously generated ones.

2.6.3 Generation by transformation using copulas

Consider a vector X = (X1, . . . , Xn) with dependent components Xi, i = 1, . . . , n, with
marginal distributions Fi : R → [0, 1]. Often the dependency structure is described in
terms of copulas.

2.6. MULTIVARIATE RANDOM VARIABLE GENERATION 23

Definition 2.1. A copula is a cdf C : [0, 1]n → [0, 1] of n dependent uniform random
variables U1, . . . , Un ∼ U(0, 1)

C(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un) .

We say that the dependency structure of X is described by the copula C and marginal
distributions Fi, i = 1, . . . , n, if

FX(x1, . . . , xn) = P (X1 ≤ x1, . . . Xn ≤ xn) = C(F1(x1), . . . , Fn(xn)),

i.e. the transformed variables Ui = Fi(Xi) have a uniform marginal distribution and a
joint cdf given by the copula C. In such a case, an algorithm to generate X is

Algorithm 2.9: Generation of dependent components via copulas

Input: marginals {Fi}ni=1; copula C
1 Generate U = (U1, . . . , Un) ∼ C
2 Output X = (X1, . . . , Xn) = (F−

1 (U1), . . . , F
−
n (Un)).

Clearly the implementability/efficiency of this algorithm depends on the possibil-
ity to generate U ∼ C. A typical example is the case of a Gaussian copula. In this
case, let Y = (Y1, . . . , Yn) ∼ N(0,Σ) with Σ ∈ Rn×n symmetric and positive def-
inite and denote σi =

√
Var(Yi) the standard deviation of Yi. Set, moreover, U =

(U1, . . . , Un) =
(
Φ
(
Y1
σ1

)
, . . . ,Φ

(
Yn
σn

))
with Φ the cdf of a standard normal random vari-

able and CΣ
G(u1, . . . , un) = P (U1 ≤ u1, . . . , Un ≤ un). Such a copula is called a Gaussian

copula with covariance matrix Σ. To generate a vector X with copula CΣ
G and marginals

Fi, we can therefore use the following algorithm.

Algorithm 2.10: Generation of samples from a Gaussian copula

Input: marginals {Fi}ni=1; covariance matrix Σ
1 Generate Y ∼ N(0,Σ)

2 Compute U =
(
Φ
(
Y1
σ1

)
, . . . ,Φ

(
Yn
σn

))
3 Compute X = (F−

1 (U1), . . . , F
−
n (Un)

A way to generate Y ∼ N(0,Σ) is discussed in the next Chapter.

24 CHAPTER 2. RANDOM VARIABLE GENERATION

Chapter 3

Generation of Gaussian random
variables and processes

3.1 Generation of multivariate Gaussian random variables

A multivariate Gaussian random variableX ∼ N(µ,Σ) with mean µ ∈ Rn and covariance
matrix Σ ∈ Rn×n symmetric and positive definite has joint pdf

f(x) =
1√

(2π)n detΣ
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ))

)
, x ∈ Rn

and characteristic function ϕ(t) = E
[
eit

⊤X
]
= exp

(
it⊤µ− 1

2t
⊤Σt

)
. Notice that the

characteristic function is well defined also in the case of a singular covariance matrix Σ,
whereas the pdf is not.

The standard algorithm to generate X relies on explicit factorization of the covariance
matrix as Σ = AA⊤, with A ∈ Rn×n, which can always be done since Σ is symmetric and
positive definition. There are two common ways to compute the factor A:

• Cholesky factorization. It is applicable if Σ is strictly positive definite (hence in-
vertible) and leads to a lower triangular factor A.

If Σ is nearly singular, a more stable procedure is given by the pivoted Cholesky
factorisation, which can also be used in the singular case.

• Spectral decomposition. It is based on diagonalization of the covariance matrix
as Σ = V DV ⊤ with D = diag(λ1, . . . , λn) the matrix of eigenvalues and V the or-
thonormal matrix of eigenvectors. We set thenA = V D1/2, withD1/2 = diag(

√
λ1, . . . ,

√
λn).

It can be used also in the singular case.

Using either factorization, X can be generated by the following algorithm.

Algorithm 3.1: Multivariate Gaussian generator

Given: µ ∈ Rn and Σ = AA⊤ ∈ Rn×n (spd)

1 Generate Y ∼ N(0, In×n) (i.e. Y = (Y1, . . . , Yn), Yi
iid∼ N(0, 1))

2 Compute X = µ+AY

25

26 CHAPTER 3. GENERATION OF GAUSSAIN PROCESSES

It is easy to check that X has the correct distribution. Indeed, X is Gaussian being
an affine transformation of a standard normal vector. Moreover, E [X] = µ and

Cov[X] = E
[
(X − µ)(X − µ)⊤

]
= E

[
AY Y ⊤A⊤

]
= AE

[
Y Y ⊤

]
A⊤ = Σ.

The algorithm can be easily modified in the case the precision matrix Λ = Σ−1 is
given, instead of Σ. (Of course we assume here that Σ is invertible.)

Algorithm 3.2: Multivariate Gaussian generator from precision matrix

Given: µ ∈ Rn and Λ = Σ−1

1 Compute the Cholesky factorisation Λ = LLT

2 Generate Z ∼ N(0, I) // n independent standard normals

3 Solve the linear system L⊤Y = Z // upper triangular linear system

4 Output X = µ+ Y

Again it is easy to verify thatX has the right distribution. Indeed E [Y] = L−⊤E [Z] =
0 which implies E [X] = µ and

E
[
(X − µ)(X − µ)⊤

]
= E

[
Y Y T

]
= E

[
L−⊤ZZ⊤L−1

]
= L−⊤L−1 = Λ−1 = Σ.

3.2 Generation from conditional Gaussian distribution

Consider a multivariate Gaussian random variable X ∈ Rn, X ∼ N(µ,Σ), which we split
into two components, X = (Y1, . . . , Yn−k, Z1, . . . , Zk) = (Y ,Z), which we suppose unob-
servable and observable, respectively. The mean µ and covariance Σ also split accordingly
as

E [X] =

(
µY

µZ

)
, Σ =

(
ΣY Y ΣY Z

Σ⊤
Y Z ΣZZ

)
with µY = E [Y], µZ = E [Z], ΣY Z = E

[
(Y − µY)(Z − µZ)

⊤] = Σ⊤
ZY , and similarly

for ΣY Y , ΣZZ .

We are interested to generate the conditional random variable Y |Z. It is well known
that the conditional distribution of Y givenZ is again a multivariate GaussianN(µY | Z ,ΣY | Z)
with

µY | Z = µY +ΣY ZΣ
−1
ZZ(Z − µz) (3.1)

ΣY | Z = ΣY Y − ΣY ZΣ
−1
ZZΣZY . (3.2)

Assuming we have observed the realization z of Z, to generate Y | Z = z one can,
of course, factorize the covariance matrix ΣY | Z = AA⊤ (by Cholesky or spectral de-
composition). This, however, can be expensive or cumbersome if the size of Y is big.
In particular, there might be cases (typically in the generation of stationary Gaussian
random fields) in which generating X = (Y ,Z) is easy, even for very large dimensions,

3.2. GENERATION FROM CONDITIONAL GAUSSIAN DISTRIBUTION 27

but generating Y | Z = z e.g. by Cholesky factorization, would be very costly. Here is
an alternative algorithm to do so.

Algorithm 3.3: Generation from conditional Gaussian distribution - I

Given: µ,Σ and z ∈ Rk
1 Generate X ∼ N(µ,Σ)
2 Set Y = (X1, . . . , Xn−k) and Z = (Xn−k+1, . . . , Xn)

3 Output Y = Y +ΣY ZΣ
−1
ZZ(z −Z)

Again, we can easily verify that Y has the correct distribution. Indeed,

E [Y] = E [Y] + ΣY ZΣ
−1
ZZ(z − E [Z]) = µY +ΣY ZΣ

−1
ZZ(z − µZ) = µY | Z=z.

Moreover, setting Y ′ = Y − E [Y] = (Y − µY)− ΣY ZΣ
−1
ZZ(Z − µZ), we have

Cov(Y) = E
[
Y ′Y ′⊤

]
= E

[
Y ′Y ′⊤

]
− ΣY ZΣ

−1
ZZE

[
Z ′Y ′⊤

]
− E

[
Y ′Z ′T]Σ−⊤

ZZΣ
⊤
Y Z +ΣY ZΣ

−1
ZZE

[
Z ′Z ′T]Σ−⊤

ZZΣ
⊤
Y Z

= ΣY Y − ΣY ZΣ
−1
ZZΣZY .

This construction can be generalized to the case where, instead of observing a subset
Z of components of X, one observes k linear combinations of the components of X. Let
H ∈ Rk×n be an “observation” operator and assume one has noisy obeservations

Z = HX + η

with η a zero mean Gaussian vector, independent of X, with covariance Γ ∈ Rk×k,
hence Z ∼ N(Hµ, S), with S = HΣH⊤ + Γ. Notice that the previous setting can be
recovered by choosing η = 0 and Hij = 1 whenever j = i and i corresponds to an observed
componend of X, and Hij = 0 otherwise.

We can now define the extended vector X̃ = (X,Z) ∈ Rn+k which has

E
[
X̃
]
=

(
µ
Hµ

)
, Cov(X̃) =

(
Σ ΣH⊤

HΣ S

)
and use the previous formulas to obtain X | Z ∼ N(µX | Z ,ΣX | Z) with

µX | Z = µ+ΣH⊤S−1(Z −Hµ), (3.3)

ΣX | Z = Σ− ΣH⊤S−1HΣ. (3.4)

The matrix K = ΣH⊤S−1 is called the Kalman gain whereas the vector d = Z − Hµ
the innovation. Generating X | Z = z can be done with the following algorithm.

Algorithm 3.4: Generation from conditional Gaussian distribution - II

Given: µ,Σ and z ∈ Rk
1 Generate X ∼ N(µ,Σ)
2 Generate η ∼ N(0,Γ)

3 Compute perturbed innovation d̃ = z −HX + η

4 Compute Kalman gain K = ΣH⊤(HΣH⊤ + Γ)−1

5 Output X = X +Kd̃

28 CHAPTER 3. GENERATION OF GAUSSAIN PROCESSES

It is easy to check that the output X of the algorithm has the right distribution.
Indeed, clearly X has a Gaussian distribution. Moreover

E [X] = µ+K(z −Hµ) = µX | Z=z

and

Cov(X) = E
[
((I −KH)(X − µ) +Kη) ((I −KH)(X − µ) +Kη)⊤

]
= (I −KH)Σ(I −KH)⊤ +KΓK⊤

= Σ−KHΣ− ΣH⊤K⊤ +K(HΣH⊤ + Γ)K⊤ = ΣX | Z .

3.3 Gaussian process generation

Let I ⊂ Rd. A collection of random variables {Xt, t ∈ I} indexed by t ∈ I is called a
stochastic process when d = 1 (usually t denotes time) or a random field if d ≥ 1 and t
denotes the space variable.

Definition 3.1 (Gaussian process). A Gaussian process (or Gaussian random field) is a
stochastic process (random field) for which all finite dimensional distributions are Gaus-
sian, i.e. for all n ∈ N and t1, . . . , tn ∈ I, the random vector X = (Xt1 , . . . , Xtn) has a
multivariate Gaussian distribution. Equivalently, any linear combination Yb =

∑n
i=1 biXti

has a Gaussian distribution.

Given a Gaussian process {Xt, t ∈ I}, we can define

Mean function : µX : I → R, µX(t) = E [Xt] , t ∈ I,

Covariance funct. : CX : I × I → R, CX(t, s) = E [(Xt − µX(t))(Xs − µX(s))] , t, s ∈ I.

If we now take a set of points t1, . . . , tn ∈ I and consider the Gaussian random vector
X = (Xt1 , . . . , Xtn), it clearly holds X ∼ N(µ,Σ), with µ = (µX(t1), . . . , µX(tn)) and
Σij = CX(ti, tj). As such, the matrix Σ has to be symmetric and non negative definite.
This poses restrictions to the class of functions that can be covariance functions of a
stochastic process.

Definition 3.2. A function C : I × I → R is positive (semi-)definite if, for all n and
t1, . . . , tn ∈ I, the matrix Σ ∈ Rn×n, Σij = C(ti, tj) is positive (semi-)definite.

Proposition 3.1. A Gaussian process {Xt, t ∈ I} is uniquely determined by the mean
function µX : I → R and a symmetric and positive (semi-)definite covariance function
CX : I × I → R.

We use the notation X ∼ N(µX , CX) to denote a Gaussian process {Xt, t ∈ I} with
mean function µX and covariance function CX .

A Gaussian process X ∼ N(µX , CX) can be generated exactly in a set of points
t1, . . . , tn ∈ I by generating the corresponding random vector X ∼ N(µ,Σ), with µ =
(µX(t1), . . . , µX(tn)) and Σij = CX(ti, tj). This can be done by either Cholesky or spectral
factorization of the matrix Σ.

3.3. GAUSSIAN PROCESS GENERATION 29

Similarly, assume that we have generated already Z = (Xt1 , . . . , Xtn) and we want to
generate new values Y = (Xtn+1 , . . . , Xtm) conditional to the previously generated ones.
This can be done by the Algorithm 3.3 illustrated in the previous section. Figure 3.1
gives a graphical interpretation of the procedure.

t1 t2 t3 tntn+1 tn+2 tm

Figure 3.1: Conditioned Gaussian Process.

3.3.1 Wiener process (Brownian motion)

Definition 3.3. The Wiener process is a Gaussian stochastic process {Wt, t ≥ 0} with
the following properties:

• W0 = 0,

• Independent increments: for all 0 < t1 < t2 ≤ t3 < t4, (Wt2 −Wt1) and (Wt4 −Wt3)
are independent random variables

• Gaussian stationary increments: for all 0 ≤ t1 ≤ t2, Wt2 −Wt1 ∼ N(0, t2 − t1)

The Wiener process is a Gaussian process with mean function µW (t) = 0 and co-
variance function CovW (s, t) = min{s, t}. Indeed, if t ≥ s, CovW (s, t) = E [WsWt] =
E [Ws(Wt −Ws)] + E

[
W 2
s

]
= s. Similarly, if t ≤ s then CovW (s, t) = t. It can be shown

that almost every realization t 7→Wt is a continuous function (or, more precisely, is almost
everywhere equal to a continuous function) in t. This property is referred to as pathwise
continuity.

To generate {Wt, t ≥ 0} on a set of points (t1, . . . , tn), one could either compute a
Cholesky/spectral decomposition of the covariance matrix Σij = min{ti, tj}, or, more
efficiently, rely on the property of independent Gaussian increments as the following
Algorithm shows.

30 CHAPTER 3. GENERATION OF GAUSSAIN PROCESSES

0 1

b

Figure 3.2: Brownian bridge.

Algorithm 3.5: Wiener process generation

1 Set t0 = 0 and Wt0 = 0
2 for k = 1, . . . , n do
3 Generate ∆Wk ∼ N(0, tk − tk−1)
4 Set Wtk =Wtk−1

+∆Wk

5 end

A Brownian motion with drift ν and diffusion coefficient σ2, is the solution of the
stochastic differential equation

dBt = ν dt+ σdWt, B0 = 0

that is, Bt = νt + σWt, t ≥ 0. Hence, it can be easily generated on a set of points
(t1, . . . , tn) as an affine transformation of the Wiener process.

3.3.2 Brownian bridge

A Brownian bridge process {Xt, t ∈ [0, 1]} is a Wiener process {Wt, t ∈ [0, 1]} conditioned
upon W1 = b. See figure 3.2 for a realization of a Brownian bridge.

The conditional mean and covariance function of a Brownian bridge can be calculated
using the standard formulas for conditioned multivariate Gaussian variables. Indeed, let
us first calculate the conditinal mean. For that, we set Y = Wt, t ∈ (0, 1) and Z = W1,
for which we have ΣY Y = ΣY Z = t and ΣZZ = 1. Therefore, using formula (3.1) for the
conditional mean, we conclude that

µX(t) = E [Xt] = E [Wt | W1 = b] = µW (t) + ΣY ZΣ
−1
ZZ(b− µW (1)) = tb.

3.4. STATIONARY GAUSSIAN PROCESSES / RANDOM FIELDS 31

An analogous procedure can be followed to compute the conditional covariance. Take this
time Y = (Ws,Wt), s, t ∈ (0, 1) and Z =W1, so that

ΣY Y =

(
s min{s, t}

min{s, t} t

)
, ΣY Z =

(
s
t

)
, ΣZZ = 1.

Therefore

ΣY | Z = ΣY Y − ΣY ZΣ
−1
ZZΣZY

=

(
s min{s, t}

min{s, t} t

)
−
(
s
t

)
(s, t) =

(
s− s2 min{s, t} − st

min{s, t} − st t− t2

)
.

and
CovX(s, t) = Cov(Ws,Wt|W1 = b) = (ΣY |Z)12 = min{s, t} − st.

To generate a Brownian bridge in a set of points 0 < t1 < . . . < tn < tn+1 = 1 one can first
generate (Wt1 , . . . ,Wtn ,Wtn+1) from a standard Wiener process and then use Algorithm
3.3 with Y = (Wt1 , . . . ,Wtn) and Z =Wtn+1 . This leads to the following procedure.

Algorithm 3.6: Brownian bridge generation.

Given: 0 < t1 < · · · < tn < tn+1 = 1 and b
1 Generate Wti , i = 1, . . . , n+ 1 from standard Wiener process
2 Output Xti =Wti + ti(b−Wtn+1), i = 1, . . . , n.

3.4 Stationary Gaussian processes / random fields

Definition 3.4. A Gaussian process {Xt, t ∈ R} is weakly stationary if CX(t, s) depends
only on (s − t) and is (strongly) stationary if it is weakly stationary and µX(t) does not
depend on t.

A weakly stationary Gaussian process can be generated very efficiently on a uniform
grid {tj = t0 + jh, j = 0, . . . , n} with the use of FFT. This avoids the costly step of
computing the Cholesky or spectral decomposition of the covariance matrix. We denote
by X = (Xt0 , . . . , Xtn) the discrete Gaussian process on the uniform grid. Since {tj , j =
0, . . . , n} is a uniform grid, it follows that the corresponding covariance matrix

Σij = CX(ti, tj) = CX(0, (j − i)h)

depends only on j − i, hence is a symmetric Toeplitz matrix and we have to store only
the vector (σ0, . . . , σn) with σi = CX(t0, t0 + ih):

Σ =



σ0 σ1 σ2 . . . σn
σ1 σ0 σ1 . . . σn−1

σ2 σ1
. . .

. . .
...

...
...

. . .
. . .

...
...

...
. . .

...
σn σn−1 . . . σ1 σ0



32 CHAPTER 3. GENERATION OF GAUSSAIN PROCESSES

Consider now the following circulant embedding of Σ:

Σ̃ =



σ0 σ1 σ2 . . . σn−1 σn
σ1 σ0 σ1 . . . σn−1

σ2 σ1
. . .

. . .
...

...
...

. . .
. . .

...
...

...
. . . σ1

σn σn−1 . . . σ1 σ0

σn−1 σn−2 . . . σ1
σn σn−1 . . . σ2
...

. . .
. . .

...
...

. . . σn−1

σ2 σn
σ1 σn−1

σn−1 σn σn−1 σ1

σn−2 σn−1
. . .

. . . σ0
...

. . .
. . .

. . .
...

σ1 σn−1 σn σn−1

σ0 σ1 . . . σn−2

σ1 σ0 . . .
...

...
. . .

. . .
...

σn−2 σ1 σ0



∈ R2n×2n

and the generating vector α = (σ0, σ1, . . . , σn, σn−1, . . . , σ1) given by the first column.
We write compactly Σ̃ = circ(α) and assume that Σ̃ is also non-negative definite.

Lemma 3.2. Let α = (α1, . . . , α2n) ∈ R2n and Σ̃ = circ(α). Then the vectors v(ℓ),

ℓ = 1, . . . , 2n, v
(ℓ)
k = e2πi(ℓ−1)(k−1)/2n are eigenvectors of Σ̃ with corresponding eigenvalues

λℓ =
∑2n

k=1 αke
−2πi(ℓ−1)(k−1)/2π, which are real and non-negative if Σ̃ is semi positive

definite.

Proof. It is enough to verify that
∑2n

k=1 Σ̃jkv
(ℓ)
k = λℓv

(ℓ)
j , for all j = 1, . . . , 2n. Notice that

Σ̃ can be written as Σ̃jk = α{(2n+j−k+1) mod 2n}, where we set α0 = α2n. Then

2n∑
k=1

Σ̃jkv
(ℓ)
k =

2n∑
k=1

α{(2n+j−k+1) mod 2n}e
2πi(ℓ−1)(k−1)/2n

=

2n∑
k=1

α{(2n+j−k+1) mod 2n}e
2πi(ℓ−1)(k−j−2n)/2ne2πi(ℓ−1)(2n+j−1)/2n

=

(
2n∑
k=1

αke
−2πi(ℓ−1)(k−1)/2n

)
v
(ℓ)
j .

It follows from this Lemma that the matrix Σ̃ can be diagonalized as Σ̃F ∗ = F ∗Λ
where Fkℓ = e−2πi(ℓ−1)(k−1)/2n corresponds to the FFT matrix as defined in Matlab (and
numpy up to a shift of indices ℓ − 1 → ℓ, k − 1 → k) and Λ = diag(λ1, . . . , λ2n).
Moreover, the vector of eigenvalues corresponds to λ = Fα = FFT(α). Observe that
F ∗F = FF ∗ = 2nI2n so that Σ̃ = 1

2nF
∗ΛF and can be factorized as Σ̃ = AA∗ with

A = 1√
2n
F ∗Λ1/2. We consider now a vector Y = (Y1, . . . , Y2n) of complex standard

normal r.v.s, i.e. Y = YR + iYI with YR,YI
iid∼ N(0, I2n), and set

X̃ = AY =
1√
2n
F ∗Λ1/2 = iFFT(

√
2πΛ1/2Y),

3.4. STATIONARY GAUSSIAN PROCESSES / RANDOM FIELDS 33

where the iFFT matrix is given by 1
2nF

∗. The following holds:

• E [Y Y ∗] = 2I2n = E
[
Ȳ Ȳ ∗], E

[
Y Y ⊤] = E

[
Ȳ Ȳ ⊤] = 0,

• E
[
X̃X̃∗

]
= E [AY Y ∗A∗] = 2Σ̃ = E

[
¯̃X ¯̃X∗

]
, E

[
X̃X̃⊤

]
= E

[
¯̃X ¯̃X∗

]
= 0,

• E
[
Re(X̃)Re(X̃)⊤

]
= E

[
X̃+ ¯̃X

2

(
X̃+ ¯̃X

2

)⊤]
= Σ̃ = E

[
Im(X̃) Im(X̃)⊤

]
,

• E
[
Re(X̃) Im(X̃)⊤

]
= E

[
X̃+ ¯̃X

2

(
X̃− ¯̃X

2i

)⊤]
= 0.

Hence Re(X̃), Im(X̃) ∼ N(0, Σ̃) and are independent and Re(X̃1:n+1), Im(X̃1:n+1)
iid∼

N(0,Σ). This suggests the following algorithm to generate X ∼ N(µ,Σ).

Algorithm 3.7: Circulant embedding.

Given: µ ∈ Rn and Σ =


σ0 σ1 . . . σn
σ1 σ0 . . . σn−1

...
...

. . .
...

σn σ0

 ∈ Rn+1×n+1

1 Generate the vector α = (σ0, σ1, . . . , σn, σn−1, . . . , σ1) ∈ R2n

2 Compute λ = FFT(α)

3 Generate Y = YR + iYI with YR,YI
iid∼ N(0, I2n)

4 Compute X̃ = iFFT(
√
2n diag(

√
λ)Y)

5 Output X(1) = µ+Re(X̃1:n+1) and X(2) = µ+ Im(X̃1:n+1)

One may encounter the problem that the matrix Σ̃ might not be semi positive definite,
even if Σ is. In such a case, one could try to enlarge the circulant embedding

α = (σ0, σ1, . . . , σn, σ
∗
n+1, . . . , σ

∗
m, σ

∗
m−1, . . . , σ

∗
n+1, σn, . . . , σ1)

where m > n and σ∗j , j = n+ 1, . . . ,m are chosen such that Σ̃ = circ(α) is semi positive
definite. A typical choice is to take σ∗j = σj = CX(0, jh) and m large enough.

34 CHAPTER 3. GENERATION OF GAUSSAIN PROCESSES

Chapter 4

Generation of Markov processes

4.1 Discrete time / discrete state Markov chains

Let us consider a stochastic process {Xn, n ∈ N0} defined on the countable set N0 =
{0, 1, . . . } and taking values in a countable set X = {y1, y2, . . . } i.e. Xn ∈ X for all
n ∈ N0.

Definition 4.1. A stochastic process {Xn ∈ X , n ∈ N0} is a Markov chain if it satisfies
the Markov property

P (Xn+1 = yn+1 | Xn = yn, Xn−1 = yn−1, . . . , X0 = y0) = P (Xn+1 = yn+1 | Xn = yn)

with y0, . . . , yn+1 ∈ X .

The process is therefore entirely defined by the distribution λ of the initial state X0

and the transition matrices

P (n) = (Pij(n))ij , with Pij(n) = P (Xn = yj | Xn−1 = yi) .

which are, in particular, stochastic matrices i.e. they satisfy∑
j

Pij(n) = 1, ∀i = 1, 2, . . . , ∀n ∈ N.

A Markov chain is time-homogeneous if P (n) does not depend on n. Generating a discrete
time / discrete state Markov chain is rather straightforward.

Algorithm 4.1: Generation of discrete time / discrete space Markov process.

Given: λ and P (n), n ∈ N
1 Generate X0 ∼ λ
2 For n = 1, 2, . . . ,
3 Generate Xn ∼ PXn−1,·(n) // pmf given by Xn−1-th row of P (n)

35

36 CHAPTER 4. GENERATION OF MARKOV PROCESSES

Exercise 4.1 (Random walk on a lattice). A random walk on the integers {Xn ∈ Z, n ∈
N0}, starting at X0 = 0 is a Markov chain defined by the following transition probabilities

P (Xn+1 = j | Xn = j − 1) = P (Xn+1 = j | Xn = j + 1) = a ∈ (0, 1),

P (Xn+1 = j | Xn = j) = 1− 2a,

P (Xn+1 = j | Xn = i) = 0, i ̸= j, j − 1, j + 1.

Figure 4.1 shows a graph representation of the Markov chain. An arrow between two
states denotes a connection, i.e. a non zero probability of moving from the base to the
head of the arrow.

-2 -1 0 1 2 3

a

a

a

a

1− 2a

Figure 4.1: Random walk on lattice.

4.2 Discrete time / continuous state Markov chains

Consider now a stochastic process {Xn, n ∈ N0} defined on N0 = {0, 1, . . . } and taking
values on a continuous set X ⊂ Rd. We denote by B(X) the Borel σ-algebra on X so that
(X ,B(X)) is a measurable space.

Definition 4.2. A Markov transition kernel on (X ,B(X)) is a function P : X ×B(X) →
[0, 1] such that

• for all y ∈ X , P (y, ·) is a probability measure on (X ,B(X));

• for all A ∈ B(X), P (·, A) is a measurable function on X .

Often, the transition kernel is defined starting from a density function p : X×X → R+

such that for all x ∈ X , A ∈ B(X), P (x,A) =
∫
A p(x, y) dy.

Definition 4.3. Given a Markov transition kernel P : X × B(X) → [0, 1], a stochastic
process {Xn, n ∈ N0} with values in X is a homogeneous Markov chain with kernel P and
initial distribution X0 ∼ λ, denoted {Xn} ∼ Markov(λ, P), if for any n ∈ N0, A ∈ B(X),

P (Xn+1 ∈ A | Xn = yn, . . . , X0 = y0) = P (Xn+1 ∈ A | Xn = yn) = P (yn, A).

Again, generating a discrete time / continuous state Markov chain is rather straightfor-
ward, provided we know how to generate random variables from the probability measure
P (y, ·) (resp. probability density function p(y, ·)) for all y ∈ X .

4.3. CONTINUOUS TIME / DISCRETE STATE MARKOV CHAINS 37

Algorithm 4.2: Generation of discrete time / continuous space Markov process.

Given: λ and P
1 Generate X0 ∼ λ
2 For n = 1, 2, . . . ,
3 Generate Xn ∼ P (Xn−1, ·)

Exercise 4.2 (Random walk in 2D). Let X = R2 and consider the stochastic process
{Xn ∈ X , n ∈ N0} starting at X0 = (0, 0), defined by

Xn+1 = Xn + ξn, ξn
iid∼ N(0, σ2I2).

This is clearly a homogeneous discrete time / continuous state Markov chain with transi-
tion kernel

P (y, A) = P (Xn+1 ∈ A | Xn = y) = P (ξn + y ∈ A) =
1

2πσ2

∫
A
e−

∥ξ−y∥2
2σ2 dξ

and transition density function p(x,y) = 1
2πσ2 exp

(
− (y1−x1)2+(y2−x2)2

2σ2

)
.

4.3 Continuous time / discrete state Markov chains

Let X = {y1, y2, . . . } be a discrete (finite or countable) set and {Xt, t ≥ 0} a stochastic
process taking values in X . The process is said to be right continuous if each path is so,
i.e. for any realization ω,

lim
h→0+

Xt+h(ω) = Xt(ω).

Since the process takes only discrete values, the right continuity property implies that if
Xt = yi at some t, it will stay in state yi for a certain amount of time, i.e. there exists a
(random) ε > 0 s.t. Xs = yi, for all t ≤ s < t+ ε. We denote Jn the n-th jump time

J0 = 0, Jn = inf{t ≥ Jn−1 : Xt ̸= XJn−1}, n > 0

and Sn the n-th holding time

Sn =

{
Jn − Jn−1, if Jn−1 <∞, n = 1, 2, . . .

∞, otherwise.

The discrete time process {Yn = XJn , n ∈ N0} is called the jump process (or jump chain)
of {Xt, t ≥ 0}. The process is therefore completely characterized by the sequence {Jn}n
of jump times (equivalently the sequence {Sn}n of holding times) as well as the sequence
{Yn}n of visited states, i.e. the jump chain. Figure 4.2 gives an illustration of a continuous
time / discrete state Markov process.

The (first) explosion time T ∗ is defined as T ∗ = supn Jn =
∑∞

n=1 Sn. If T
∗ < +∞, we

consider only the process {Xt, t ∈ [0, T ∗)} or, equivalently, we set Xt = ∞ for t ≥ T ∗.
This is called the minimal process.

38 CHAPTER 4. GENERATION OF MARKOV PROCESSES

t = 0 J1 J2 J3

y1

y2

y3

yn

S1

S2

Figure 4.2: Continuous time / discrete state Markov process and associated jump and holding
times.

4.4 Poisson process

The Poisson process is the simplest example of a continuous time / discrete state Markov
process.

Definition 4.4. A Poisson process {Nt ∈ N0, t ≥ 0} with initial state N0 = 0 and
parameter 0 < λ <∞, is a non decreasing, right-continuous, integer valued process which
satisfies the following properties.

1. Independent increments: for all 0 < t1 < t2 ≤ t3 < t4, Nt2 −Nt1 and Nt4 −Nt3 are
independent;

2. Poisson stationary increments: for all 0 < s < t, Nt −Ns ∼ Pois(λ(t− s)) i.e.

P (Nt −Ns = j) =
(λ(t− s))j

j!
e−λ(t−s).

It follows, in particular, that Nt ∼ Pois(λt). Moreover, Nt satisfies the Markov prop-
erty: for any s ≥ 0, Ñt = Ns+t−Ns, t ≥ 0 is also a Poisson process of rate λ, independent
of {Nt, t ≤ s}, as well as the strong Markov property where s is replaced by a stopping
time T . (T is a stopping time if the event {T ≤ t} is measurable with respect to the σ-
algebra Ft generated by {Ns, s ≤ t}). The following are two equivalent characterizations
of a Poisson process:

a. For any t > 0 and h→ 0+, uniformly in t it holds

P (Nt+h −Nt = 0) = 1− λh+ o(h),

P (Nt+h −Nt = 1) = λh+ o(h),

P (Nt+h −Nt > 1) = o(h).

The last condition is actually a consequence of the first two.

4.4. POISSON PROCESS 39

b. The holding times S1, S2, . . . are independent exponential random variables Exp(λ)
and the jump chain is Yn = NJn = n.

The first property follows immediately from the Poisson distribution of the increments.
For the second proprety, observe that P (S1 > t) = P (Nt = 0) = e−λt hence S1 ∼ Exp(λ).
Similarly, P (Sn+1 > t) = P (NJn+t −NJn = 0) = e−λt so Sn+1 ∼ Exp(λ) and independent
of S1, . . . , Sn by the property of independent increments of Nt. The second property
suggests an easy algorithm to generate a Poisson process with parameter λ.

Algorithm 4.3: Homogeneous Poisson process I.

1 Set N0 = 0, J0 = 0, Y0 = 0
2 For n = 1, 2, . . . ,
3 Generate Sn ∼ Exp(λ) and set Jn = Jn−1 + Sn
4 Set Nt = NJn−1 , t ∈ [Jn−1, Jn) and NJn = NJn−1 + 1.

t

Nt

J1 J2 J3 J4

1

2

3

4

Figure 4.3: Homogeneous Poisson process.

Figure 4.3 shows a realization of a Poisson process. Another useful property of the
Poisson process is the following.

c. Conditional on Nt = n, the n jump times are uniformly distributed in (0, t), i.e.

J1, . . . , Jn have the same distribution of the order statistics U(1), . . . U(n) with Ui
iid∼

U(0, t).

Property c. suggests an alternative algorithm to generate a Poisson process of rate λ
on [0, T].

Algorithm 4.4: Homogeneous Poisson process II.

1 Generate NT ∼ Pois(λT)

2 Generate U1, . . . , UNT

iid∼ U(0, T)
3 Order the sample U(1) < · · · < U(NT)

4 Set J0 = 0, Jn = U(n), and Nt = n, t ∈ [Jn, Jn+1), n = 1, . . . , NT

40 CHAPTER 4. GENERATION OF MARKOV PROCESSES

Finally we mention that a Poisson process {Nt, t ≥ 0} can also be thought of as
a random counting measure. For a given interval A = (t1, t2), µ(A) =

∑∞
k=1 1{Jk∈A}

counts the number of jumps that occured in A (which is clearly a random number). Thus
dµ(t) =

∑∞
k=1 δJk(t) and it holds Nt = N0 +

∫ t
0 dµ(t).

4.5 Non-homogeneous Poisson process

A non-homogeneous Poisson process with rate λ(t) varying over time can be defined by
extending the property b. of a Poisson process.

Definition 4.5. {Nt, t ≥ 0, N0 = 0} is a non-homogeneous Poisson process with rate
λ : [0,∞) → R+ if it is a right-continuous process with independent increments, such that

P (Nt+h −Nt = 0) = 1− λ(t)h+ o(h),

P (Nt+h −Nt = 1) = λ(t)h+ o(h).

Therefore, the non-homogeneous rate λ(t) can be characterized by the following limits

λ(t) = lim
h→0+

1− P (Nt+h −Nt = 0)

h
= lim

h→0+

P (Nt+h −Nt = 1)

h
.

To be able to generate a non-homogeneous Poisson process we need to derive the
distribution of the holding times. This is shown in the next lemma.

Lemma 4.1. Let {Nt, t ≥ 0, N0 = 0} is a non-homogeneous Poisson process with rate
λ : [0,∞) → R+ and denote by F the cdf of the n+1 holding time Fn+1(t) = P (Sn+1 ≤ t).
It holds

Fn+1(t) = 1− exp

{
−
∫ Jn+t

Jn

λ(s) ds

}
.

Proof. We have

F ′
n+1(t) = lim

h→0

Fn+1(t+ h)− Fn+1(t)

h

= lim
h→0

P (t < Sn+1 ≤ t+ h)

h
= lim

h→0

P (Sn+1 ≤ t+ h | Sn+1 > t)

h
(1− Fn+1(t))

= lim
h→0

P (NJn+t+h > n | NJn+t = n)

h
(1− Fn+1(t))

= lim
h→0

1− P (NJn+t+h = n | NJn+t = n)

h
(1− Fn+1(t))

= λ(Jn + t)(1− Fn+1(t)).

Solving this differential equation with initial condition Fn+1(0) = 0 leads to the desired
result.

Hence, a non-homogeneous Poisson process with rate function λ(t) can be generated
by the following Algorithm.

4.6. COMPOUND POISSON PROCESS 41

Algorithm 4.5: Non-homogeneous Poisson process.

1 Set N0 = 0, J0 = 0, Y0 = 0
2 For n = 1, 2, . . .

3 Generate Sn ∼ Fn(t) = 1− exp
{
−
∫ Jn−1+t
Jn−1

λ(s) ds
}

4 Set Jn = Jn−1 + Sn,
5 Set Nt = NJn−1 , t ∈ [Jn−1, Jn),
6 Set NJn = NJn−1 + 1

If we define the function Λ(t) =
∫ t
0 λ(s) ds, and let Ñt be a homogeneous Poisson

process with rate 1, it can also be shown (exercise) that the non homogeneous Poisson
process Nt with rate function λ(t) can be obtained as Nt = Ñt ◦ Λ = ÑΛ(t).

4.6 Compound Poisson process

A compound Poisson process {Xt, t ≥ 0, X0 = 0} is a Poisson process with variable
jump intensity. Let ν(dy) be a probability measure on R and {Nt, t ≥ 0} a homogeneous
Poisson process with rate λ > 0. Then, the compound Poisson process with jump measure
λν(dy)dt is given by

Xt =

Nt∑
i=1

Zi, Zi
iid∼ ν.

Algorithm 4.6: Compound Poisson process.

1 Set N0 = 0, J0 = 0, Y0 = 0
2 For n = 1, 2, . . .
3 Generate Sn ∼ Exp(λ) and set Jn = Jn−1 + Sn,
4 Generate Zn ∼ ν,
5 Set Xt = XJn−1 , t ∈ [Jn−1, Jn) and XJn = XJn−1 + Zn

4.7 General continuous time / discrete space Markov pro-
cess

Let X = {y0, y1, . . . } be a discrete (finite or countable) set and let µ = {µi}i be a
probability mass function on X , i.e. µi ≥ 0, ∀i and

∑
i µi = 1. A continuous time

Markov chain {Xt ∈ X , t ≥ 0} with initial state X0 ∼ µ, is fully characterized by the
transition probabilities

qij(t) = lim
h→0+

P (Xt+h = j | Xt = i)

h

qi(t) = lim
h→0+

1− P (Xt+h = i | Xt = i)

h

42 CHAPTER 4. GENERATION OF MARKOV PROCESSES

J0 = 0

S3 = Exp(qY2
)

J1 J2 J3 J4

Y0

Y1

Y2

Figure 4.4: Homogeneous continuous time Markov process.

If qi(t) and qij(t) do not depend on t, the Markov chain is homogeneous. The (possibily
infinite) matrix Q = (Qij)ij given by

Qij =

{
qij i ̸= j

−qi i = j

is called the generator of the Markov chain. We assume here that Q is stable, i.e. qi <∞
for all i and conservative, i.e.

∑
j ̸=i qij = qi.

Definition 4.6. A homogeneous continuous time Markov chain {Xt ∈ X , t ≥ 0} with ini-
tial state X0 ∼ µ and (stable and conservative) generator matrix Q, is a right-continuous,
piecewise constant process denoted Markov (µ,Q) s.t.

• the jump process {Yn = XJn , n ∈ N0} is a discrete time Markov chain with transi-
tion probability

πij =
qij
qi
, i ̸= j, πii = 0, if qi ̸= 0

πij = 0, i ̸= j, πii = 1, if qi = 0.

• conditional on Y0, Y1, . . . , Yn−1, the holding times S1, . . . , Sn are independent ran-
dom variables, Si ∼ Exp(qYi−1), i = 1, . . . , n.

Notice that in this case, the holding time Sn depends on the current state of the
chain Sn ∼ Exp(qXJn−1

) and the chain can jump to any other state j with transition

probability πXJn−1
,j . An algorithm to generate such a process Markov (µ,Q) is given next.

4.7. GENERAL CONTINUOUS TIME / DISCRETE SPACE MARKOV PROCESS43

Algorithm 4.7: Markov (µ,Q).

1 Generate X0 ∼ µ and set J0 = 0, Y0 = X0

2 For n = 1, 2, . . .
3 Generate Sn ∼ Exp(−QYnYn) and set Jn = Jn−1 + Sn,
4 Generate Yn+1 ∼ πYn,·
5 Set Xt = Yn, t ∈ [Jn−1, Jn), and XJn+1 = Yn+1

The importance of the matrix Q is illustrated by the following calculation. let us
denote pi(t) = P (Xt = i) the probability of finding the chain in state yi at time t and
p(t) = (p1(t), p2(t), . . .) the (row) vector of suc probabilities. Then

dpi
dt

(t) = lim
h→0+

pi(t+ h)− pi(t)

h
= lim

h→0+

1

h
(P (Xt+h = i)− pi(t))

= lim
h→0+

1

h

∑
j ̸=i

P (Xt+h = j | Xt = i) pj(t) + P (Xt+h = i | Xt = i) pi(t)− pi(t)


=
∑
j ̸=i

qij(t)pj(t)− qi(t)pi(t) =
∑
j

pi(t)Qij(t)

from which we deduce the follwing differential equation

d

dt
p(t) = p(t)Q(t)

for the evolution of the probability vector p.

Exercise 4.3. The Poisson process {Nt, t ≥ 0, N0 = 0} with rate λ > 0 is a continuous
time Markov chain Markov (δ0, Q) with Q-matrix

Q =

−λ λ 0 . . .
0 −λ λ . . .

0
. . .

. . .
. . .


since

Qii = −λ = lim
h→0+

P (Nt+h = i | Nt = i)− 1

h

Qi,i+1 = λ = lim
h→0+

P (Nt+h = i+ 1 | Nt = i)

h

Qi,j = 0, j ̸= i, i+ 1.

Exercise 4.4 (Birth process). Let Xt ∈ N be the size of a population at time t. Births
of new individuals arrive after exponential time with rate λXt proportional to the actual
size of the population. Hence, the birth process is characterised by the Q-matrix

Q =


−λ λ

−2λ 2λ
−3λ 3λ

. . .
. . .

 .

44 CHAPTER 4. GENERATION OF MARKOV PROCESSES

Chapter 5

Monte Carlo method

Let us consider a random variable Z that is the output quantity of a stochastic model
and the goal of computing its expectation: µ = E [Z]. We assume that the probability
distribution of Z is not known analytically, but Z can be simulated.

Example 5.1. Consider a continuous time stochastic process {Xt, t ≥ 0} with values in
a subset X ⊂ Rd and the goal of computing the expectation of XT at a given time T ≥ 0,
i.e. Z = XT , or the expectation of a stopping time Z = inf{t ≥ 0 : Xt ∈ A ⊂ X} for
some measurable set A.

The Monte Carlo method consists simply in generating N i.i.d. replicas Z(1), . . . , Z(N)

of Z and estimating µ = E [Z] by a sample mean estimator

µ̂N =
1

N

N∑
i=1

Z(i).

We assume here that Var (Z) = σ2 < +∞.

5.1 Properties of the Monte Carlo estimator and confidence
intervals

The sample mean estimator µ̂N , which we will call also the Monte Carlo estimator, has
the following properties.

1. µ̂N is unbiased, i.e. E [µ̂N] = µ.

The expectation here is taken with respect to the distribution of the sample (Z(1), . . . , Z(N)).

2. Var (µ̂N) = σ2

N .

45

46 CHAPTER 5. MONTE CARLO METHOD

Indeed,

Var (µ̂N) = E
[
(µ̂N − E [µ̂N])

2
]
= E

(1

N

N∑
i=1

(Z(i) − µ)

)2


=
1

N2

N∑
i,j=1

E
[
(Z(i) − µ)(Z(j) − µ)

]

=
1

N2

N∑
i=1

E
[
(Z(i) − µ)2

]
︸ ︷︷ ︸

=σ2 ∀i since Z(i) are iid

+
1

N2

∑
i ̸=j

E
[
(Z(i) − µ)(Z(j) − µ)

]
︸ ︷︷ ︸
=0 since Z(i),Z(j) are indept.

=
σ2

N
.

3. Almost sure convergence: µ̂N
N→∞−−−−→ µ a.s.

This comes from the Strong Law of Large Numbers (SLLN), since E [Z] = µ <∞.

4. Asymptotic normality √
N(µ̂N − µ)

σ

d−→ N(0, 1)

where
d−→ means convergence in distribution. This comes from the Central Limit

Theorem (CLT), since Var (Z) < +∞.

Using the CLT, we can construct an asymptotic 1 − α confidence interval (i.e. an
interval with coverage probability 1− α)

Iα,N =

[
µ̂N − c1−α/2

σ√
N
, µ̂N + c1−α/2

σ√
N

]
with cα the α-quantile of the normal distribution satisfying Φ(cα) = α and Φ the cdf of a

standard normal random variable. This means that P (µ ∈ Iα,N)
N→∞−−−−→ 1−α. See Figure

5.1 for an illustration. Equivalently, the error |µ− µ̂N | satisfies

|µ− µ̂N | ≤ c1−α/2
σ√
N

with probability 1− α, asymptotically.

The CLT shows that the Monte Carlo error is of order N−1/2, which is a very slow
convergence rate (to reduce the error by a factor of 10, one has to multiply N by a factor
of 100) and is peculiar of Monte Carlo estimates, generally not improvable. On the other
hand, it holds under quite weak assumptions (Var (Z) < +∞).

The previous error estimate and confidence interval is not practical as it involves
the, usually unknown, variance σ2 = Var (Z). We can replace it by the sample variance
estimator computed using the same sample (Z(1), . . . , Z(N)),

σ̂2N =
1

N − 1

N∑
i=1

(
Z(i) − µ̂N

)2
.

5.2. IMPLEMENTATION ASPECTS 47

µ̂N + c1−α/2
σ√
N

µ̂N − c1−α/2
σ√
N

Iα,N

Figure 5.1: Asymptotic confidence interval for the sample mean estimator.

which is also an unbiased estimator and converges almost surely to σ2. It follows that
σ
σ̂N

→ 1 a.s. and

√
N(µ̂N − µ)

σ̂N
=

σ

σ̂N︸︷︷︸
→1 a.s.

√
N(µ̂N − µ)

σ︸ ︷︷ ︸
d−→N(0,1)

d−→ N(0, 1).

Then, a computable asymptotic confidence interval is given by

Îα,N =

[
µ̂N − c1−α/2

σ̂N√
N
, µ̂N + c1−α/2

σ̂N√
N

]
(5.1)

which leads to P
(
µ ∈ Îα,N

)
N→∞−−−−→ 1− α.

5.2 Implementation aspects

As an output of a Monte Carlo simulation, one should always provide, beside the point
estimate µ̂N , also an estimate of the error, quantified by e.g. the 1 − α asymptotic
confidence interval Îα,N .

In practice, one would also like to choose N so as to achieve a prescribed tolerance tol.
Again, this could be for instance in term of the length of the 1− α confidence interval:

choose N : |Îα,N | ≤ 2 tol.

This can be done by a two (or more) stages procedure as illustrated by the Algorithm
5.1.

48 CHAPTER 5. MONTE CARLO METHOD

Algorithm 5.1: Two stages Monte Carlo.

Given: tol, α
1 Do a pilot run with N̄ replicas (Z(i), . . . , Z(N̄)) and compute

µ̂N̄ =
1

N

N̄∑
i=1

Z(i), σ̂2N̄ =
1

N̄ − 1

N̄∑
i=1

(Z(i) − µ̂N̄)
2

2 Based on the previously estimated variance, fix

N =
c21−α/2σ̂

2
N̄

tol2
.

3 Generate a new sample (Z(1), . . . , Z(N)) and compute µ̂N and σ̂2N
4 if σ̂2N > σ̂2

N̄
then

5 Set N̄ = N and go back to 2.
6 else

7 Output µ̂N and Îα,N .
8 end

Alternatively, one can adopt a sequential procedure as illustrated by Algorithm 5.2.

Algorithm 5.2: Sequential Monte Carlo.

Given: tol, α
1 Do a pilot run with N̄ replicas (Z(i), . . . , Z(N̄)) and compute

σ̂2
N̄

=
1

N̄ − 1

∑N̄
i=1(Z

(i) − µ̂N̄)
2.

2 Set N = N̄ , µ̂N = µ̂N̄ , σ̂N = σ̂N̄ .

3 while
σ̂Nc1−α/2√

N
> tol do

4 set N = N + 1

5 generate Z(N) independent of Z(i), i < N
6 recompute µ̂N , σ̂

2
N

7 end

An efficient implementation of Algorithm 5.2 requires stable update formulas for µ̂N
and σ̂N . Two such formulas are the following:

µ̂N+1 =
N

N + 1
µ̂N +

1

N + 1
Z(N+1)

σ̂2N+1 =
N − 1

N
σ̂2N +

1

N + 1

(
Z(N+1) − µ̂N

)2
.

If N(tol) denotes the sample size at the end of the while loop, which is a random variable,
and µ̂N(tol) the corresponding sample mean estimator, it can be shown [1] under the sole
assumption that Var (Z) < +∞, that

lim
tol→0

P
(
|µ̂N(tol) − µ| ≤ tol

)
= 1− α (asymptotic consistency)

5.3. NON ASYMPTOTIC ERROR BOUNDS 49

and
N(tol)tol2

σ2c21−α/2

a.s.−→ 1 as tol → 0.

The drawback of this algorithm is that if N̄ is chosen too small so that the estimator
σ̂N is unreliable, this may cause the algorithm to terminate too early, leading to a poor
estimation of E [Z].

5.3 Non asymptotic error bounds

The confidence interval (5.1) for the sample mean estimator, derived in Section 5.1 is
based on the CLT and is only valid asymptotically. Sometimes, if the distribution of the
random variable Z is far from being Gaussian and the sample size is small, the distribution

of the rescaled sample mean estimator
√
N(µ̂N−µ)
σ̂N

may still be far from the asymptotic

Normal one and the corresponding confidence interval Îα,N will be unreliable. Other more
robust confidence intervals could be used instead, in this case, which however often lead
to very conservative bounds. We mention:

• Bound based on Chebyshev inequality P (|Z − E [Z] | > a) ≤ Var(Z)
a2

which implies

P
(
|µ̂N − µ| ≤ σ√

Nα

)
≥ 1− α

from which we can compute the approximate confidence interval

ÎChebα,N = [µ̂N − σ̂N√
αN

, µ̂N +
σ̂N√
αN

].

This should be compared with the CLT result P
(
|µ̂N − µ| ≤ σc1−α/2√

N

)
≥ 1−α. For

α small, one has typically c1−α/2 ≪ 1√
α
. E.g. for α = 0.05 we have c.975 = 1.96

whereas 1√
α
= 4.47 and for α = 0.01 we have c.995 = 2.576 whereas 1√

α
= 10.

• Bound based on Berry-Essén (for random iid variables with bounded third moment)

sup
x

∣∣∣∣∣P
(√

N(µ̂N − µ)

σ
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ k
E
[
|Z − µ|3

]
√
Nσ3

, (k ≈ 0.4748)

which quantifies how far the distribution of
√
N(µ̂N−µ)

σ is from the standard Normal

cdf based on 3rd moment estimates. Given an estimate γ̂N ≈ E
[
|Z − µ|3

] 1
3 one can

then solve the problem:

find x̂α : Φ(x̂α)−
kγ̂3N√
Nσ̂3N

= 1− α

2

and output the confidence interval ÎBEα,N = [µ̂N − x̂α
σ̂N√
N
, µ̂N + x̂α

σ̂N√
N
].

50 CHAPTER 5. MONTE CARLO METHOD

5.4 Vector valued output

The Monte Carlo method extends trivially to a vector valued output Z = (Z1, . . . , Zm)
and the estimation of its expected value µ = E [Z]. In this case, we generate iid replicas
Z(1), . . . ,Z(N) and set µ̂N = 1

N

∑N
i=1Z

(i).

We can also estimate from the same sample the covariance matrix ĈN = 1
N−1

∑N
i=1(Z

(i)−
µ̂N)(Z

(i) − µ̂N)
⊤. The considerations on asymptotic confidence intervals based on the

CLT extend to the case of a vector valued output as well. Indeed we have µ̂N
a.s.−→ µ,

ĈN
a.s.−→ C and

N(µ̂N − µ)⊤Ĉ−1
N (µ̂N − µ)

d−→ χ2
m

where χ2
m denotes the χ2 distribution withm degrees of freedom. Based on this asymptotic

result, a computable 1− α asymptotic confidence region is

Îα,N = {y ∈ Rm : (µ̂N − y)⊤Ĉ−1
N (µ̂N − y) ≤

χ2
m;1−α
N

}

where χ2
m;1−α is the 1 − α quantile of the χ2

m distribution, so that P
(
µ ∈ Îα,N

)
N→∞−−−−→

1− α.

5.5 Smooth functions of expectations and delta method

Consider, as in the previous section, a vector of output quantities Z = (Z1, . . . , Zm)
of a stochastic model. However, now, we wish to compute a nonlinear function of the
expectation of Z, i.e.

ζ = f(E [Z1] , . . . ,E [Zm])

with f : Rm → R smooth. If we denote µi = E [Zi] and µ = (µ1, . . . , µm) ∈ Rm, the
natural Monte Carlo estimator for ζ is

ζ̂N = f(µ̂1,N , . . . , µ̂m,N) with µ̂i,N =
1

N

N∑
k=1

Z
(k)
i

with Z(1), . . . ,Z(N) iid replicas of Z. If f is continuous at µ, then ζ̂N
a.s.−→ ζ i.e. ζ̂N is a

consistent estimator of ζ.

The question is now how to estimate the error on ζ̂N and provide a confidence interval.
One way of doing this is provided by the so calles delta method, based on a first order
Taylor expansion of f around µ:

ζ̂N − ζ = f(µ̂N)− f(µ) = ∇f(µ)(µ̂N − µ) + o(∥µ̂N − µ∥).

where we have used the convention that ∇f is a row vector. Let C = Cov(Z) =
E
[
(Z − µ)(Z − µ)⊤

]
. Then

√
N(ζ̂N − ζ)

d−→ N(0,∇f(µ)C∇f(µ)⊤).

5.6. MONTE CARLO TO COMPUTE INTEGRALS 51

A computable 1 − α confidence interval can then be constructed by replacing C with
ĈN = 1

N−1

∑N
i=1(Z

(i) − µ̂)(Z(i) − µ̂)⊤ and ∇f(µ) with ∇f(µ̂N) as

Îα,N = [ζ̂N −∆N , ζ̂N +∆N], ∆N =
c1−α/2√

N

√
∇f(µ̂N)ĈN∇f(µ̂N)⊤.

Obverse that the estimator ζ̂N is biased in general.

Example 5.2. Let Z be a scalar random variable, output of a stochastic model. Suppose
we want to estimate the coefficient of variation of Z

ζ =
σ(Z)

µ(Z)
=

√
E [Z2]− E [Z]2

E [Z]
.

Setting Z = (Z1, Z2) = (Z,Z2) and f(x, y) =
√

y
x2

− 1, then ζ = f(E [Z1] ,E [Z2]). If ζ̂N

denotes a Monte Carlo estimator for ζ, the delta method can be used to produce a 1− α
asymptotic confidence interval. Explicit calculations are left as an exercise.

5.6 Monte Carlo to compute integrals

Consider a simple stochastic model Z = ψ(X1, . . . , Xd) with ψ : Rd → R bounded and
X = (X1, . . . Xd) a random vector with joint probability density function f : Rd → R+.
Then,

E [Z] =

∫
Rd

ψ(x1, . . . , xd)f(x1, . . . , xd) dx1 . . . dxd =

∫
Rd

ψ(x)f(x) dx.

A Monte Carlo approximation of µ = E [Z] consists of:

• generating N iid replicas of X(i) ∼ f

• computing µ̂N = 1
N

∑N
i=1 ψ(X

(i)) ≈
∫
Rd ψ(x)f(x) dx.

Hence, the formula 1
N

∑N
i=1 ψ(X

(i)) can be seen as a quadrature formula to approximate
the integral

∫
Rd ψ(x)f(x) dx.

Conversely let us consider the problem of computing an integral I =
∫
Rd ψ(x)w(x) dx

where w : Rd → R+ a non negative weight such that
∫
Rd w = 1. Then we can estimate

the integral by a Monte Carlo formula

Î =
1

N

N∑
i=1

ψ(X(i))

with X(i) iid∼ w.

52 CHAPTER 5. MONTE CARLO METHOD

Ω

B

Figure 5.2: Monte Carlo to estimate the volume of Ω.

Example 5.3. Let Ω ⊂ Rd be a bounded domain. We want to compute its volume |Ω|.
Let B be a rectangular domain containing Ω. Then I = |Ω| = |B|

∫
B 1Ω(x)

1
|B| dx and its

Monte Carlo approximation is

Î =
|B|
N

N∑
i=1

1Ω(X
(i)) =

#{X(i) ∈ Ω}
N

|B|,

with X(i) iid∼ U(B) i.e. we draw independently uniform points in B and count how many
fall in Ω. See Figure 5.2 for a graphical illustration.

The error in the Monte Carlo approximation is

|I − Î| ≤ c1−α/2
σ√
N

with probability 1− α asymptotically, where

σ2 =

∫
Rd

ψ2(x)w(x) dx− I2 ≤
∫
Rd

ψ2(x)w(x) dx.

Hence, the rate of convergence is O(N−1/2) and is achieved under the sole condition∫
Rd ψ

2(x)w(x) dx < +∞. Observe, in particular, that this rate is independent of the
dimension d! (assuming that the variance σ2 remains bounded when we increase the
dimension of the problem). Although Monte Carlo has a very poor convergence rate
O(N−1/2), its use is still very appealing for high dimensional problems.

As a term of comparison, consider the problem of computing an integral I =
∫
[0,1]d ψ(x) dx

on the unit hypercube by a tensor quadrature formula, e.g. tensor mid-point rule

Imp =

N∑
i=1

ψ(X(i))hd =
1

N

N∑
i=1

ψ(X(i))

5.6. MONTE CARLO TO COMPUTE INTEGRALS 53

Figure 5.3: Uniform grid to estimate the integral of ψ.

where X(i) are the centres of the cells and h = N−1/d is the length of each cell (see Figure
5.3).

The error of the quadrature formula can be bounded as:

|I − Imp| ≤ Ch2∥ψ∥C2([0,1]d) = CN−2/d∥ψ∥C2([0,1]d).

Therefore, such a formula achieves a rate N−2/d, with respect to the number of points
used, provided ψ ∈ C2([0, 1]d) (hence regularity is required on the integrand to achieve
such rate) and already for d > 4 the rate will be worse than Monte Carlo (this effect is
usually referred to as the “curse of dimensionality”).

54 CHAPTER 5. MONTE CARLO METHOD

Chapter 6

Variance Reduction Techniques

As in the previous chapter, let Z be a random variable, output of a stochastic model, and
consider the goal of computing the expected value µ = E [Z]. It will be useful to assume
that Z can be written as Z = ψ(X) with X = (X1, . . . , Xd) a random vector with pdf
f : Rd → R+, so that

µ = E [Z] =

∫
Rd

ψ(x)f(x) dx.

The Monte Carlo approach (hereafter called “Crude Monte Carlo”) to approximate

µ consists in generating N iid replicas Z(i), . . . , Z(N), with Z(i) = ψ(X(i)), X(i) iid∼ f and
computing

µ̂CMC =
1

N

N∑
i=1

Z(i).

As we have seen in Chapter 5, by the CLT we have that

|µ− µ̂CMC| ≤ c1−α/2

√
Var (Z)√
N

with probability 1− α, asymptotically as N → ∞.

The techniques of variance reduction aim at improving the performance of a Crude
Monte Carlo approximation by reducing the constant

√
Var (Z), hence the name “variance

reduction”. The idea is simple: instead of applying the sample mean estimator µ̂ = µ̂(Z)
to the variable Z, one applies it to a cleverly modified version Z̃ which satisfies

E[Z̃] = E [Z] = µ and Var(Z̃) ≪ Var (Z) .

Hence, a Monte Carlo approximation with variance reduction will look like

µ̂VR =
1

N

N∑
i=1

Z̃(i)

with Z̃(i) iid∼ Z̃.

55

56 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

6.1 Antithetic Variables

Suppose N even. Instead of generating N iid replicas of Z, the underlying idea of anti-
thetic sampling is to generate N/2 iid pairs of negatively correlated random variables

(Z(1), Z(1)
a), (Z(2), Z(2)

a), . . . , (Z(N/2), Z(N/2)
a),

where all Z(i), Z
(i)
a have the same distribution as Z but Cov(Z(i), Z

(i)
a) < 0, i = 0, . . . , N/2.

If we now consider the estimator

µ̂AV =
1

N/2

N/2∑
i=1

Z(i) + Z
(i)
a

2

it follows immediately that

E [µ̂AV] = E [Z] = µ

and

Var (µ̂AV) =
4

N2

N/2∑
i=1

Var

(
Z(i) + Z

(i)
a

2

)
=

1

2N
Var

(
Z(1) + Z(1)

a

)
=

1

2N

(
Var

(
Z(1)

)
+ Var

(
Z(1)
a

)
+ 2Cov(Z(1), Z(1)

a)
)

=
Var (Z) + Cov(Z(1), Z

(1)
a)

N
< Var (µ̂CMC)

since, by assumption, Cov(Z(1), Z
(1)
a) < 0. The estimator µ̂AV has therefore a smaller

variance than the Curde Monte Carlo estimator µ̂CMC at the same computational cost

(provided the generation of Z
(i)
a has the same cost as the generation of Z(i)).

The question is now how to generate pairs of negatively correlated variables (Z(i), Z
(i)
a).

The following proposition presents a situation in which variance reduction can be achieved
by a rather simple construction of antithetic sampling.

Proposition 6.1. Assume that the random variable Z has the expression Z = ψ(X),
with X = (X1, . . . , Xd) a random vector with independent components, such that

• X has a symmetric distribution around its mean, i.e. 2E [X]−X ∼ X

• ψ is a monotone function in each of its arguments.

Then Z = ψ(X) and Za = ψ(2E [X]−X) satisfy

E [Z] = E [Za] and Cov(Z,Za) < 0.

Under the assumptions of the previous proposition, a Monte Carlo approximation
of µ = E [Z] with antithetic variables can be constructed by the following algorithm.

6.1. ANTITHETIC VARIABLES 57

Algorithm 6.1: Antithetic variables.

1 Generate N/2 iid replicas X(1), . . . , X(N/2) of X;

2 For each X(i) compute Z(i) = ψ(X(i)) and Z
(i)
a = ψ(2E [X]−X(i));

3 Compute µ̂AV = 1
N

∑N/2
i=1 (Z

(i) + Z
(i)
a).

4 Estimate σ̂2AV = 1
N/2−1

∑N/2
i=1

(
Z(i)+Z

(i)
a

2 − µ̂AV

)2
5 Output µ̂AV and a (asymptotic) 1− α confidence interval

Îα,N =

[
µ̂AV − c1−α/2

σ̂AV√
N/2

, µ̂AV + c1−α/2
σ̂AV√
N/2

]

The proof of Proposition 6.1 relies on the following Chebyshev Covariance inequality.

Lemma 6.2 (Chebyshev Covariance inequality). Let X be a real-valued random vari-
able with pdf f : R → R+ and let g, h : R → R be functions that are both non-
decreasing or both non-increasing, such that E [|g(X)|] ,E [|h(X)|] ,E [|g(x)h(x)|] < +∞.
Then Cov(g(X), h(X)) ≥ 0.

Proof. We consider the case of g, h both non-decreasing. The other case can be proven
analogously. Let g̃(x) = g(x)− E [g(x)] and h̃(x) = h(x)− E [h(x)]. Observe first that

1

2

∫∫
(g(x)− g(y))(h(x)− h(y))f(x)f(y) dx dy =

1

2

∫∫
(g̃(x)− g̃(y))(h̃(x)− h̃(y))f(x)f(y) dx dy

=

∫
g̃(x)h̃(x)f(x) dx−

(∫
g̃(x)f(x) dx

)
︸ ︷︷ ︸

=0

(∫
h̃(y)f(y) dy

)
︸ ︷︷ ︸

=0

= Cov(g(X), h(X))

Hence

Cov(g(X), h(X)) =
1

2

∫
x≥y

(g(x)− g(y))︸ ︷︷ ︸
≥0

(h(x)− h(y))︸ ︷︷ ︸
≥0

f(x)f(y)dxdy

+
1

2

∫
x<y

(g(x)− g(y))︸ ︷︷ ︸
≤0

(h(x)− h(y))︸ ︷︷ ︸
≤0

f(x)f(y)dxdy ≥ 0.

The previous inequality generalizes to the multivariate case, whose proof is left as
exercise.

Lemma 6.3. Let X = (X1, . . . , Xd) ∈ Rd be a random vector with independent compo-
nents and let g, h : Rd → R be functions whose dependence on each argument is either
non-decreasing or non-increasing for both of them. Then Cov(g(X), h(X)) ≥ 0.

58 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

Proof of Proposition 6.1. Since 2E [X] −X ∼ X we have Za ∼ Z, hence E [Za] = E [Z].
Moreover, observe that if ψ(X1, . . . , Xd) is e.g. non decreasing in the i-th argument, so is
the function −ψ(2E [X1]−X1, . . . , 2E [Xd]−Xd) and, from the previous Lemma, we have
Cov(ψ(X),−ψ(2E [X]−X)) ≥ 0, hence Cov(Z,Za) ≤ 0.

Example 6.1. Let Z ∼ Exp(λ). Then Z = − 1
λ logX = ψ(X) with X ∼ U(0, 1) and ψ

monotone (decreasing). It follows that ψ(X) and ψ(1−X) are negeatively correlated and
a Monte Carlo estimator with antithetic variables for the computation of µ = 1

λ = E [Z]

is µ̂AV = 1
N

∑N/2
i=1 (−

1
λ log(X

(i))− 1
λ log(1−X(i))), with X(i) iid∼ U(0, 1).

Example 6.2. Consider the problem of pricing a European option µ = E [Z] with Z =
ψ(ST) = e−rT (ST −K)+ where St is the solution of the stochastic differential equation

dSt = rSt dt+ σSt dWt

with Wt a standard Wiener process and S0 given. It can be shown that Xt = log(St/S0)
satisfies the stochastic differential equation with constant coefficients

dXt = (r − σ2/2) dt+ σ dWt, X0 = 0

whose solution is Xt = (r − σ2/2)t+ σWt ∼ N((r − σ2/2)t, σ2t). Hence ST = S0e
XT has

a log-normal distribution with XT ∼ N((r − σ2/2)T, σ2T) and E [ST] = S0e
rT . Observe

that ψ is a non decreasing function of ST , which, on its turn, is an increasing function
of XT whose distribution is symmetric about its mean. Hence ψ̃(XT) = ψ(S0e

XT) is non
decreasing in XT and an antithetic variable estimator

µ̂AV =
1

N

N/2∑
i=1

(
ψ̃(X

(i)
T) + ψ̃((2r − σ2)T −X

(i)
T)
)
, X

(i)
T

iid∼ N

(
(r − σ2

2
)T, σ2T

)

will lead to variance reduction.

Example 6.3. Consider a random walk on the integers: Zn+1 = Zn +Xn+1 with Xi iid
such that P (Xi = 1) = P (Xi = −1) = 1/2 and Z0 = 0. We want to estimate by Monte
Carlo µ = P (ZN ≥ s) with s ∈ N. Denote

ψ(ZN) = 1{ZN≥s} = 1{∑N
n=1Xn≥s} = ψ̃(X1, . . . , XN).

Then µ = E [ψ(ZN)] = E
[
ψ̃(X1, . . . , XN)

]
. Since ψ̃ is a non decreasing function in

each Xn, and each Xn has a simmetric distribution around its mean E [Xn] = 0, a MC
estimator with antithetic variables will lead to variance reduction. It consists in generating

N/2 iid paths Z
(i)
n+1 = Z

(i)
n +X

(i)
n as well as the antithetic paths Z̃

(i)
n+1 = Z̃

(i)
n −X

(i)
n , and

build the estimator µ̂AV = 1
N

∑N/2
i=1 (ψ(Z

(i)
N) + ψ(Z̃

(i)
N)).

6.2. IMPORTANCE SAMPLING 59

E[ST] = S0erTK

pdf ST

ψ(ST)

Figure 6.1: European option.

6.2 Importance Sampling

Let X ∈ Rd be a random vector with pdf f : Rd → R+ and Z = ψ(X) with ψ : Rd → R.
Then, computing the expected value of Z corresponds to computing the multidimensional
integral

µ = E [Z] =

∫
Rd

ψ(x)f(x) dx

Let now g : Rd → R+ be an auxiliary pdf such that g(x) = 0 only if ψ(x)f(x) = 0. Then,
the integral can be rewritten as

µ = E [Z] =

∫
Rd

(
ψ(x)f(x)

g(x)

)
g(x) dx = Eg

[
ψf

g

]
.

where Eg denotes expectation under the measure g(x) dx. It follows that in a Monte
Carlo approach, instead of generating iid replicas of X to estimate µ = Ef [ψ(X)], we

could generate iid replicas of X̃ having pdf g, and estimate µ = Eg
[
ψ(X̃)f(X̃)

g(X̃)

]
. This

technique is known as importance sampling. The auxiliary distribution g is called the
importance sampling or dominating distribution and the correcting factor w(x) = f(x)

g(x) is
often called the likelihood ratio.

In more general terms, if X has measure νX and ν∗ is another probability measure
that dominates νX , i.e. νX is absolutely continuous with respect to ν∗, then there exists
a density ρ = dνX

dν∗ (Radon-Nicodyn derivative), and E [Z] can be rewritten as

µ = E [Z] =

∫
ψ(x)dνX(x) =

∫
ψ(x)ρ(x)dν∗(x) = E∗[ψρ]

60 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

Algorithm 6.2: Importance sampling

1 Generate N iid replicas X̃(1), . . . , X̃(N) ∼ g

2 Compute µ̂IS = 1
N

∑N
i=1

ψ(X̃(i))f(X̃(i))

g(X̃(i))

3 Estimate σ̂2IS = 1
N−1

∑N
i=1

(
ψ(X̃(i))f(X̃(i))

g(X̃(i))
− µ̂IS

)2
4 Output µ̂IS and a (asymptotic) 1− α confidence interval

Iα =

[
µ̂IS − c1−α/2

σ̂IS√
N
, µ̂IS + c1−α/2

σ̂IS√
N

]

E[ST] = S0erT K

pdf ST

ψ(ST)g̃

Figure 6.2: European option.

and an importance sampling strategy consists in generating iid replicas X̃(i) iid∼ ν∗, i =
1, . . . , N and estimating the empirical mean µ̂IS = 1

N

∑N
i=1 ψ(X̃

(i))ρ(X̃(i)).

Example 6.4. Let us consider again the option pricing problem of computing µ = E [Z],
Z = ψ(ST) = e−rT (ST −K)+ with ST = S0 exp(XT) and XT ∼ N((r − σ2/2)T, σ2T). If
K ≫ E [ST] = S0e

rT , most of the the mass of ST falls in the region where ψ(ST) = 0.
Hence a crude Monte Carlo estimator will be very ineffective as only few replicas of ST
will fall in the “interesting” region ST > K. The idea would then be to “artificially”
push the distribution to the right. This can be achieved, for instance, by increasing the
drift parameter r in the dynamics of St. We can therefore simulate a geometric Brownian
motion

dS̃t = r̃S̃t dt+ σS̃t dWt

with an increased drift rate r̃ > r. Let XT = log(ST /S0) ∼ N((r − σ2/2)T, σ2T) and
X̃T = log(S̃T /S0) ∼ N((r̃ − σ2/2)T, σ2T), and denote by fXT

and fX̃T
the pdfs of XT

6.2. IMPORTANCE SAMPLING 61

and X̃T , respectively. It follows that

µ =

∫
R
ψ(S0e

x)fXT
(x) dx =

∫
R
ψ(S0e

x)w(x)fX̃T
(x) dx

with likelihood ratio

w(x) =
fXT

(x)

fX̃T
(x)

= exp

{
(r̃ − r)((r̃ + r − σ2)T − 2x)

2σ2

}
= (ex)−

r̃−r

σ2 e
(r̃−r)(r̃+r−σ2)T

2σ2

and an importance sampling estimator is

µ̂IS =
1

N

N∑
i=1

ψ(S̃
(i)
T)

(
S
(i)
T

S0

)− r̃−r

σ2

e
(r̃−r)(r̃+r−σ2)T

2σ2

with
log
(
S̃
(i)
T /S0

)
iid∼ N((r̃ − σ2/2)T, σ2T).

6.2.1 On the choice of the importance sampling distribution g

The importance sampling estimator

µ̂IS =
1

N

N∑
i=1

ψ(X̃(i))f(X̃(i))

g(X̃(i))
, X̃(i) iid∼ g

is unbiased and has variance

Var (µ̂IS) =
1

N
Varg

(
ψf

g

)
=

1

N

(∫
Rd

ψ2(x)f2(x)

g2(x)
g(x) dx− µ2

)
=

1

N

(
Ef
[
ψ2 f

g

]
− µ2

)
.

Therefore, the optimal choice of g is the one that minimizes Var (µ̂IS), i.e. it minimizes

the term
∫
Rd ψ

2 f2

g dx, under the conditions
∫
Rd gdx = 1 and g ≥ 0. It is clear that the

optimal distribution should vanish outside Γ = supp(ψ2f2). Moreover, introducing the
Lagrangian function

L(g, λ) =
∫
Γ

ψ2f2

g
dx+ λ

(∫
Γ
g − 1

)
and taking variations, the (necessary) optimality condition reads

∂L
∂g

(δg) = −
∫
Rd

(
ψ2 f

2

g2
− λ

)
δgdx = 0, ∀δg

which implies g2 = ψ2 f2

λ . We see that the optimal g is given by

g∗ =
|ψ|f

Ef [|ψ|]
.

With such optimal g∗, the variance of the importance sampling estimator is Var (µ̂∗IS) =
E
[
|ψ|2

]
− E [ψ]2. In particular, if ψ ≥ 0, we have Var (µ̂IS) = 0 ! However, working with

62 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

g∗ is clearly not practical as the normalizing constant Ef [|ψ|] is, in general, as difficult to
compute as the original quantity µ = E [ψ], and we need to know it explicitely to compute
the likelihood ratio.

Although the optimal distribution g∗ can not be used in practice, this optimization
argument shows that the dominating density g should resemble as much as possible to
|ψ|f while still being easily simulatable and with explicit expression.

Often, this optimization is performed over a parametric family of pdfs {f(·, θ), θ ∈
Θ}. Assuming that the original pdf also belongs to the family, with parameter θ0, i.e.
f = f(·, θ0) and that the support supp(f(·, θ)) of each distribution in the familiy is the
same, we can take as dominating distribution

g(·) = f(·, θ∗), with θ∗ = argmin
θ∈Θ

Eθ
[
ψ2f2(·, θ0)
f2(·, θ)

]
= argmin

θ∈Θ
Eθ0

[
ψ2f(·, θ0)
f(·, θ)

]
.

A typical case is when {f(·, θ)} is an exponential family f(x, θ) ∝ exp(θ⊤x − k(θ)), for

which the likelihood ratio f(x,θ0)
f(x,θ) takes a simple form. The optimization above can be

performed numerically replacing the exact expectation with a sample average over a pilot
run.

Algorithm 6.3: Importance sampling with variance minimization

1 Generate N̄ iid replicas Y (1), . . . , Y (N̄) ∼ f(·, θ0)
2 Solve the minimization problem

θ̂∗Y = argmin
θ∈Θ

1

N̄

N̄∑
i=1

ψ2(Y (i))
f(Y (i), θ0)

f(Y (i), θ)

3 Generate N iid replicas X(1), . . . , X(N) ∼ f(·, θ̂∗Y)

4 Compute µ̂IS = 1
N

∑N
i=1 ψ(X

(i)) f(X
(i),θ0)

f(X(i),θ̂∗Y)
.

The estimator µ̂IS of Algorithm 6.3 is unbiased. Indeed, if we denote by X =
(X(1), . . . , X(N)) and Y = (Y (1), . . . , Y (N̄)), and use the tower property, we have

E [µ̂IS] = EY [EX [µ̂IS | Y]] = EY

[∫
ψ(x)

f(x, θ0)

f(x, θ̂∗Y)
f(x, θ̂∗Y) dx

]
= µ.

We can write as well an adaptive version of this algorithm. Notice that at step 3 we
generate a sample from θ̂ = θ̂∗Y . On the other hand, our functional to minimize can be
written as

J(θ) = Eθ0
[
ψ2f(·, θ0)
f(·, θ)

]
= Eθ̂

[
ψ2f2(·, θ0)
f(·, θ)f(·, θ̂)

]
.

This suggests the following adaptive algorithm

6.2. IMPORTANCE SAMPLING 63

Algorithm 6.4: Adaptive importance sampling with variance minimization

Given: tol, α, N̄ > 1, γ > 1
1 Set N = N̄/γ, θ̂new = θ0, σ̂ = ∞

2 while
σ̂c1−α/2√

N
> tol do

3 Set θ̂ = θ̂new and N = γN

4 Generate N iid replicas Y (1), . . . , Y (N) ∼ f(·, θ̂)
5 Compute

µ̂IS =
1

N

N∑
i=1

ψ(Y (i))
f(Y (i), θ0)

f(Y (i), θ̂)
, σ̂2 =

1

N − 1

N∑
i=1

(
ψ(Y (i))

f(Y (i), θ0)

f(Y (i), θ̂)
− µ̂IS

)2

6 Solve the minimization problem

θ̂new = argmin
θ∈Θ

1

N

N∑
i=1

ψ2(Y (i))
f2(Y (i), θ0)

f(Y (i), θ)f(Y (i), θ̂)

7 end
8 Output µ̂IS

An alternative approach to determine an optimal parameter θ∗ consists in minimizing
over θ the Kullback-Leibler divergence (or cross entropy) between the candidate distribu-

tion f(·, θ) and the optimal importance sampling distribution g∗(x) = |ψ(x)|f(x,θ0)
Eθ0

[|ψ|] .

Definition 6.1. The Kullbach-Leibler divergence DKL(g|f) between a target pdf g and a
candidate pdf f is defined as

DKL(g|f) = Eg[log
g

f
] =

∫
g(x) log g(x)dx−

∫
g(x) log f(x)dx

In our setting, with g = g∗ and f = f(·, θ) we have

DKL(g
∗|f(·, θ)) = Eg∗ [log g∗]− Eg∗ [log f(·, θ)]

= Eg∗ [log g∗]−
1

Eθ0 [|ψ|]

∫
|ψ(x)|f(x, θ0) log f(x, θ)dx.

Notice that θ∗ minimizes DKL(g
∗|f(·, θ)) if and only if it maximizes the quantity

J(θ) =

∫
|ψ(x)|f(x, θ0) log f(x, θ)dx = Eθ̂

[
|ψ(·)|f(·, θ0)

f(·, θ̂)
log f(·, θ)

]

which can be approximated by an empirical mean from a sample drawn from the distri-
bution f(·, θ̂). Moreover, for certain families of distributions, such as the exponential one,
the function θ 7→ J(θ) is concave, which makes the maximization problem easy to solve.

64 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

An cross-entropy adaptive Importance Sampling algorithm can be easily construted
using Algorithm 6.4 and replacing step 6 with

θ̂new = argmin
θ∈Θ

1

N

N∑
i=1

|ψ(Y (i))|f(Y
(i), θ0)

f(Y (i), θ̂)
log f(Y (i), θ).

6.2.2 Weighted importance sampling

In certain cases, the pdf f and/or the dominating pdf g, are known only up to a nor-
malizing constant. (We assume, however, that we can still generate X ∼ g e.g. by
Acceptance-Rejection). Let f = cgf̃ and g = cg g̃, with cf = (

∫
f̃)−1 and cg = (

∫
g̃)−1.

A modified (self-normalized) version of the importance sampling estimator, which does
not require the explicit knowledge of the normalizing constants (cf , cg) is

µ̂WIS =

∑N
i=1 ψ(X

(i))w(X(i))∑N
i=1w(X

(i))

with w(x) = f̃(x)
g̃(x) and X(i) iid∼ g. Calling w̃i = w(X(i))∑N

i=1 w(X
(i))

, the estimator µ̂WIS can be

written as a weighted average

µ̂WIS =
N∑
i=1

ψ(X(i))w̃i.

To see that µ̂WIS is a consistent estimator, observe that

1

N

N∑
i=1

w(X(i))
a.s.−→

∫
f̃(x)

g̃(x)
g(x) dx =

cg
cf

by the strong law of large numbers (SLLN) and

1

N

N∑
i=1

ψ(X(i))w(X(i))
a.s.−→

∫
ψ
f̃

g̃
g dx =

cg
cf
µ

again by SLLN. This estimator is biased, although the bias is usually small. Observe
that this weighted version of the importance sampling estimator requires the stronger
condition f(x) = 0 if g(x) = 0 (as opposed to the condition ψ(x)f(x) = 0 if g(x) = 0 of
the standard estimator).

6.2.3 Importance sampling for stochastic processes

Discrete time Markov Chains.

Consider a discrete time Markov chain in Rd, {Xn, n ∈ N0} ∼ Markov (p0, P), with
Markov transition kernel defined by a probability density p : Rd × Rd → R+ :

P (x,A) = P (Xn+1 ∈ A | Xn = x) =

∫
A
p(x, y) dy, A ∈ B(Rd),

6.2. IMPORTANCE SAMPLING 65

and initial probability p0, i.e. X0 ∼ p0. We are interested in computing

µ = E [Z] = E [ψ(X0, . . . , Xm)]

for some finite horizon m ∈ N. Importance sampling in this case can be done by replacing
the transition kernel P by another kernel Q with probability density function q : Rd ×
Rd → R+ which dominates p, i.e. q(x, y) = 0 =⇒ p(x, y) = 0, and the initial density
p0 by a dominating one q0. We will use the shorthand notation X0:m to denote the
path (X0, . . . , Xm) and a subscript p0, P to denote a Markov process Markov (p0, P). By
successive conditioning, we have

µ = E[ψ(X0, . . . , Xm)] = EX0:m−1∼p0,P [EXm∼P (Xm−1,·)[ψ(X0:m)|Xm−1, . . . , X0]]

= EX0:m−1∼p0,P

[∫
ψ(X0:m−1, z)p(Xm−1, z)dz

]
= EX0:m−1∼p0,P

[∫
ψ(X0:m−1, z)

p(Xm−1, z)

q(Xm−1, z)
q(Xm−1, z)dz

]
= EX0:m−1∼p0,P

[
EXm∼Q(Xm−1,·)[ψ(X0:m)

p(Xm−1, Xm)

q(Xm−1, Xm)
|Xm−1, . . . , X0]

]

= EX0:m∼q0,Q

ψ(X0:m)
p0(X0)

q0(X0)

m∏
j=1

p(Xj−1, Xj)

q(Xj−1, Xj)


= EX0:m∼q0,Q [ψ(X0:m)w(X0:m)]

with likelihood ratio

w(X0:m) =
p0(X0)

q0(X0)

m∏
j=1

p(Xj−1, Xj)

q(Xj−1, Xj)
.

The previous argument can also be adapted to the case in which the process is stopped
at some stopping time τ , e.g. τ = inf{n : Xn ∈ B ∈ B(Rd)}. Suppose now we want to
compute the quantity

µ = E [Z] = E
[
ψτ (X0, . . . , Xτ)1{τ<+∞}

]
.

When doing importance sampling with the dominating transition probability q, we require
that Pq(τ < +∞) = 1. Then. it can be shown that (exercise)

µ = E[Z] = Ep0,P [ψτ (X0:τ)1{τ<+∞}] = Eq0,Q[ψτ (X0, . . . , Xτ)w(X0:τ)]

and µ can be estimated by the following algorithm:

Discretized stochastic differential equations

Consider a stochastic differential equation in Rd

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, t > 0, with X0 given, (6.1)

66 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

Algorithm 6.5: Importance sampling for Markov processes.

1 Generate N iid paths X
(i)

0:τ (i)
= (X

(i)
0 , . . . , X

(i)

τ (i)
), i = 1, . . . , N , each one up to the

stopping time τ (i), of the Markov chain with transition probability
q : Rd × Rd → R+ and initial probability q0 : Rd → R+

2 Compute likelihood ratio w(X
(i)

0:τ (i)
) =

p0(X
(i)
0)

q0(X
(i)
0)

∏τ (i)

k=1

p(X
(i)
k−1,X

(i)
k)

q(X
(i)
k−1,X

(i)
k)

3 Compute µ̂IS = 1
N

∑N
i=1 ψτ (i)(X

(i)

0:τ (i)
)w(X

(i)

0:τ (i)
)

4 Output µ̂IS and a confidence interval based on σ̂IS.

where Wt is a d-dimensional Brownian motion (i.e. each component is a Browninan
motion and the components are independent), and b : Rd × R → Rd and σ : Rd ×
R → Rd×d are assumed sufficiently smooth so that a unique strong solution exists. We
assume throughout that the matrix σ(x, t) has full rank for any (x, t) ∈ Rd+1. We aim at
computing

µ = E [Z] = E [ψ({Xt}0≤t≤T)]

where ψ is a function of the path {Xt}0≤t≤T as, for example, ψ({Xt}0≤t≤T) =
∫ T
0 ϕ(Xs)ds

or ψ({Xt}0≤t≤T) = ϕ(XT). For this, we introduce a discretization of the stochastic
differential equation (6.1) by the Euler-Maruyama scheme, on a grid {tn = n∆t, n =
0, . . . ,m = T

∆t}:

Xn+1 = Xn + b(Xn, tn)∆t+ σ(Xn, tn)ξn, ξn ∼ N(0, Id×d∆t).

It follows thatXn+1|Xn ∼ N(Xn+b(Xn, tn)∆t,Σ(Xn, tn)) with Σ(x, t) = σ(x, t)σ(x, t)T∆t.
Then, Z = ψ({Xt}0≤t≤T) can be approximated as Z∆t = ψ∆t(X0, . . . , Xm) = ψ̂(ξ0, . . . , ξm−1)
and

µ ≈ µ∆t = Eξ0,...,ξm−1 [ψ̂(ξ0, . . . , ξm−1)]

Importance sampling in this case, can be done, for instance, by changing the drift
b(x, t) to a new one b̃(x, t). This can be achieved in the Euler-Maruyama scheme by
changing the distribution of the Gaussian increments to ξ̃n ∼ N(ϕ(Xn, tn)∆t, Id×d∆t)
with

ϕ(x, t) = σ−1(x, t)(b̃(x, t)− b(x, t)).

so that the discretized path

Xn+1 = Xn + b(Xn, tn)∆t+ σ(Xn, tn)ξ̃n,

has now conditional discrtibution Xn+1|Xn ∼ N(Xn + b̃(Xn, tn)∆t,Σ(Xn, tn)) with the
desired modified drift. If we denote by z 7→ p(z;µ,Σ) the joint probability density function
of a Gaussian vector with mean µ and covariance matrix Σ, then we have

µ∆t = Eξ0:m−1 [ψ̂(ξ0:m−1)] = Eξ̃0:m−1

[
ψ̂(ξ̃0:m−1)w(ξ̃0:m−1)

]

6.2. IMPORTANCE SAMPLING 67

with likelihood ratio

w(ξ̃0:m−1) =
m−1∏
i=0

p(ξ̃i, 0, Id×d∆t)

p(ξ̃i, ϕ(Xi, ti)∆t, Id×d∆t)

=

m−1∏
i=0

exp

(
− 1

2∆t
∥ξ̃i∥2 +

1

2∆t
∥ξ̃i − ϕ(Xi, ti)∆t∥2

)

=

m−1∏
i=0

exp

(
∆t

2
∥ϕ(Xi, ti)∥2 − ϕ(Xi, ti)

T ξ̃i

)

= exp

(
1

2

m−1∑
i=0

∆t∥ϕ(Xi, ti)∥2 −
m−1∑
i=0

ϕ(Xi, ti)
T ξ̃i

)
An importance samping algorithm then reads

Algorithm 6.6: Importance sampling for SDEs.

1 Generate N iid paths X
(i)
0:m, i = 1, . . . , N with modified drift

X
(i)
n+1 = X(i)

n + b(X(i)
n , tn)∆t+ σ(X(i)

n , tn)ξ̃
(i)
n , ξ̃(i)n ∼ N(ϕ(Xn, tn)∆t, Id×d∆t)

(6.2)
2 Compute likelihood ratio

w(ξ̃
(i)
0:m−1) = exp

(
1

2

m−1∑
n=0

∆t∥ϕ(X(i)
n , tn)∥2 −

m−1∑
n=0

ϕ(Xn, tn)
T ξ̃(i)n

)

3 Compute µ̂IS = 1
N

∑N
i=1 ψ̂(ξ̃

(i)
0:m−1)w(ξ̃

(i)
0:m−1)

4 Output µ̂IS and a confidence interval based on σ̂IS.

As a matter of fact, what we have done is to change the distribution of the brownian
increments. In the limit ∆t → 0 this corresponds to defining a drifted Brownian motion
W̃t which satisfies dW̃t = ϕ(Xt, t)dt + dWt. Then, the likelihood ratio represents the

“ratio between the (joint) densities of Wt and W̃t” which we denote as
dPWt
dPW̃t

. Notice that

in the limit ∆t→ 0 the likelihood ratio (??) becomes

w({W̃t}0≤t≤T) = exp

(
1

2

∫ T

0
∥ϕ(Xt, t)∥2dt−

∫ T

0
ϕ(Xt, t) · dW̃t

)
(6.3)

and we have

µ = EWt [ψ({Xt}0≤t≤T)] = EW̃t

[
ψ({Xt}0≤t≤T

dPWt

dPW̃t

(W̃t)

]
.

This is a well known result, known as Girsanov’s theorem, which says that, given a
standard Brownian motion Wt and a “drifted” one W̃t = Wt +

∫ t
0 Zsds where {Zt}t is

an adapted process with enough integrability, e.g. E
[
exp(12

∫ T
0 ∥Zs∥2ds)

]
< ∞, then the

68 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

likelihood ratio (more technically, the Radon Nikodym derivative
dPWt
dPW̃t

of the original

process with respect to the drifted one is given by

dPWt

dPW̃t

(Bt) = exp

(
−
∫ T

0
Zt · dBt +

1

2

∫ T

0
∥Zt∥2dt

)
.

Continuous time discrete space Markov processes.

Consider a continuous time Markov process {Xt ∈ X , t ≥ 0} taking values in the discrete
space X = {y1, y2, . . .}, defined by the stable and conservative generator matrix (Qij)ij
(see Section 4.7) and the initial distribution X0 ∼ λ = (λ1, λ2, . . .), with λi = P(X0 = yi).
We aim at computing

µ = E [Z] = E [ψ({Xt}0≤t≤T)]

where ψ is a function of the path {Xt}0≤t≤T . We can do importance sampling in this
case by changing the generator matrix to Q̃, and the initial distribution to λ̃, with the
conditions that Q̃ij = 0 and λ̃k = 0 only if Qij = 0 and λk = 0, respectively. Then, if we
denote by N(t) the number of jumps of {Xt} occurred in [0, t], by Jn, n = 1, . . . , N(T)
the jump times, by Sn = Jn−Jn−1 the holding times, and by Yn = XJn the jump process,
it can be shown that

µ = Eλ,Q[ψ({Xt}0≤t≤T)] = Eλ̃,Q̃[ψ({Xt}0≤t≤T)w({Xt}0≤t≤T)]

with likelihood ratio given by

w({Xt}0≤t≤T) =
λX0

λ̃X0

N(T)∏
i=1

QYi−1Yi

Q̃Yi−1Yi

exp{−SiQYi−1}
exp{−SiQ̃Yi−1}

 exp{−(T − JN(T))QYN(T)
}

exp{−(T − JN(T))Q̃YN(T)
}

=
λX0

λ̃X0

N(T)∏
i=1

QYi−1Yi

Q̃Yi−1Yi

 exp

{
−
∫ T

0
(QYs − Q̃Ys)ds

}
where we recall that Qi = −Qii =

∑
j ̸=iQij .

6.3 Control variates

We consider again the goal of computing the expected value µ = E [Z] of a random
variable Z, output of a stochastic model. The idea of the control variate technique is to
find an auxiliary variable Y , called control variate, of which we know the mean value, and
which is strongly correlated with the variable Z. We can then construct the modified
variable

Zα = Z − α(Y − E [Y])

with α ∈ R, that satisfies
E[Zα] = E [Z] = µ

and
Var(Zα) = Var (Z) + α2Var (Y)− 2αCov(Z, Y).

6.3. CONTROL VARIATES 69

The latter is a quadratic expression in α and is minimized for

αopt =
Cov(Z, Y)

Var (Y)
.

With such optimal choice, one has

Var
(
Zαopt

)
= Var (Z)− Cov(Z, Y)2

Var (Y)
= Var (Z) (1− ρ2ZY), ρ2ZY =

Cov(Z, Y)2

Var (Z)Var (Y)

which is always smaller than Var (Z). The amount of variance reduction increases as ρZY
approaches 1 or −1. It is clear that the ideal control variate is Y = γZ, γ ∈ R for which
Var(Zαopt) = 0. However, E [Y] = γE [Z] is not known in this case, and such a control
variate is not a viable option. The control variate Y should be a reasonable approximation
of Z, of which, however, we can compute exactly its expected value, or, more generally, a
random variable highly informative on Z (hence highly correlated to Z). In practice, the
optimal α is not known, but it can be estimated from a pilot run.

Algorithm 6.7: Control variate with pilot run.

1 Generate N̄ iid replicas (Z(i), Y (i)), i = 1, . . . , N̄ of (Z, Y)

2 Estimate α̂opt =
σ̂2
ZY

σ2
Y

if σ2Y known, or α̂opt =
σ̂2
ZY

σ̂2
Y

otherwise, with

σ̂2ZY =
1

N̄ − 1

N̄∑
i=1

(Z(i) − µ̂Z)(Y
(i) − E [Y]), µ̂Z =

1

N̄

N̄∑
i=1

Z(i)

3 Generate N iid replicas (Z(i), Y (i)) i = 1, . . . , N of (Z, Y)

4 Compute µ̂CV = 1
N

∑N
i=1(Z

(i) − α̂opt(Y
(i) − E [Y]))

5 Output µ̂CV and a confidence interval based on σ̂CV .

The estimator µ̂CV is unbiased and, in the case σ2Y known, has variance (exercise)

Var (µ̂CV) = E
[
(µ̂CV − µ)2

]
=

1

N

(
Var

(
Zαopt

)
+ Var (α̂opt)σ

2
Y

)
.

where Var (α̂opt) = O(1/N̄) since α̂opt is a Monte Carlo estimator, hence usually small
compared with the first term. Moreover, Var

(
Zαopt

)
can be estimated by the estimator

σ̂2(Zαopt) = σ̂2Z −
σ̂2ZY
σ2Y

which is unbiased if σ2Y is known. Based on these observations we can construct an
approximate 1− α confidence interval as

Îα,N = [µ̂CV − c1−α/2
σ̂(Zαopt)√

N
, µ̂CV + c1−α/2

σ̂(Zαopt)√
N

]

70 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

which is justified, for N̄ not too small, by the observation that
√
N µ̂CV−µ

σ̂2(Zαopt)

d−→ N(0, 1)

as N, N̄ → ∞.
Alternative to the previous algorithm, which uses a pilot run to estimate αopt, one

may consider a “one-shot” strategy.

Algorithm 6.8: Control variate – one shot

1 Generate N iid replicas (Z(i), Y (i)), i = 1, . . . , N of (Z, Y)

2 Estimate α̂opt =
σ̂2
ZY

σ2
Y
, with

σ̂2ZY =
1

N − 1

N∑
i=1

(Z(i) − µ̂Z)(Y
(i) − E [Y]), µ̂Z =

1

N

N∑
i=1

Z(i)

3 Estimate µ̂CV = 1
N

∑N
i=1(Z

(i) − α̂opt(Y
(i) − E [Y]))

4 Output µ̂CV and a confidence interval based on σ̂CV .

This estimator is biased, in general, contrary to the previous one. However, a CLT
result still holds (exercise) and

√
N
µ̂CV − µ

σ̂2(Zαopt)

d−→ N(0, 1)

as N → ∞ from which asymptotic confidence intervals can be obtained.

Example 6.5. Consider again the problem of pricing a European call option: µ = E [Z],
with Z = ψ(ST) = e−rT (ST − K)+, ST = S0e

XT and XT ∼ N((r − σ2/2)T, σ2T). To
compute E [Z] with Monte Carlo, we can use as a control variable the variable Y = ST
whose exact mean is E [Y] = E [ST] = S0e

rT . Observe that, since ψ is a non decreasing
function of ST , Z and Y are positively correlated, so that α should be taken positive. If the

sample mean µ̂ST
= 1

N

∑N
i=1 S

(i)
T is above the true mean S0e

rT , it is reasonable to assume
that also the sample mean µ̂Z will be above the true (unknown) mean, since (Z, Y) are
positively correlated, so we add a negative correctin to µ̂Z given by −α(µ̂ST

−S0erT), with
α > 0.

6.3.1 Multiple control variates

The control variate technique can be generalized to the case in which multiple control
variates Y1, . . . , Yp are used. We define the modified variable

Zα = Z −
p∑
j=1

αj(Yj − E [Yj]) = Z −α · (Y − E [Y])

with Y = (Y1, . . . , Yp) and α = (α1, . . . , αp). Then

Var (Zα) = E
[
(Z − µ−α · (Y − E [Y]))2

]
= Var (Z)− 2Cov(Z,Y) ·α+α⊤Cov(Y ,Y)α

6.4. STRATIFICATION 71

E[ST] = S0erTK

pdf ST

ψ(ST)

Figure 6.3: European option.

where Cov(Z,Y) = (Cov(Z, Yi))
p
i=1 ∈ Rp and Cov(Y ,Y) = (Cov(Yi, Yj))

p
i,j=1 ∈ Rp×p.

Again Var (Zα) is a quadratic function in α and is minimized by

αopt = Cov(Y ,Y)−1Cov(Z,Y).

Algorithm 6.9: Multiple control variates – one shot

1 Generate N iid replicas (Z(i), Y
(i)
1 , . . . , Y

(i)
p) of (Z,Y)

2 Estimate

(σ̂2ZY)j =
1

N − 1

N∑
i=1

(Z(i) − µ̂Z)(Y
(i)
j − E [Yj]), j = 1, . . . , p

and

(σ̂2Y Y)jk =
1

N

N∑
i=1

(Y
(i)
j − E [Yj])(Y

(i)
k − E [Yk]).

3 Estimate the optimal αopt by α̂opt = (σ̂2Y Y)−1σ̂2ZY
4 Compute µ̂CV = 1

N

∑N
i=1(Z

(i) − α̂opt · (Y (i) − E [Y])).
5 Output µ̂CV and a confidence interval based on σ̂CV .

6.4 Stratification

As in the previous sections, we consider the problem of computing µ = E [Z] where Z
is the output of a stochastic model. We assume here that Z = ψ(X1, . . . , Xd) = ψ(X)
where X ∈ Rd is a random vector with pdf f : Ω ⊂ Rd → R+ so that µ =

∫
Ω ψ(x)f(x) dx.

72 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

The idea of stratification is to divide the sample space Ω into s non overlapping
regions Ω1, . . . ,Ωs called strata such that P (X ∈ Ωj) =

∫
Ω 1Ωj (x)f(x) dx = pj is known

and
∑s

j=1 pj = 1. Assume now that we can generate X conditional upon X ∈ Ωj . The

conditional density of X given X ∈ Ωj is fj(x) =
1
pj
f(x)1{x∈Ωj}. Let now Xj ∼ fj and

Zj = ψ(Xj), j = 1, . . . , s. Clearly, µ = E [Z] =
∑s

j=1 E [Z | X ∈ Ωj]P (X ∈ Ωj) =∑s
i=1 pjE [Zj]. The idea is then to sample independently each Zj = ψ(Xj) leading to the

following stratified estimator

µ̂Str =

s∑
j=1

pjµ̂i, µ̂i =
1

Nj

Nj∑
i=1

Z
(i)
j , with Z

(i)
j

iid∼ Zj . (6.4)

The stratified estimator (6.4) has the following properties:

1. The estimator µ̂Str is unbiased. Indeed,

E [µ̂Str] =
s∑
j=1

pjE [µ̂j] =
s∑
j=1

pjE [Zj] = E [Z] .

2. The variance of the estimator satisfies

Var (µ̂Str) =
s∑
j=1

p2jVar (µ̂j) =
s∑
j=1

p2j
Var (Zj)
Nj

and can be estimated by

σ̂2Str =

s∑
j=1

p2j
σ̂2j
Nj

, σ̂2j =
1

Nj − 1

Nj∑
i=1

(Z
(i)
j − µ̂j)

2.

3. Let N =
∑s

j=1Nj and choose Nj = ϕj(N), with
∑

j ϕj(N) = N , such that

limN→∞
ϕj(N)
N = cj ∈ (0, 1) for any j = 1, . . . , s. Then limN→∞NVar (µ̂Str) =∑

j p
2
jσ

2
j /cj < +∞ and it can be shown (exercise) that

µ̂Str − µ√
Var (µ̂Str)

d−→ N(0, 1), as N → ∞.

Therefore, a computable 1− α asymptotic confidence interval is given by

Iα = [µ̂Str − c1−α/2σ̂Str, µ̂Str + c1−α/2σ̂Str]

We summarize the procedure in the following Algorithm.

Algorithm 6.10: Stratification

1 for j = 1, . . . , s do

2 Generate Nj iid replicas Z
(i)
j , i = 1, . . . , Nj of Zj

3 Compute µ̂j =
1
Nj

∑Nj

i=1 Z
(i)
j and σ̂2j =

1
Nj−1

∑Nj

i=1(Z
(i)
j − µ̂j)

2

4 end

5 Compute µ̂Str =
∑s

j=1 pjµ̂j and σ̂
2
Str =

∑s
j=1 p

2
j

σ̂2
j

Nj

6 Output µ̂Str and a confidence interval Iα = [µ̂Str − c1−α/2σ̂Str, µ̂Str + c1−α/2σ̂Str]

6.4. STRATIFICATION 73

Stratification guarantees that each stratum contains a fixed number of evaluations. It
remains the question of how to choose Nj in each stratun and quantify the amount of
variance reduction that we can achieve.

6.4.1 Proportional allocation

If N is the total sample size, proportional allocation simply chooses Nj = Npj . With this
choice, we have

Var (µ̂Str) =
s∑
j=1

p2j
Var (Zj)
Nj

=
1

N

s∑
j=1

pjVar (Zj) .

Defining the discrete random variable J ∈ {1, . . . , s}, J = j ⇐⇒ {X ∈ Ωj}, we can
rewrite Var (µ̂Str) as

Var (µ̂Str) =
1

N

s∑
j=1

pjVar (Z | J = j) =
1

N
EJ [Var (Z | J)]

and, recalling the law of total variance Var (Z) = Var (E [Z | J]) + E [Var (Z | J)] we
have

Var (µ̂Str) =
1

N
(Var (Z)− Var (E [Z | J])) ≤ Var (Z)

N
= Var (µ̂CMC) .

Hence proportional allocation always leads to variance reduction. The amount of variance
reduction is given by γ = E [Var (Z | J)] /Var (Z).

Example 6.6. Let X ∼ U(0, 1) and Z = ψ(X) for some function ψ : [0, 1] → R. To
compute µ = E [Z] =

∫ 1
0 ψ(x) dx, we could use stratification by dividing the interval

Ω = (0, 1) in s subintervals of equal size, Ωj =
(
j−1
s , js

)
, j = 1, . . . , s. Then

µ =

s∑
j=1

∫ j
s

j−1
s

ψ(x) dx =

s∑
j=1

1

s

∫ j
s

j−1
s

ψ(x)s dx =

s∑
j=1

1

s
E [ψ(Xj)] , with Xj ∼ U

(
j − 1

s
,
j

s

)

and a stratified estimator reads

µ̂Str =
s∑
j=1

1

s

1

Nj

Nj∑
i=1

ψ(X
(i)
j), with X

(i)
j

iid∼ U
(
j − 1

s
,
j

s

)
.

Figure 6.4 gives an illustration of the stratification procedure with 7 strata and 2 replicas
per stratum.

74 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

µj

(a) E [Var (Z | J)]: sum of green
‘squared’ areas

µj

(b) Var (Z): green ‘squared’ area

Figure 6.5: Proportional allocation

10

ψ

Figure 6.4: Stratification.

Figure 6.5 illustrates the variance reduction when considering proportional allocation.
The variance of a crude Monte Carlo estimator is proportional to the green area in the
right plot, whereas the variance of the stratificed estimator is proportional to the green
area in the left plot. From this graphical illustration we see that large variance reduction
has to be expected when the function ψ is highly non-constant. If ψ is piecewise constant
over the partition of the domain, then we even have Var (µ̂Str) = 0.

6.5. LATIN HYPERCUBE SAMPLING 75

6.4.2 Optimal allocation

Instead of doing a proportional allocation, one may try to find the best choice of Nj that
minimises Var (µ̂Str):

{N∗
j } = argmin

(N1,...,Ns)

s∑
j=1

p2j
Var (Zj)
Nj

such that
s∑
j=1

Nj = N.

Introducing a Lagrangian function L(N , λ) =
∑s

j=1 p
2
j
Var(Zj)
Nj

+λ(
∑s

j=1Nj−N), we have

∂L
∂Nj

= −p2j
Var (Zj)
N2
j

+ λ = 0 =⇒ Nj = pj

√
Var (Zj)

λ

and, enforcing the constraint
∑

j Nj = N , we obtain
√
λ =

∑s
j=1 pj

√
Var(Zj)

N which leads
to the optimal choice

N∗
j =

Npjσj∑s
k=1 pkσk

, σj =
√
Var (Zj)

and optimal variance Var (µ̂∗Str) =
1
N

(∑s
j=1 pjσj

)2
.

Since this variance is smaller than that with proportional allocation, stratification
with optimal allocation will always lead to variance reduction. In practice, the σj are not
known and can be obtained from a pilot run.

Algorithm 6.11: Stratification with optimal allocation

1 for j = 1, . . . , s do

2 Generate N̄j iid replicas Z
(i)
j , i = 1, . . . , Nj of Zj

3 Estimate σ̂2j =
1

N̄j−1

∑N̄j

i=1(Z
(i)
j − µ̂j)

2

4 end

5 Choose N = (c1−α/2
∑s

j=1 pj σ̂j/tol)
2 (to guarantee that |Îα,N | < 2tol)

6 For j = 1, . . . , s, generate N∗
j =

Npj σ̂j∑
k pkσ̂k

iid replicas Z
(i)
j of Zj

7 Compute µ̂i =
1
N∗

j

∑N∗
j

i=1 Z
(i)
j and µ̂∗Str =

∑s
j=1 pjµ̂j

6.5 Latin Hypercube Sampling

Consider the problem of computing the expected value µ of Z = ψ(X1, . . . , Xd) where
Xj ∈ R are independent and with pdf fj : R → R+. One might want to stratify each
variable Xj in s strata. However, this would lead to sd strata which becomes unaffordable
for large d. A way to overcome this problem is offered by the Latin Hypercube Sampling
(LHS). For simplicity of exposition, let us assume that X = (X1, . . . , Xd) ∼ U([0, 1]d).
The idea of LHS is to stratify each component Xj but not the whole sampling domain
Ω = [0, 1]d. In particular, N (correlated) points X(i), i = 1, . . . , N are drawn in [0, 1]d in

76 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

such a way that each component is stratified with N strata and one point per stratum.
Figure 6.6 illustrates the idea.

Figure 6.6: Latin hypercube.

A Latin hypercube sampling design can be generated by the following Algorithm.

Algorithm 6.12: LHS

1 Generate N iid points U (i) iid∼ U((0, 1)d), i = 1, . . . , N
2 Generate d independent permutations πj , j = 1, . . . , d of {1, . . . , N}. Let

π(i) = (π1(i), π2(i), . . . , πd(i))

3 Return X(i) = π(i)−1+U (i)

N , i = 1, . . . , N .

Once the LHS desing generated, the LHS estimator of µ = E [ψ(X)] is simply

µ̂LHS =
1

N

N∑
i=1

ψ(X(i)).

The following proposition illustrates the two main properties of the LHS sample and
estimator.

Proposition 6.4. Let {X(i), i = 1, . . . , N} be a LHS design. Then

• X(i) ∼ U((0, 1)d) (not independent, though)

• The LHS estimator is unbiased, E [µ̂LHS] = E [ψ(X)].

Proof. By construction, each vector X(i) = π(i)−1+U (i)

N has independent components.

Therefore it is enough to show that each component X
(i)
j , j = 1, . . . , d, is uniformly

distributed in (0, 1). Now, π
(i)
j = πj(i) is the i-th component of a random permutation

of {1, . . . , N}, hence P
(
π
(i)
j = k

)
= 1

N for all k = 1, . . . , N . Moreover, the conditional

6.5. LATIN HYPERCUBE SAMPLING 77

cumulative distribution function of X
(i)
j given π

(i)
j = k is

F
X

(i)
j | π(i)

j =k
(x) = P

(
X

(i)
j ≤ x | π(i)j = k

)
=


0, x < k−1

N

Nx− k + 1, x ∈
[
k−1
N , kN

]
1, x > k

N

i.e. X
(i)
j | π(i)j = k has distribution U

(
k−1
N , kN

)
and

P
(
X

(i)
j ≤ x

)
=

N∑
k=1

1

N
P
(
X

(i)
j ≤ x | π(i)j = k

)
= x.

From the uniform distribution of each X(i), it follows immediately that E [µ̂LHS] =
E
[
1
N

∑
i ψ(X

(i))
]
= E [ψ(X)].

Concerning the variance of the estimator µ̂LHS, we mention the following two results.

Proposition 6.5 ([6]). Let Z = ψ(X), X ∼ U((0, 1)d), with µ = E [Z] < +∞ and
σ2 = Var (Z) < +∞. The LHS estimator µ̂LHS based on N points satisfies

Var (µ̂LHS) ≤
σ2

N − 1
.

This result shows that, asymptotically, Var (µ̂LHS) is not worse than Var (µ̂CMC) =
σ2

n since limN→∞Var (µ̂LHS) /Var (µ̂CMC) ≤ 1. Moreover, LHS is very effective if the

function ψ(X) has an additive structure ψ(X) = µ+
∑d

i=1 ψj(Xj) as the estimator µ̂LHS

corresponds to a stratified estimator with N strata on each function ψj . For a general
ψ : Rd → R, let

ψ̂j(xj) =

∫
[0,1]d−1

(ψ(x1, . . . , xd)− µ) dx1 . . . dxj−1dxj+1 . . . dxd

and

ψadd(X) = E [ψ] +
d∑
i=1

ψ̂j(xj).

The function ψ̂j can be interpreted as a conditional expectation ψ̂j(Xj) = E [ψ(X)− µ | Xj]
and is often called the main effect of Xj in ψ. Then, it can be shown that:

Proposition 6.6 ([7, 4]). For Z = ψ(X), X ∼ U((0, 1)d) and µ = E [Z] < +∞, σ2 =
Var (Z) < +∞ and µ̂LHS, the LHS estimator for µ based on N points satisfies

Var (µ̂LHS) =
Var

(
ψ − ψadd

)
N

+ o

(
1

N

)
.

Moreover, if E
[
|Z|3

]
< +∞, then

√
N(µ̂LHS − µ)

d−→ N(0,Var
(
ψ − ψadd

)
) as N → ∞.

78 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

This result highlights the amount of variance reduction that can be achieved by the
LHS estimator, compared to the CMC one. Unfortunately, the estimate of Var (µ̂LHS) in
Proposition 6.6 is not computable and can not be used to build confidence intervals for
the estimator µ̂LHS .

To control the error in the LHS estimator, we proceed in a different way by gener-
ating few independent replicas of µ̂LHS and estimating its variance by a sample variance
estimator.

Algorithm 6.13: LHS estimator

1 Generate K independent LHS designs {X(i,j)}Ni=1 of size N , for j = 1, . . . ,K.

2 For each desing compute µ̂
(j)
LHS = 1

N

∑N
i=1 ψ(X

(i,j)).

3 Compute µ̂LHS = 1
K

∑K
j=1 µ̂

(j)
LHS and σ̂2LHS = 1

K−1

∑K
j=1

(
µ̂
(j)
LHS − µ̂LHS

)2
4 Output µ̂LHS and the confidence interval

Îα = [µ̂LHS − c1−α/2
σ̂LHS√
K
, µ̂LHS + c1−α/2

σ̂LHS√
K

].

Chapter 7

Quasi Monte Carlo methods

As in the previous chapter, we consider the problem of computing the expected value
µ = E [Z], of some random variable Z output of a stochastic model. We assume in this
chapter that Z = ψ(X), with X = (X1, . . . , Xd) ∼ U([0, 1]d), hence computing µ turns
into computing a possibly high dimensional integral over the unit hypercube

µ =

∫
[0,1]d

ψ(x1, . . . , xd) dx1 . . . dxd.

A Crude Monte Carlo estimator µ̂CMC that uses N iid replicas of X, achieves an error

|µ− µ̂CMC| ≤ c1−α/2

√
Var (ψ(X))√

N

with asymptotic confidence 1 − α. The idea of Quasi Monte Carlo (QMC) sampling,
is to consider, instead, a purely deterministic sample {X(1), . . . ,X(N)} to improve the
rate 1/

√
N , while keeping the simple structure of the sample average estimator µ̂QMC =

1
N

∑N
i=1 ψ(X

(i)) with equal weights 1/N . It relies on the observation that a random
uniform sample does not seem to cover “uniformly” the hypercube and hopefully there
exist better designs that achieve this goal.

0 0.5 1

0

0.5

1

(a) random sampling

0 0.5 1

0

0.5

1

(b) QMC Sampling (Sobol se-
quence)

Figure 7.1: Comparing a uniform random sample (left) and a QMC sample with the same number
of points on the unit hypercube.

79

80 CHAPTER 7. QUASI MONTE CARLO METHODS

Figure 7.1 shows a random sample and a QMC sample, with 50 points each, on the
unit square.

The main notion behind QMC sampling is that of discrepancy. We introduce the
following notation: for a point y ∈ [0, 1]d, y = (y1, . . . , yd), we denote by [0,y] the hyper-
rectangle [0,y] =

∏d
i=1[0, yi], with volume Vol([0,y]) =

∏d
i=1 yi. For an arbitrary sample

P = {X(1), . . . ,X(N)} of N points in [0, 1]d, hereafter called a point set, we introduce the
empirical volume estimator for Vol([0,y]), based on the point set P.

V̂olP([0,y]) =
1

N

N∑
i=1

1[0,y](X
(i)) =

#{X(i) ∈ [0,y]}
N

.

Definition 7.1. We call discrepancy function ∆P : [0, 1]d → [−1, 1] the function

∆P(y) = V̂olP([0,y])−Vol([0,y]) =
1

N

N∑
i=1

1[0,y](X
(i))−

d∏
j=1

yj .

From ∆P , we define the following measures of discrepancy of a point set P:

Lq-discrepancy: DN,q(P) = ∥∆P∥Lq =

(∫
[0,1]d

|∆P(y)|q dy

)1/q

, 1 ≤ q <∞,

Star-discrepancy: D∗
N (P) = ∥∆P∥L∞ = sup

y∈[0,1]d
|∆P(y)|.

Remark 7.1. There is actually nothing special in choosing only the rectangles [0,y], so
one can define also the so called extreme discrepancy

DN (P) = sup
y,z∈[0,1]d

z<y

|V̂olP([z,y])−Vol([z,y])|.

It can be easily shown that D∗
N (P) ≤ DN (P) ≤ 2dD∗

N (P). The left inequality is obvious
and the right one follows from the observation that a rectangle [z,y] can be written as a
composition (union/intersection) of 2d rectangles of the type [0, z]. Hence, it is enough
to study only the star-discrepancy.

The reason why the discrepancy plays an important role in the study of QMC quadra-
ture formulas follows from the famous Koksma-Hlawka inequality, which we illustrate first
in dimension d = 1. We start by deriving the following identity.

Lemma 7.1 (Zaremba’s identity). Let ψ : [0, 1] → R be an absolutely continuous
function with integrable derivative and let P = {X(1), . . . , X(N)} be any point set in [0, 1].
Then ∫ 1

0
ψ(x) dx− 1

N

N∑
i=1

ψ(X(i)) =

∫ 1

0
ψ′(y)∆P(y) dy (7.1)

=

∫ 1

0
ψ′(y)∆P(y) dy −∆P(1)ψ(1).

81

Proof. Using the identity ψ(x) = ψ(1)−
∫ 1
x ψ

′(y) dy in the left hand side of (7.1), we have∫ 1

0
ψ(x) dx− 1

N

N∑
i=1

ψ(X(i)) = ψ(1)−
∫ 1

0

∫ 1

x
ψ′(y) dy dx︸ ︷︷ ︸

=
∫ 1
0

∫ y
0 ψ

′(y) dx dy

− 1

N

N∑
i=1

ψ(1) +
1

N

N∑
i=1

∫ 1

X(i)

ψ′(y) dy︸ ︷︷ ︸
=
∫ 1
0 ψ

′(y)1[0,y](X
(i))dy

=

∫ 1

0
ψ′(y)

[
1

N

N∑
i=1

1[0,y](X
(i))− y

]
dy

=

∫ 1

0
ψ′(y)∆P(y) dy.

The second inequality follows immediatlely by observing that ∆P(1) = 0 for any point
set P.

From the Zaremba’s identity, we derive easily the Koksma-Hlawka inequality:∣∣∣∣∣
∫ 1

0
ψ(x) dx− 1

N

N∑
i=1

ψ(X(i))

∣∣∣∣∣ ≤ ∥ψ′∥Lp∥∆P∥Lq , ∀p, q ∈ [1,∞],
1

p
+

1

q
= 1. (7.2)

Inequality (7.2) shows that the quadrature error is proportional to the discrepancy mea-
sure ∥∆P∥Lq , provided that ψ′ ∈ Lp(0, 1), i.e. ψ ∈ W 1,p(0, 1). In particular, if ψ′ is
integrable (or ψ has bounded total variation) then∣∣∣∣∣

∫ 1

0
ψ(x) dx− 1

N

N∑
i=1

ψ(X(i))

∣∣∣∣∣ ≤ ∥ψ∥TVD
∗
N (P).

The previous analysis extends with same care to the multi-dimensional setting. We intro-
duce the following notation: let u = {u1, . . . , uk} ⊂ {1, . . . , d} be a subset of dimensions
(without repetition) and set |u| = k. For x = (x1, . . . , xd) ∈ [0, 1]d, we denote by
xu = (xu1 , . . . , xuk) ∈ [0, 1]k and z = (xu, 1) the vector with components zj = xj if j ∈ u
and zj = 1 if j /∈ u. With this notation at hand, the Zaremba’s identity generalizes to
the multi-dimensional case as follows.

Lemma 7.2 (Hlawka’s identity). Let ψ : [0, 1]d → R be an integrable function with
integrable mixed first order derivatives of any order, and let P = {X(1), . . . ,X(N)} be an
arbitrary point set in [0, 1]d. Then

1

N

N∑
i=1

ψ(X(i))−
∫
[0,1]d

ψ(x) dx =
∑

u⊂{1,...,d}
(−1)|u|

∫
[0,1]|u|

∂|u|ψ
∂xu

(xu, 1)∆P(xu, 1) dxu

where ∂|u|ψ
∂xu

= ∂kψ
∂xu1 ...∂xuk

is a mixed first order derivative.

Proof. By induction on d, one can prove the following identity

ψ(x) =
∑

u⊂{1,...,d}
(−1)|u|

∫
[xu,1]

∂|u|ψ
∂xu

(yu, 1) dyu, ∀x ∈ [0, 1]d, (7.3)

82 CHAPTER 7. QUASI MONTE CARLO METHODS

which generalizes the d = 1 identity ψ(x1) = ψ(1)−
∫ 1
x1

∂ψ
∂x1

(y) dy already used in the proof

of Lemma 7.1. In (7.3) we have used the convention that for u = ∅, (−1)|u|
∫
[xu,1]

∂|u|
∂xu

ψ(yu, 1) dyu =

ψ(1, . . . , 1). Then

1

N

N∑
i=1

ψ(X(i))−
∫
[0,1]d

ψ(x) dx

=
∑

u⊂{1,...,d}
(−1)|u|

(
1

N

N∑
i=1

∫
[X

(i)
u ,1]

∂|u|

∂xu
ψ(yu, 1) dyu︸ ︷︷ ︸

=
∫
[0,1]|u|

∂|u|
∂xu

ψ(yu,1)1[0,yu](X
(i)
u) dyu

−
∫
[0,1]d

∫
[xu,1]

∂|u|

∂xu
ψ(yu, 1) dyu dx︸ ︷︷ ︸

=
∫
[0,1]|u|

∫
[0,yu]

∂|u|
∂xu

ψ(yu,1) dxu dyu

)

=
∑

u⊂{1,...,d}
(−1)|u|

∫
[0,1]|u|

∂|u|

∂xu
ψ(yu, 1)

(
1

N

N∑
i=1

1[0,yu](X
(i)
u)−Vol([0,yu])

)
︸ ︷︷ ︸

∆P (yu,1)

From the Hlawka’s identity, the multidimensional version of the Koksma-Hlawka in-
equality follows. Let us define the following norm

∥ψ∥p,p′ =

 ∑
u⊂{1,...,d}

(∫
[0,1]|u|

∣∣∣∣∣ ∂|u|∂xu
ψ(yu, 1)

∣∣∣∣∣
p

dyu

)p′/p1/p′

.

Then, the multidimensional Koksma-Hlawka inequality reads∣∣∣∣∣
∫
[0,1]d

ψ(x) dx− 1

N

N∑
i=1

ψ(X(i))

∣∣∣∣∣ ≤ ∥ψ∥p,p′∥∆P∥q,q′ , with
1

p
+

1

q
=

1

p′
+

1

q′
= 1,

(7.4)
provided ∥ψ∥p,p′ < +∞. In particular, if ∥ψ∥1,1 < +∞, then∣∣∣∣∣

∫
[0,1]d

ψ(x) dx− 1

N

N∑
i=1

ψ(X(i))

∣∣∣∣∣ ≤ ∥ψ∥1,1D∗
N (P).

Again, this inequality shows that the quadrature error is proportional to the star-discrepancy
D∗
N (P) provided ψ has integrable mixed first order derivatives.

7.1 Low discrepancy sequences and point sets

There exist constructions of point sets P = {X(1), . . . ,X(N)} ⊂ [0, 1]d that have star-

discrepancy as low as D∗
N (P) = O

(
(logN)d−1

N

)
. It is widely believed that this result

is sharp, i.e. there do not exist points sets that achieve a better bound. In general,
these constructions do not lead to a nested sequence of points, that is, the point set
P1 = {X(1), . . . ,X(M)} with M > N does not contain P, in general.

7.1. LOW DISCREPANCY SEQUENCES AND POINT SETS 83

For the nested point sets, i.e. point sets P = {X(1), . . . ,X(N)} that are generated
as the first N points of an infinite sequence S = {X(1),X(2), . . .} the lowest achievable

star-discrepancy is slightly worse, namely D∗
N (S) = O

(
(logN)d

N

)
. In view of these results,

we give the following definition.

Definition 7.2. (low discrepancy sets).

• A family P = {PN}N∈N of non-nested point sets PN = {X(1), . . . ,X(N)} ⊂ [0, 1]d

is called a low discrepancy family of point sets if D∗
N (P) = O

(
(logN)d−1

N

)
;

• A point sequence S = {X(1),X(2), . . .} ⊂ [0, 1]d is called a low discrepancy sequence

if D∗
N (S) = O

(
(logN)d

N

)
.

From the above definitions and considerations, we see that a QMC quadrature for-
mula can achieve convergence rate 1/N up to logarithmic terms (which however grow
exponentially in the dimension!), provided the integrand function has integrable mixed
first derivatives. Before presenting some common low discrepancy sequences/points sets,
we give two important clarifying examples:

Example 7.1. Consider the family P = {PN}N∈N of point sets PN = {X(1), . . . ,X(N)}
with X(i) iid∼ U([0, 1]d), i.e. a random iid sample. Then, |∆p(y)| = |V̂ol([0,y]) −
Vol([0,y])| is the error of the sample average estimator of Vol([0,y]), which decays as

O
(

1√
N

)
, in a probabilistic sense. We conclude that the family of random iid point sets

has not low discrepancy.

Example 7.2. Consider the family P = {PN}N∈N of point sets given by regular lattices
(see figure 7.2)

PN =

{(
k1 + 1/2

m
, . . . ,

kd + 1/2

m

)
, 0 ≤ kj ≤ m− 1, j = 1, . . . , d

}
, N = md

Figure 7.2: Regular lattice.

84 CHAPTER 7. QUASI MONTE CARLO METHODS

For d = 1, it is easy to see that D∗
N (P) = 1

2m = 1
2N , hence P has low discrepancy. On

the other hand, in dimension d > 1 we have

D∗
N (P) = sup

y∈[0,1]d
|∆P(y)| ≥ sup

t∈[0,1]
|∆P(t, 1, . . . , 1)| =

1

2m
=

1

2N1/d
.

We conclude then that the family of regular lattices has not low discrepancy in dimension
higher than 1.

Van der Corput-Halton sequence

Let b ≥ 2 be an integer. Any natural number n ∈ N0 can be expanded in a b-adic
expansion n = n0 + n1b+ n2b

2 + The radical inverse of n is defined as

φb(n) =
n0
b

+
n1
b2

+

Obviously φb : N0 → [0, 1). In 1D, the b-adic Van der Corput sequence is

φb(0), φb(1), φb(2), . . .

For example, for b = 2, the Van der Corput sequence is 0, 12 ,
1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

The Halton sequence generalizes this construction for d ≥ 2: Let b1, . . . , bd ≥ 2 be
integers pairwise relatively prime. Typically b1, . . . , bd are taken as the first d prime
numbers. Then, the Halton sequence is

S = {X(n), n ∈ N0}, X(n) = (φb1(n), φb2(n), . . . , φbd(n))

and achieves the optimal bound on the star-discrepancy D∗
N (S) ≤ c(d) (logN)d

N .

Hammersley point set

It is derived from the Halton sequence by taking PN = {X(0), . . . ,X(N−1)} with X(n) =(
n
N , φb1(n), . . . , φbd−1

(n)
)
. The family P = {PN} of Hammersley point sets is non-nested

and achieves the better bound D∗
N (P) = c(d) (logN)d−1

N .

Rank-1 lattice point sets

Let N ∈ N and g ∈ Nd, g = (g1, . . . , gd) such that gj has no factor in common with
N . (Typically N is taken as a prime number.) Then the rank-1 N -lattice point set with
generating vector g is defined as

PN =
{ng
N

}N−1

n=0

where {·} denotes the fractional part. Figure 7.3 shows an example of lattice point set.
Good choices of g lead to low discrepancy non-nested point sets.

7.2. RANDOMIZED QMC FORMULAS 85

g

Figure 7.3: Lattice point set with N = 14 and g = (3, 5)

(t-m-d)-nets and (t-d) sequences in base b

Let 0 ≤ t ≤ m ∈ N and b ≥ 2. A (t-m-d)-net in base b is a point set PN consisting of
N = bm points such that each elementary rectangle of volume bt−m,

Ra =
d∏
j=1

[
aj − 1

bpj
,
aj
bpj

)
, aj = 1, . . . , bpj

with p1 + p2 + . . .+ pd = m− t contains exactly bt points. E.g. if t = 0, each elementary
rectangle of volume b−m contains exactly 1 point.

Example 7.3. A (0-3-2)-net in base b = 2 is a point set with N = 23 = 9 points, such
that each elementary rectangle with volume 2−(m−t) = 2−3 = 1/8 contains exactly 2t = 1
point. Figure 7.4 shows graphically this property.

A (t-d) sequence in base b is a sequence S = {X(0),X(1), . . .} such that for any m > t,
every block of bm points {X(ℓbm), . . . ,X((ℓ+1)bm−1)}, ℓ ∈ N is a (t-m-d)-net in base b.

The star-discrepancy of a (t-m-d)-net satisfies D∗
N (P) = O

(
bt (logN)d−1

N

)
and similarly

for a (t-d)-sequence D∗
N (S) = O

(
bt (logN)d

N

)
. Famous (t-d)-sequences are those of Sobol,

Niederreiter and Faure. For a description of their construcion we refer to [2].

7.2 Randomized QMC formulas

Let us consider a point set PN = {X(1), . . . ,X(N)} and the QMC quadrature formula

µ̂QMC =
1

N

N∑
i=1

ψ(X(i)).

The question is how to estimate the error |µ−µ̂QMC|. Since the pointsX(i) are not random
iid, we can not use a variance estimator or a CLT as in the Monte Carlo estimator. On

86 CHAPTER 7. QUASI MONTE CARLO METHODS

(a) (b)

(c) (d) (e)

Figure 7.4: Example of a (0,3,2) net in base 2. Each elementary rectangle of volume 2−3 contains
exactly 20 = 1 points.

7.2. RANDOMIZED QMC FORMULAS 87

Figure 7.5: Randomized QMC.

the other hand, the error estimates in (7.4) can not be really used in practice to provide
a bound on the quadrature error as they involve quantities such as the discrepancy or
TV-norm of the integrad that are not known and can not be easily estimated.

An easy idea to obtain error bounds is to randomize the QMC formula. Let U ∼
U([0, 1]d). If PN = {X(1), . . . ,X(N)} is a low discrepancy point set, so is

PU
N = {{X(1) +U}, {X(2) +U}, . . . , {X(N) +U}}

where the same shift is applied to all points and again {·} denotes the fractional part. PU

is called a randomly shifted point set. We could then compute µ̂
(j)
QMC, j = 1, . . . , k, for

few randomly shifted point sets and average the obtained results. The resulting randomly

shifted QMC estimator is then µ̂QMC = 1
k

∑k
j=1 µ̂

(j)
QMC. Since U (j) ∼ U([0, 1]d), so is

{X(i) + U (j)} for any i = 1, . . . , N . It follows that µ̂QMC is an unbiased estimator

of µ = E [ψ]. Moreover, since µ̂
(j)
QMC are independent, the variance of the estimator is

Var (µ̂QMC) =
σ2
QMC

k with σ2QMC = E
[
(µ̂

(j)
QMC − µ)2

]
= O

(
(logN)2(d−1)

N2

)
hence, very small,

in general, and can be estimated by the standard sample variance estimator σ̂2QMC =
1

k−1

∑k
j=1(µ̂

(j)
QMC − µ̂QMC)

2.

88 CHAPTER 7. QUASI MONTE CARLO METHODS

Algorithm 7.1: Randomly shifted QMC.

1 Generate point set PN = (X(1), . . . ,X(N))

2 Generate U (1), . . . ,U (k) iid∼ U([0, 1]d);
3 For j = 1, . . . , k, compute µ̂

(j)
QMC = 1

N

∑N
i=1 ψ({X(i) +U (j)});

4 Compute µ̂QMC = 1
k

∑k
j=1 µ̂

(j)
QMC as well as σ̂2QMC = 1

k−1

∑k
j=1(µ̂

(j)
QMC − µ̂QMC)

2;

5 Output µ̂QMC as well as a 1− α confidence interval

Iα =

[
µ̂QMC − c1−α/2

σ̂QMC√
k
, µ̂QMC + c1−α/2

σ̂QMC√
k

]

Chapter 8

Markov Chain Monte Carlo

Let π be a given probability density function on a state space X ⊂ Rn and ψ : X → R an
integrable function with respect to π. We consider the goal of computing µ = Eπ[ψ] =∫
χ ψ(x)π(x)dx.

If we can generate independent replicas of Z ∼ π, then µ can be computed by Monte
Carlo or any improved version using variance reduction techniques. Assume, however, that
sampling directly from π is not viable either because the expression of π is too complicated
and possibly high dimensional, or because π is known only up to a multiplicative constant
and computing the normalization constant might be too expensive, if not impossible.

Example 8.1 (Bayesian statistics). Let X = (X1, . . . , Xn) be an iid sample from a para-
metric density g(x | θ). Then the joint density of X given θ is g(X | θ) =

∏n
i=1 g(Xi | θ)

and we want to estimate θ from the sample X. In the Bayesian paradigm, θ is thought
as a random variable itself, with prior density π0(θ), which summarizes any prior in-
formation on θ in the absence of data. Then, the posterior density of θ given the data
is

π(θ) =
1

Z(X)
g(X | θ)π0(θ)

with Z(X) =
∫
g(X | θ)π0(θ) dθ which is often unknown and difficult to compute.

Example 8.2 (Statistical physics). Let x ∈ X be a configuration of a physical system and
X the configuration space. Let H : X → R be an energy function and T the temperature.
Then the probabilily density function of finding the system in a given state x is

π(x) =
1

Z
exp

{
−H(x)

kT

}
where k is the Boltzmann constant and Z =

∫
e−H(x)/kT dx is the partition function, often

difficult to compute.

The idea of Markov chain Monte Carlo (MCMC) is to construct an ergodic Markov
Chain {Xn}n ∼ Markov (λ, P) on X that has π as its invariant distribution. Then we can
approximate µ = Eπ[ψ] by the ergodic estimator

µ̂MCMC
N =

1

N

N∑
i=1

ψ(Xi) (8.1)

89

90 CHAPTER 8. MARKOV CHAIN MONTE CARLO

or

µ̂MCMC
N,N0

=
1

N

N∑
i=1

ψ(Xi+N0)

if we want to “cut” out the first part of the chain, which might be too sensitive to the
initial state X0 ∼ λ of the chain (this operation is usually called “burn-in”). We will see
that constructing a Markov Chain with a given invariant distribution is not so difficult
and can be achieved by the well known and celebrated Metropolis-Hastings algorithm.
Before discussing such algorithm, however, it is worth recalling some basic concepts in the
theory of Markov Chains. We will do so in the finite state space case in the next section
and briefly mention generalizations to general state spaces in Section 8.2.

8.1 Markov Chains on discrete state spaces (review)

Let X = {x1, x2, . . . , xd} be a finite (d < ∞) or countably infinite (d = ∞) state space,
λ = {λ1, λ2, . . . , λd} a probability mass function on X , with λi ≥ 0 for all i = 1, . . . , d,∑

i λi = 1, and P = {Pij}di,j=1 a stochastic matrix, such that Pij ≥ 0 for all i, j = 1, . . . , d
and

∑
j Pij = 1 for all i = 1, . . . , d.

We consider hereafter a homogeneous Markov chain {Xn, n ∈ N0} ∼ Markov (λ, P)
having initial state X0 ∼ λ and transition matrix P independent of n (See Chapter 4
for the definition of a Markov Chain). To highlight the dependence of the chain on the
initial distribution λ, we denote by Pλ(A) the probability of an event A under X0 ∼ λ.
If λ = δxi , i.e. P (X0 = xi) = 1, we use the notation Pxi or simply Pi. We introduce also
the following notion

Definition 8.1 (Stopping time). A random variable τ is called a stopping time if the
event {τ ≤ n} depends only on X0, . . . , Xn, i.e. the event {τ ≤ n} is measurable with
respect to the σ-algebra σ(X0, . . . , Xn) generated by X0, . . . , Xn.

Typical examples of stopping times are the following: given a subset A ⊂ X

• hitting time of A: τA = inf{n ≥ 0 : Xn ∈ A},

• return time to A: σA = inf{n > 0 : Xn ∈ A},

• successive return times to A: σ
(k)
A = inf{n > σ

(k−1)
A : Xn ∈ A}, for k ≥ 1,

with the conventions that σ
(0)
A = 0, τA = +∞ if Xn /∈ A for any n, and σ

(k)
A = +∞ if

Xn /∈ A for any n > σ
(k−1)
A . From the definition of a homogeneous Markov chain, the

following Markov proprety follows.

Lemma 8.1. Let {Xn, n ∈ N0} ∼ Markov (λ, P).

• (Weak Markov Property). Conditional on Xm = xi, {Xm+n, n ∈ N0} is Markov (δxi , P)
and independent of {X0, . . . , Xm}.

• (Strong Markov property). Let τ be a stopping time of {Xn}. Conditional on τ <
+∞ and Xτ = xi, {Xτ+n, n ∈ N0} is Markov (δxi , P) independent of X0, . . . , Xτ .

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 91

Given {Xn, n ∈ N0} ∼ Markov (λ, P), let P (n) denote the n-step transition matrix,

i.e. P
(n)
ij = P (Xm+n = xj | Xm = xi). Thanks to the homogeneity of the Markov chain,

P
(n)
ij does not depend on m. Clearly P (1) = P and for n > 1,

P
(n)
ij =

∑
ℓ

P (Xm+n = xj | Xm+n−1 = xℓ, Xm = xi)P (Xm+n−1 = xℓ | Xm = xi)

=
∑
ℓ

PℓjP
(n−1)
iℓ .

Introducing the matrix multiplication (P 2)ij =
∑

ℓ PiℓPℓj , we see that P (n) = Pn. More
generally, P (n+m) = PnPm which is often referred to as the Chapman Kolmogorov equa-
tion.

We may also ask what is the probability distribution of Xn at any given n > 0, i.e.
the probability mass function πn,λ = (πn,λ1 , . . . , πn,λd), taken as a row vector in Rd, with
πn,λi = Pλ(Xn = xi). It is easy to see that

πn,λi =
∑
ℓ

P (Xn = xi | Xn−1 = xℓ)P (Xn−1 = xℓ) =
∑
ℓ

Pℓiπ
n−1,λ
ℓ .

In matrix notation,

πn,λ = πn−1,λP = λPn.

If we denote by M1(X) = {(µ1, . . . , µd) ∈ Rd : µi ≥ 0,
∑

i µi = 1} the set of probability
mass functions on X , then the transition matrix P can be interpreted as an operator
P :M1(X) →M1(X) acting (to the left) on probability measures. We may ask if such an
operator has a fixed point.

Definition 8.2. A probability mass function π ∈ M1(X) is called invariant distribution
for P if πP = π.

Hence, for a Markov chain {Xn} ∼ Markov (λ, P) whose initial state X0 ∼ π is
distributed as the invariant distribution π, it follows that Xn ∼ π for any n and the
chain is said to be “at equilibrium” or “at stationarity”. Observe that, if an invariant
distribution π exists, then it is a left eigenvector of the transition matrix P , associated
to the eigenvalue λ1 = 1.

Consider now the set F(X) = {φ : X → R} of measurable functions on X , which
can be identified with Rd. We represent any function φ ∈ F(X) as a column vector
φ = (φ1, . . . , φd)

⊤ ∈ Rd. Given φ ∈ F(X), we can define the following function g ∈ F(X):

gi = E [φ(Xn+1) | Xn = xi] = Exi [φ(X1)], i = 1, . . . , d,

the last equality being justified thanks to the Markov property. Clearly we have gi =∑d
j=1 φ(xj)P (Xn+1 = xj | Xn = xi) =

∑
j φjPij which, in matrix notation gives

g = Pφ.

92 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Hence, the transition matrix P can also be interpreted as an operator P : F(X) → F(X)
acting (to the right) on functions. Observe, in particular, that the constant unit function
φ = (1, . . . , 1) ∈ F(X) satisfies

(Pφ)i =
∑
j

1 · Pij = 1 = φi,

since P is a stochastic matrix, and is therefore a right eigenvector of P corresponding to
the eigenvalue λ1 = 1. This argument shows that λ1 = 1 is always an eigenvalue of P .
The eigenvalue λ1 = 1 turns out to be the largest in absolute value.

Lemma 8.2. Given a stochastic matrix P ∈ Rd×d, let (λ, v) be a left eigenpair of P , i.e.
vP = λv, with ∥v∥ℓ1 =

∑
j |vj | <∞. Then |λ| ≤ 1.

Proof. We have

|λvi| = |
∑
j

vjPji| ≤
∑
j

|vj |Pji.

Hence

|λ|
∑
i

|vi| ≤
∑
i

∑
j

|vj |Pji =
∑
j

|vj |
∑
i

Pji︸ ︷︷ ︸
=1

=
∑
j

|vj |

which implies |λ| ≤ 1.

It follows that an invariant distribution π is a left eigenvector of P corresponding
to the largest (in absolute value) eigenvalue. The iterates πn,λ = λPn correspond to
power iterations so we should expect πn,λ to converge to π as long as λ1 = 1 is a simple
eigenvalue and there are no other eigenvalues with absolute value 1.

In practice, in MCMC algorithms, we construct a Markov Chain so that the tar-
get distribution we want to sample from corresponds to an invariant distribution of
the Markov Chain. (This also guarantees existence of an invariant distribution in the
infinite dimensional case). However, it remains the question whether such invariant
distribution is unique (λ1 = 1 is simple) and whether the second largest eigenvalue
β = maxi=2,...,d |λi(P)| in absolute value is strictly smaller than one as the spectral gap
1 − β will dictate the speed of convergence of πn,λ to π. We postpone this discussion to
Section 8.1.2.

We now address the important case in which the transition matrix P features some
symmetry properties. This will be indeed the case for the most popular MCMC algo-
rithms, namely the Metropolis-Hastings ones. Let P be a transition matrix with invariant
distribution π, and {Xn}Nn=0 ∼ Markov (π, P) a Markov chain at equilibrium. Let us look
at the chain {Yn = XN−n, n = 0, . . . , N}, called the time-reversal of {Xn, n = 0, . . . , N}.
It is not difficult to see that {Yn}Nn=0 is also a Markov chain. Indeed, assuming that

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 93

P
(
XN−n+1 = xin−1 , . . . , XN = x0

)
> 0, we have for any n = 1, . . . , N

P
(
Yn = xin | Y0 = xi0 , . . . , Yn−1 = xin−1

)
= P

(
XN−n = xin | XN = xi0 , . . . , XN−n+1 = xin−1

)
=

P (XN−n = xin , . . . , XN = xi0)

P
(
XN−n+1 = xin−1 , . . . , XN = xi0

)
=

Pi1i0Pi2i1 . . . Pinin−1P (XN−n = xin)

Pi1i0Pi2i1 . . . Pin−1in−2P
(
XN−n+1 = xin−1

)
= Pinin−1

πin
πin−1

=: P̂in−1,in .

Hence, the probability P
(
Yn = xin | Y0 = xi0 , . . . , Yn−1 = xin−1

)
of Yn given the past de-

pends only on in−1 and {Yn}Nn=0 is a Markov chain {Yn}Nn=0 ∼ Markov(π, P̂) with tran-
sition matrix

P̂ij = Pji
πj
πi
.

Definition 8.3. Let P be a stochastic matrix, π an invariant distribution of P and
{Xn} ∼ Markov (π, P) a Markov chain at equilibrium. We say that {Xn}n≥0 is reversible
if for all N ≥ 1, {XN−n}Nn=0 ∼ Markov (π, P).

Definition 8.4. A stochastic matrix P and a probability distribution λ are said to be in
detailed balance if λiPij = λjPji for all i, j.

The following Lemma establishes the relation between the detailed balance condition
and the reversibility of the chain.

Lemma 8.3. Let P be a stochastic matrix and π a distribution on X . (P, π) are in detailed
balance if and only if π is invariant for P and {Xn} ∼ Markov (π, P) is reversible.

Proof. Suppose first that (P, π) are in detailed balance. Then, from direct calculation

(λP)i =
∑
j

πjPji =
∑
j

πiPij = πi
∑
j

Pij = πi.

Hence π is an invariant distribution. Moreover, the detailed balance condition directly
implies P̂ = P , hence the chain {Xn} ∼ Markov (π, P) is reversible.

The opposite implication is immediate: if π is invariant for P and {Xn} ∼ Markov (π, P)
is reversible, by definition P̂ = P which is equivalent to the detailed balance condition.

The detailed balance is a useful condition to verify that a certain distribution π is
invariant (often easier than verifying πP = π). Intuitively, it says that under π, the
probability of going from i to j is the same as the probability of going from j to i. Another
way to interpret the detailed balance equation is the following. Let us define the Hilbert
space ℓ2π = {φ : X → R :

∑
i φ

2
iπi < +∞} with inner product (φ,ψ)π =

∑
i φiψiπi,

where π is in detailed balance with P . Then, the matrix P is symmetric with respect to
such an inner product (the corresponding operator P : ℓ2π → ℓ2π is self adjoint). Indeed,

(Pφ,ψ)π =
∑
i

πi(Pφ)iψi =
∑
i,j

πiPijφjψi =
∑
i,j

πjPjiψiφj = (φ, Pψ)π.

94 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Hence, if (P, π) are in detailed balance, all eigenvalues of P are real and, at least in
the finite dimensional case, the matrix is diagonalizable by an ℓ2π-orthonormal set of
eigenvectors.

8.1.1 Metropolis-Hastings algorithm in discrete state spaces

We come back to the original goal of constructing a Markov chain {Xn} ∼ Markov (λ, P)
on X which has a given invariant distribution π. We assume πi > 0 for all i. (If πj = 0
for some j, we can just remove the corresponding state xj from the state space.) The
Metropolis-Hastings is probably the most popular algorithm used for this purpose. It
constructs a transition matrix P which is in detailed balance with the target distribution
π. The idea is the following:

• Take a stochastic matrix Q with the condition that Qij = 0 ⇐⇒ Qji = 0. Q is
called the proposal. In general, Q will not have π as invariant distribution so we
have to “correct” it.

• For any i, j ∈ {1, . . . , d}, define the acceptance probability

α(i, j) = min

{
1,
πjQji
πiQij

}
if Qij ̸= 0, α(i, j) = 0, if Qij = 0.

The Metropolis-Hastings algorithm then reads:

Algorithm 8.1: Metropolis-Hastings

Given: λ (initial distribution), Q (proposal), π (target distribution)
1 Generate X0 ∼ λ for n = 0, 1, . . . , do

2 Generate candidate new state X̃n+1 ∼ QXn,:

3 Generate U ∼ U([0, 1])
4 if U ≤ α(Xn, X̃n+1) then

5 set Xn+1 = X̃n+1 // X̃n accepted with prob. α(Xn, X̃n+1)
6 else

7 set Xn+1 = Xn // X̃n rejected with prob. 1− α(Xn, X̃n+1)
8 end

9 end

If Q is symmetric, then the acceptance probability simplifies to α(i, j) = min
{
1,

πj
πi

}
.

In this case, step 4 of the algorithm will always accept X̃n+1 if the probability mass of
the new state πX̃n+1

is higher than the probability mass of the old state πXn . In case

where πX̃n+1
< πXn , the new state is accepted only with probability πX̃n+1

/πXn . Hence,
if πX̃n+1

≪ πXn , the new state has a high probability of being rejected. Notice that in

Algorithm 8.1, only the ratio πX̃n+1
/πXn appears. Therefore, the algorithm is applicable

also in the case of a un-normalized target distribution.

We may ask what is the transition matrix associated to the Markov chain {Xn}n
generated by 8.1. The following Lemma answers the question.

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 95

Lemma 8.4. Let α∗
j =

∑
j α(i, j)Qij. Then, the transition matrix of the chain produced

by the Metropolis-Hastings algorithm is given by

Pij = α(i, j)Qij + (1− α∗
j)δij . (8.2)

Proof. For j ̸= i, we have

Pij = P (Xn+1 = j | Xn = i) = P
(
X̃n+1 = j,Xn+1 = X̃n+1 | Xn = i

)
= P

(
Xn+1 = X̃n+1 | X̃n+1 = j,Xn = i

)
P
(
X̃n+1 = j | Xn = i

)
= α(i, j)Qij .

On the other hand, if j = i,

Pii = P (Xn+1 = i | Xn = i)

= P
(
X̃n+1 = i,Xn+1 = X̃n+1 | Xn = i

)
+ P

(
Xn+1 ̸= X̃n+1 | Xn = i

)
= α(i, i)Qii +

∑
j

P
(
X̃n+1 = j,Xn=1 ̸= X̃n+1 | Xn = i

)
= α(i, i)Qii +

∑
j

(1− α(i, j))Qij

= α(i, i)Qii + (1− α∗
i).

The quantity α∗
i =

∑
j α(i, j)Qij represents the overall probability of accepting a

new state when being in state i. If such acceptance probability is very close to 0, with
high probability the chain will not move, hence the random variables {Xn}n will be highly
correlated, which is not desirable for constructing the ergodic estimator (8.1). A very high
acceptance probability might not be desirable either. Consider the two possible strategies:
a) jump only to neighboring states with high acceptance rate; b) jump to far away states
but with lower acceptance rate. It is not obvious which strategy is more effective in
decorrelating (mixing) the chain. Rule of thumb says that the average acceptance rate
should be around 0.2.

That Algorithm 8.1 produces the right chain, i.e. a chain that has invariant distri-
bution π, is shown in the following Lemma and is a consequence of the fact that the
transition matrix P in (8.2) is in detailed balance with π.

Lemma 8.5. The transition matrix P in (8.2) is in detailed balance with π. Hence, the
chain produced by Algorithm 8.1 is reversible and has π as invariant distribution.

Proof. We have to show that πiPij = πjPji for all i, j. This is obviously true for i = j.
Consider then i ̸= j. If πiPij = 0, then Pij = 0 which implies Qij = Qji = 0 so Pji = 0

96 CHAPTER 8. MARKOV CHAIN MONTE CARLO

and πiPij = πjPji. If πiPij ̸= 0, then Pij ̸= 0 so Qij , Qji ̸= 0 and

πiPij = πiα(i, j)Qij = πiQij min

{
1,
πjQji
πiQij

}
= min {πiQij , πjQji}

= min

{
πiQij
πjQji

, 1

}
πjQji = πjα(j, i)Qji = πjPji.

8.1.2 Convergence results

Let {Xn} ∼ Markov (λ, P) be a Markov chain with invariant distribution π. We want
to understand under which conditions on (λ, P), π is the unique invariant distribution
and the sequence πn,λ converges to π as n → ∞. Three concepts are key to answer this
question: irreducibility, reversibility and aperiodicity.

Definition 8.5 (Irreducible chain). Let P be a transition matrix on X .

• We say that a state xi ∈ X communicates with another state xj ∈ X if Pi(Xn =

xj for some n) > 0. Equivalently, there exists n > 0: P
(n)
ij > 0.

• The transition matrix P is said to be irreducible if every state communicates with

every other state, i.e. for all i, j, there exists n > 0 such that P
(n)
ij > 0. A Markov

chain Markov (λ, P) is irreducible if P is so.

An equivalent definition of irreducibility is the following:

Definition 8.6 (Irreducible chain). Let P be a transition matrix on X .

• A state xj is said to be accessible if Pi(σj <∞) > 0 for any xi ∈ X .

• P is irreducible if every state is accessible.

In the definition of accessible state, σj is the return time to the state xj . It is easy to
see that the two definitions are equivalent. Figure 8.1 shows an example of an irreducible
chain (left) and a reducible one (right).

1 3

2

1
2

1

11
2

1 3

2

5

4

1
2

1
2

11
2

1
4

1
4

1
1

Figure 8.1: Left: irreducible chain – every state communicates with every other state. Right:
reducible chain – {4, 5} is an absorbing class and does not communicate with {1, 2, 3}.

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 97

We now turn to the notion of recurrence. Given a state xi ∈ X we denote by Vi =∑∞
n=0 1{Xn=xi} the number of visits to xi. Notice that

Ei[Vi] = Ei
∞∑
n=0

1{Xn=xi} =
∞∑
n=0

Pi(Xn = xi) =
∞∑
n=0

P
(n)
ii .

Definition 8.7 (Recurrent state). A state xi ∈ X is sait to be recurrent if Pi(Xn =
xi infinitely often) = 1, or equivalently Pi(Vi = ∞) = 1. It is transient if Pi(Vi = ∞) = 0.

An interesting fact is that a state xi is either recurrent or transient, i.e. it can never
happen that Pi(Vi = ∞) ∈ (0, 1).

Lemma 8.6. A given state xi is either recurrent or transient. Moreover,

• xi is recurrent ⇐⇒ Pi(σi <∞) = 1 ⇐⇒ Ei[Vi] = ∞;

• xi is transient ⇐⇒ Pi(σi <∞) < 1 ⇐⇒ Ei[Vi] <∞.

Proof. Let σ
(r)
i be the r-return time to the state xi, i.e. σ

(r)
i = inf{n > σ

(r−1)
i : Xn = xi},

with σ
(1)
i = σi. Then

Pi(Vi > r + 1) = Pi(σ
(r+1)
i <∞)

= Pi(σ
(r)
i <∞, σ

(r+1)
i − σ

(r)
i < +∞)

= Pi(σ
(r+1)
i − σ

(r)
i <∞ | σ(r)i <∞)Pi(σ

(r)
i <∞)

= Pi(σ
(1)
i <∞)Pi(σ

(r)
i <∞) (by the strong Markov property)

= Pi(σi <∞)r+1.

Hence

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r) =

{
0, ⇐⇒ Pi(σi <∞) < 1,

1, ⇐⇒ Pi(σi <∞) = 1.

Moreover

Ei[Vi] =
∑
r

Pi(Vi > r) =

{
C <∞, ⇐⇒ Pi(σi <∞) < 1,

∞, ⇐⇒ Pi(σi <∞) = 1.

If all the states communicate with each other, i.e. the chain is irreducible, it is easy
to see that if a chain has a recurrent state, all the states are recurrent.

Lemma 8.7. Let {Xn} ∼ Markov (λ, P) with an irreducible transition matrix P . Then
either all states are transient or recurrent.

Proof. Suppose xi is transient and take xj ̸= xi. Since P is irreducible, there exist

n,m > 0: P
(n)
ij > 0 and P

(m)
ji > 0. Then for all r ≥ 0,

P
(n+m+r)
ii =

∑
ℓ,k

P
(m)
ℓi P

(r)
kℓ P

(n)
ik ≥ P

(m)
ji P

(r)
jj P

(n)
ij .

98 CHAPTER 8. MARKOV CHAIN MONTE CARLO

On the other hand, being xi transient, we have Ei[Vi] <∞ and

Ej [Vj] =
∞∑
r=0

P
(r)
jj ≤ 1

P
(m)
ji P

(m)
ij

∞∑
r=0

P
(m+n+r)
ii ≤ 1

P
(m)
ji P

(m)
ij

Ei[Vi] <∞,

hence, from the previous lemma, xj is also transient.

The previous result justifies the following

Definition 8.8. An irreducible Markov chain {Xn} ∼ Markov (λ, P) is said to be recur-
rent if it has at least one recurrent state (equivalently if every state is recurrent).

Example 8.3. Consider a random walk on Z:

P (Xn+1 = i+ 1 | Xn = i) = p, P (Xn+1 = i− 1 | Xn = i) = q = 1− p.

If we start at X0 = 0, we can return to zero only after an even number of steps, say 2n,
with n moves to the right and n to the left. Hence

P
(2n)
00 =

(
2n

n

)
pnqn =

(2n)!

(n!)2
(pq)n ∼ (4pq)n√

2πn

where we have used Sitrling’s formula n! ∼
√
2πn(n/e)n. Hence

E0[V0] =
∞∑
n=0

P
(n)
00

{
= ∞, for p = q = 1

2 ,

<∞, for p ̸= q.

We conclude that {Xn} is recurrent if p = 1
2 and transient otherwise. By similar calcula-

tions, on can show that a symmetric random walk on Z2 with

P (Xn+1 = (i± 1, j) | Xn = (i, j)) = P (Xn+1 = (i, j ± 1) | Xn = (i, j)) =
1

4

is also recurrent, whereas a symmetric random walk on Z3 is transient.

For an irreducible recurrent Markov chain {Xn, n ≥ 0} on an infinite countable state
space X , we can further distinguish two cases:

Definition 8.9. An irreducible Markov chain {Xn} ∼ Markov (λ, P) is said to be positive
recurrent (or simply positive) if Ei[σi] < ∞ for at least one state xi ∈ X and null
recurrent otherwise.

Again one can show that if there exists a state xi ∈ X for which Ei[σi] < ∞ and the
chain is irreducible, then Ej [σj] <∞ for every state xj ∈ X . The property of recurrence /
positive recurrence is key to obtain existence of an invariant measure as the next theorem
shows.

Theorem 8.8. Let P be irreducible and recurrent. Then P has a unique invariant mea-
sure (not necessarily finite) up to a multiplicative constant.

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 99

k

i

σk

Figure 8.2: The invariant measure corresponds to the expected time spent by the chain in each
state, between two consecutive visits of a fixed (recurrent) state xk.

The invariant measure can be constructed in the following way. Let us fix a (recurrent)

state xk ∈ X and consider π̃ki = Ek
[∑σk−1

n=0 1{Xn=xi}
]
which corresponds to the expected

number of visits to xi between two consecutive visits to xk. Then π̃k is an invariant
measure and is unique up to a multiplicative factor. Notice that π̃kk = 1.

Proof of existence. Observe first that for all i ̸= k,

π̃ki = Ek

[
σk−1∑
n=0

1{Xn=xi}

]
= Ek

[
σk∑
n=1

1{Xn=xi}

]
= Ek

[
σk−1∑
n=0

1{Xn+1=xi}

]

i.e. π̃ki is invariant by a +1 right shift of the chain, which basically shows that π̃ki is an
invariant measure. More precisely, π̃ki can be equivalently written as

π̃ki = Ek

[∞∑
n=0

1{Xn+1=xi, σk>n}

]
=

∞∑
n=0

Pk(Xn+1 = xi, σk > n)

=
∑
j

∞∑
n=0

Pk (Xn+1 = xi, σk > n,Xn = xj)

=
∑
j

∞∑
n=0

Pk(Xn+1 = xi | Xn = xj , σk > n)︸ ︷︷ ︸
=Pji since {σk>n} depends only on X0,...,Xn

Pk(Xn = xj , σk > n)

=
∑
j

Pji

∞∑
n=0

Pk(Xn = xj , σk > n)︸ ︷︷ ︸
π̃k
j

=
∑
j

π̃kjPji.

100 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Proof of uniqueness. Let λ be another invariant measure. Then for j ̸= k,

λj =
∑
i1

λi1Pi1j

= λkPkj +
∑
i1 ̸=k

λi1Pi1j

= λk Pkj︸︷︷︸
Pk(X1=xj ,σk>0)

+λk
∑
i1 ̸=k

Pki1Pi1j︸ ︷︷ ︸
Pk(X2=xj ,σk>2)

+
∑

i1,i2 ̸=k
λi2Pi2i1Pi2j = . . .

≥ λk

∞∑
n=0

Pk(Xn = xj , σk > n) = λkπ̃
k
j .

Moreover, since P is irreducible, there exists n > 0 such that P
(n)
jk > 0. Hence

0 =
λk
λk

− π̃kk =
∑
i

(
λi
λk

− π̃ki

)
P

(n)
ik ≥

(
λj
λk

− π̃kj

)
P

(n)
jk =⇒ λj ≤ λkπ̃

k
j .

It follows that λj = λkπ̃
k
j for all j, therefore λ ∝ π̃k.

The measure π̃k is not necessarily finite. Indeed∑
i

π̃ki =
∑
i

∞∑
n=0

Pk(Xn = xi, σk > n) =
∞∑
n=0

Pk(σk > n) = Ek[σk]

hence we see that π̃k is finite if and only if P is positive recurrent.

Theorem 8.9. Let P be irreducible, then P has an invariant distribution (invariant
probability measure) π if and only if P is positive recurrent. Moreover, in this case, π is
unique and is given by

πi =
π̃ki

Ek[σk]
=

1

Ei[σi]
.

(The last equality follows by simply taking k = i.)

Consider now an irreducible and positive recurrent Markov chain {Xn}n with invariant
distribution π and an integrable function ψ : X → R with respect to π, i.e. Eπ[ψ] < ∞.
We ask whether µ = Eπ[ψ] (ensemble average of ψ) can be computed as a temporal average
over only one realization of the chain. The following result holds.

Theorem 8.10 (Ergodic theorem). Let {Xn} ∼ Markov (λ, P) with P irreducible and
positive recurrent, with invariant distribution π. Then, for any function ψ : X → R, such
that Eπ[ψ] <∞, it holds

Pλ

 lim
n→∞

1

n

n∑
j=1

ψ(Xj) = Eπ[ψ]

 = 1

for any λ ∈ M1(X).

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 101

k

Figure 8.3: Renewal cycles for an irreducible and positive recurrent Markov chain.

Idea of the proof. Let σ
(r)
k be the r-return time to the state xk, with σ

(0)
k = 0 and Vk(n) =∑n−1

j=1 1{Xj=xk} be the number of visits to xk before time n. Set Yr =
∑σ

(r)
k

j=σ
(r−1)
k +1

ψ(Xj),

r = 1, . . . , Vk(n). By the strong Markov property, Yr
iid∼ Y2 for all r ≥ 2. Hence by the

strong law of large numbers (SLLN)

1

Vk(n)− 1

Vk(n)∑
r=2

Yr
a.s.−→ E [Yr]

and

1

n

n∑
j=1

ψ(Xj) =
Y1
n︸︷︷︸
→0

+
Vk(n)− 1

n︸ ︷︷ ︸
→πk

1

Vk(n)− 1

Vk(n)∑
r=2

Yr︸ ︷︷ ︸
→E[Yr]

+
1

n

n∑
j=σ

Vk(n)

k +1

ψ(Xj)

︸ ︷︷ ︸
→0

a.s.−→ πkE [Yr] .

Moreover, E [Y2] =
∑

i ψ(xi)π̃
k
i = 1

πk
Eπ[ψ] hence the result.

The interval [σ
(r−1)
k + 1, σ

(r)
k] is called a renewal cycle. The fact that the chain re-

generates itself every time it visits a given state k is what allowed us to use the SLLN.
Thanks to the renewal structure highlighted in the proof of the previous theorem, one
can obtain also a Central Limit Theorem (CLT).

Theorem 8.11 (CLT for Markov Chains). Let {Xn} ∼ Markov (λ, P) with P irreducible,
positive recurrent and with invariant distribution π. Let ψ : X → R be such that Eπ[|ψ|] <
∞ and C(ψ) = 1

πk
Ek[(

∑σk
j=1 ψ(Xj)− σkEπ[ψ])2] <∞. Then

√
n

 1

n

n∑
j=1

ψ(Xj)− Eπ[ψ]

 d−→ N(0, C(ψ)).

We turn now to the stronger question whether the sequence of distributions πn,λ of
the steps {xn, n ∈ N} of a Markov chain Markov (λ, P) converges, in a suitable sense, to

102 CHAPTER 8. MARKOV CHAIN MONTE CARLO

the invariant distribution π as n → ∞ for any choice of initial distribution λ ∈ M1(X).
The fact that this property is not always true is shown in the next example.

Example 8.4. Consider the transition matrix P =

(
0 1
1 0

)
which is clearly irreducible

and has an invariant distribution π = (12 ,
1
2) (hence it is positive recurrent). However, if

we take the initial distribution λ = (1, 0), we have π1,λ = λP = (0, 1), λ2,λ = λ1,λP =
(1, 0) and clearly πn,λ does not converge to π. The problem in this example is that the
chain visits periodically (with period 2) the two states.

We need therefore to exclude such cases.

Definition 8.10. Given a transition matrix P , we say that a state xi is aperiodic if

P
(n)
ii > 0 for all sufficiently large n, or equivalently if the set {n > 0 : Pnii > 0} has no

common divisor other than 1.

Using the Chapman-Kolmogorov equation, it is easy to see that if P is irreducible and
has an aperiodic state xi, then all states xj ∈ X are aperiodic. We will then say that P is
aperiodic. The next theorem states that for an irreducible, positive recurrent, aperiodic
Markov chain {Xn}n ∼ Markov (λ, P), πn,λ → π in total variation as n → ∞ for any
initial distribution λ.

Before stating the theorem, we recall the definition of total variation of a measure:
given a measurable space (X ,B), with B a σ-algebra on X , and a (signed) measure
µ : B → R the total variation of µ is defined as

∥µ∥TV = sup
A∈B

µ(A)− inf
A∈B

µ(A) = sup
f :X→R meas.

∥f∥∞≤1

∫
X
f(x)µ(dx).

In the case of a discrete set X the above definition reduces to the ℓ1-norm of the row
vector µ = (µ1, µ2, . . .)

∥µ∥TV =
∑
xi∈X

|µ({xi})| = ∥µ∥ℓ1 .

Theorem 8.12. Let P be irreducible, aperiodic and positive recurrent with invariant
distribution π. Let λ be any distribution on X and {Xn} ∼ Markov (λ, P). Then, for

πn,λi = Pλ(Xn = i) it holds

lim
n→∞

∥πn,λ − π∥TV = lim
n→∞

∑
i

|πn,λi − πi| = 0.

Idea of the proof. Consider a chain {Yn} ∼ Markov (π, P) at equilibrium and independent
of {Xn}. The joint process {Wn = (Xn, Yn)}n is also a Markov chain with transition
matrix

P̃ik,jℓ = P (Xn+1 = xj , Yn+1 = xℓ | Xn = xi, Yn = xk) = PijPkℓ

and invariant distribution π̃ik = πiπk. Since P is aperiodic, for all i, j, k, ℓ, P̃
(n)
ik,jℓ =

P
(n)
iℓ P

(n)
kℓ > 0 for sufficiently large n. Hence P̃ is irreducible and positive recurrent (since

it has an invariant distribution).

8.1. MARKOV CHAINS ON DISCRETE STATE SPACES (REVIEW) 103

X0

Y0

Figure 8.4: Paths to follow to equilibrium.

Consider now the return time σk = inf{n > 0 : Xn = Yn = k} for which P (σk < +∞) =
1 since P̃ is irreducible and recurrent. At time σk, the two chains meet. Hence for n ≥ σk,
we can follow the path {Yn} which is at equilibrium. More precisely, the process

Zn =

{
Xn, n < σk

Yn, n ≥ σk

is also Markov (λ, P), i.e. has the same distribution as {Xn}. Moreover

|P (Zn = xj)− πj | = |P (Zn = xj)− P (Yn = xj) |
= |P (Zn = xj , n < σk) + P (Zn = xj , n ≥ σk)− P (Yn = xj) |
= |P (Xn = xj , n < σk)− P (Yn = xj , n < σk) |
≤ P (Xn = xj , n < σk) + P (Yn = xj , n < σk) .

Henc. e∑
j

|P (Zn = xj)− πj | ≤
∑
j

P (Xn = xj , n < σk) +
∑
j

P (Yn = xj , n < σk)

≤ 2P (n < σk) → 0 as n→ ∞.

Therefore, ∑
j

|πλ,nj − πj | =
∑
j

|P (Zn = xj)− πj | → 0.

Concerning the rate of convergence, we introduce the following definitions

Definition 8.11. An irreducible, positive recurrent, aperiodic Markov chain {Xn}n with
transition matrix P and invariant distribution π is

104 CHAPTER 8. MARKOV CHAIN MONTE CARLO

• geometrically ergodic if there exists a function h : X → R, with Eπ[h] < +∞ and
r ∈ (0, 1) such that

∥πn,δxi − π∥TV ≤ h(xi)r
n for all xi ∈ X ,

• uniformly ergodic if there exists C > 0 and r ∈ (0, 1) such that

∥πn,δxi − π∥TV ≤ Crn for all xi ∈ X .

Establishing geometric/uniform ergodicity is in general not easy, but can be done in
special cases, exploiting the structure of the transition matrix P . One such special case
is that of a finite state space X . We recall here some properties. Let X be a finite set of
caridnality dimension d and P an irreducible, aperiodic transition matrix. Then

• P is recurrent and positive recurrent (exercise)

• P has an eigenvalue λ1 = 1 simple (Perrou-Frobenius theorem) and all other eigen-
values satisfy |λi| < 1, i = 2, . . . , d.

• A Markov chain {Xn}n with transition matrix P is always uniformly ergodic and
∥πn,δxi −π∥TV ≤ C|λ2|n with |λ2| = max|λi|<1 |λi| if P is diagonalizable. If P is not

diagonalizable, the estimate has to be modified as ∥πn,δxi − π∥TV ≤ C(ϵ)(|λ2|+ ϵ)n

for ϵ > 0 arbitrary.

8.2 Markov chains on general state space

We give here a brief overview of how the theory of Markov chains generalizes to a contin-
uous state space X , typically a subset of Rd with non zero Lebesgue measure.

Definition 8.12. A Markov transition kernel on (X ,B(X)), where B(X) is the Borel
σ-algebra on X , is a function P : X × B(X) → [0, 1] s.t.

1. for all x ∈ X , P (x, ·) is a probability measure on X ,

2. for all A ∈ B(X), P (·, A) is measurable.

Whenever P (x, ·) admits a density with respect to the Lebesgue measure, we denote it by
p : X × X → R+ i.e. for all x ∈ X , A ∈ B(X),

P (x,A) =

∫
A
p(x, y) dy.

Definition 8.13. Given a Markov transition kernel P and a measure λ on (X ,B(X)),
a sequence of random variables {Xn ∈ X , n ≥ 0} is a homogeneous Markov chain with
transition Kernel P and initial distribution λ, in short {Xn} ∼ Markov (λ, P) if

• X0 ∼ λ

• P (Xn+1 ∈ A | Xn = xn, . . . , X0 = x0) = P (Xn+1 ∈ A | Xn = xn) = P (xn, A)

8.2. MARKOV CHAINS ON GENERAL STATE SPACE 105

A Markov chain {Xn} ∼ Markov (λ, P) satisfies the strong Markov property. Let τ
be a stopping time; conditional on τ < +∞, it holds

Eλ[h(Xτ+1, Xτ+2, . . .)] = EXτ [h(X1, X2, . . .)]

for any bounded function h : XN → R.
The n-step transition kernel P (n)(x,A) = P (Xn ∈ A | X0 = x) is given by the recur-

sion

P (n)(x,A) =

∫
X
P (n−1)(y,A)P (x, dy), P (1)(x,A) = P (x,A).

Similarly, if p(n) : X × X → R+ denotes the density of P (n) (provided it exists), then

p(n)(x, y) =

∫
X
p(n−1)(z, y)p(x, z) dz, p(1)(x, y) = p(x, y).

To each Markov transition kernel P we can associate the Markov operator P acting to
the left on measures, P : M1(X) → M1(X), with M1(X) the set of probability measures
on (X ,B(X)) as

µ = λP =⇒ µ(A) =

∫
X
P (y,A)λ(dy), ∀A ∈ B(X).

Notice that

λP2 = (λP)P =

∫
X

∫
X
P (x, ·)P(y, dx)λ(dy) =

∫
X
P (2)(y, ·)λ(dy)

so P2 is the operator associated to P (2) and more generally Pn is the operator associated
to P (n). If πn,λ denotes the measure of Xn, i.e. π

n,λ(A) = Pλ(Xn ∈ A), it follows that
πn,λ = λPn =

∫
X P

(n)(y, ·)λ(dy).

Definition 8.14. A measure π on (X ,B(X)) is called invariant (or stationary) if π =
πP =

∫
X P (y, ·)π(dy). If the measure π has a density f : X → R+ (i.e. π(A) =∫

A f(y) dy, ∀A ∈ B(X)), and the kernel P has a density p, then f(x) =
∫
X p(y, x)f(y) dy.

Similarly, a Markov transition kernel P defines an operator acting on functions to the
right, P : F(X) → F(X), where F(X) is the set of measurable functions on (X ,B(X)),
as

g = Pφ =⇒ g(x) =

∫
X
P (x, dy)φ(y) = Ex[φ(X1)].

Definition 8.15. A chain {Xn}Nn=0 ∼ Markov (λ, P) is reversible if the chain {Yn =
XN−n}Nn=0 ∼ Markov (λ, P).

As for discrete state spaces, {Xn}n is reversible if and only if (λ, P) satisfy the detailed
balance condition, which in this case reads∫

A
P (x,B)λ(dx) =

∫
B
P (y,A)λ(dy), ∀A,B ∈ B(X), λ(A), λ(B) > 0.

106 CHAPTER 8. MARKOV CHAIN MONTE CARLO

If (P, π) are in detailed balance, then π is an invariant distribution for P. Indeed,∫
X
P (x,B)π(dx) =

∫
B
P (y,X)︸ ︷︷ ︸

=1

π(dy) = π(B).

We now extend the concepts of irreducibility, recurrence and aperiodicity. In the
discrete setting, we have said that xi communicates with xj if there exists n > 0 : Pnij > 0
and a chain is irreducible if any state communicates with every other state. In the
general state space case, the definition is slightly more cumbersome. Indeed, if we work
with continuous random variables and assume that the transition kernel P has a density,
then P (n)(x, {y}) = Px(Xn = y) = 0 for all n since the set {y} is of zero measure.

Definition 8.16 (irreducibility). We say that {Xn}n ∼ Markov (λ, P) is irreducible if
there exists a (σ-finite) measure φ on (X ,B(X)) such that for any x ∈ X and A ∈ B(X),
with φ(A) > 0, there exists n > 0 for which P (n)(x,A) > 0. In this case, φ is called an
irreducibility measure.

Recall that a set A ∈ B(X) is accessible if Px(σA < ∞) > 0 for all x ∈ X , where
σA = inf{n > 0 : Xn ∈ A} is the return time to the set A. The above definition of
irreducibility, with irreducibility measure φ, implies that all sets A ∈ B(X) with non-
zero φ-measure are accessible. The notion of irreducibility does not really depend on the
irreducibility measure φ as shown by the next result.

Theorem 8.13 ([5, Proposition 4.2.2]). If {Xn}n ∼ Markov (λ, P) is irreducible for some
irreducibility measure φ on (X ,B(X)), then there exists a probability measure ψ on B(X),
called maximal irreducibility measure such that

• {Xn}n is ψ-irreducible

• For any other measure φ′ on B(X) for which {Xn} is φ′-irreducible, one has φ′

is absolutely continuous with respect to ψ (i.e. for all A ∈ B(X), ψ(A) > 0 =⇒
φ′(A) > 0)

The maximal irreducibility measure is in general not unique, but all maximal irre-
ducibility measures have the same null sets (i.e. they are equivalent). If {Xn}n has an
invariant distribution π, then π is a maximal irreducibility measure. This, in particular,
implies that an irreducible chain has at most one invariant probability measure. In the
context of Markov Chain Monte Carlo, where the target distribution π is given, we have
to check that the chain π is an irreducibility measure.

The notions of aperiodicity and recurrence generalize quite straighforwardly to acces-
sible sets.

Definition 8.17 (aperiodicity). A Markov chain {Xn}n ∼ Markov (λ, P) is aperiodic if
for any x ∈ X and any accessible set A ∈ B(X)

∃n0 ≥ 0 : P (n)(x,A) > 0 ∀n ≥ n0.

8.2. MARKOV CHAINS ON GENERAL STATE SPACE 107

For a set A ∈ B(X) let VA =
∑

n≥0 1{Xn∈A} be the number of visits to A. In the
discrete state space case, a state xi is recurrent if Pi(Vi = ∞) = 1 which happens if
and only if Ei[Vi] = ∞. This “if and only if” result is not true anymore for general
state spaces, so we can give two notions of recurrence depending on whether we take the
definition Pi(Vi = ∞) = 1 or Ei[Vi] = ∞.

Definition 8.18 (recurrence). A set A ∈ B(X) is said to be

• recurrent if Ex[VA] = ∞, for all x ∈ A;

• Harris recurrent if Px(VA = ∞) = 1, for all x ∈ A.

A Markov chain {Xn}n ∼ Markov (λ, P) is recurrent / Harris recurrent if it is irreducible
and every accessible set is recurrent / Harris recurrent.

The first notion of recurrence is weaker than the second one as it requires only that
the expected number of visits to A is infinite as opposed to the the Harris recurrence
condition that requires that almost surely the number of visits is infinite.

As in the discrete case, we have that if {Xn}n ∼ Markov (λ, P) is irreducible and
recurrent, then it has a unique non-zero invariant measure π̂ (non necessarily finite) up to
a multiplicative constant. If π̂ is finite, it can be normalized into a probability distribution
and we say that {Xn} is positive.

If {Xn} is irreducible, positive and aperiodic, hence has a unique invariant probability
distribution π, then

∀λ ∈ M1(X), lim
n→∞

∥λPn − π∥TV = 0.

We mension also the ergodic theorem

Theorem 8.14. Let {Xn}n ∼ Markov (λ, P) be an irreducible positive chain with invari-
ant probability distribution π and ψ ∈ F(X) a π-integrable function with Eπ[ψ] < ∞.
Then, for any λ ∈ M1(X)

Pλ

 lim
n→∞

1

n

n∑
j=1

ψ(Xj) = Eπ[ψ]

 = 1.

108 CHAPTER 8. MARKOV CHAIN MONTE CARLO

8.3 Metropolis-Hastings algorithm in general state space

We generalize here the Metropolis-Hastings algorithm, already introduced in Section 8.1.1,
to the case of a general state space, as a tool to construct a Markov Chain {Xn} ∼
Markov (λ, P) on X ⊂ Rd which has a given invariant measure π with density f : X → R+

with respect to the Lebesgue measure. In the following discussion, we accept that the
density f may be know only up to a multiplicative constant, i.e. it does not necessarily
integrates to one (in which case, the invariant density is f̃(x) = f(x)/

∫
X f(y)dy).

Let Q : X × B(X) → [0, 1] be a Markov transition kernel Q(x,A) =
∫
A q(x, y) dy for

all x ∈ X , A ∈ B(X) with density q : X ×X → R+ satisfying q(x, y) = 0 ⇔ q(y, x) = 0,
also called the proposal or instrumental density, and define the following acceptance rate
α : X × X → [0, 1],

α(x, y) = min

{
f(y)

f(x)

q(y, x)

q(x, y)
, 1

}
, if q(x, y) ̸= 0, α(x, y) = 0, if q(x, y) = 0.

The Metropolis-Hasting algorithm then reads

Algorithm 8.2: Metropolis-Hastings.

Given: λ (initial measure), q (proposal transition density), f (target density)
1 Generate X0 ∼ λ
2 for n = 0, 1, . . . , do
3 Generate Yn+1 ∼ q(Xn, ·) // proposal state

4 Generate U ∼ U(0, 1)
5 if U ≤ α(Xn, Yn+1) then
6 set Xn+1 = Yn+1 // accept proposal

7 else
8 set Xn+1 = Xn // reject proposal

9 end

10 end

For the algorithm to work, the chain has to be able to explore the whole density f . Let
us denote Df = supp(f) = {x ∈ X : f(x) > 0} the support of f . Minimum requirements
are:

• X0 ∈ Df , otherwise α(X0, ·) is not defined. This guarantees, in particular, that
Xn ∈ Df , ∀n;

•
⋃
x∈Df

supp(q(x, ·)) ⊃ Df , otherwise the chain fails to visit some parts of Df .

We derive now the transition kernel P , resp. transition density p, of the Markov
chain generated by the Metropolis-Hastings algorithm. There is, in general, a non-zero
probability that Xn+1 = Xn, so P (Xn, ·) has a point mass in Xn:

P (Xn+1 = x | Xn = x) =

∫
X
q(x, y)(1− α(x, y)) dy = 1−

∫
X
α(x, y)q(x, y) dy

8.3. METROPOLIS-HASTINGS ALGORITHM IN GENERAL STATE SPACE 109

so the transition density p is

p(x, y) = α(x, y)q(x, y) + (1− α∗(x))δx(y), α∗(x) =
∫
X
α(x, y)q(x, y) dy

where δx(y) is a Dirac mass in x. Equivalently, the transition kernel P is given by

P (x,A) =

∫
A
α(x, y)q(x, y)dy + (1− α∗(x))1A(x).

As in the discrete state space case, we can verify that P and f are in detailed balance.

Lemma 8.15. The transition kernel P of the Metropolis-Hastings algorithm 8.2, with
density p(x, y) = α(x, y)q(x, y)+(1−α∗(x))δx(y) is in detailed balance with the probability
density f . Hence f is an invariant probability density for P .

Proof. Observe first that

f(x)q(x, y)α(x, y) = f(x)q(x, y)min

{
f(y)

f(x)

q(y, x)

q(x, y)
, 1

}
= min{f(y)q(y, x), f(x)q(x, y)} = f(y)q(y, x)α(y, x).

Hence∫
A
P (x,B)f(x) dx =

∫
A

(∫
B
(α(x, y)q(x, y) + (1− α∗(x))δx(y)) dy

)
f(x) dx

=

∫
A

∫
B
f(y)α(y, x)q(y, x) dy dx+

∫
A∩B

(1− α∗(x))f(x) dx

=

∫
B

(∫
A
(α(y, x)q(y, x) + (1− α∗(y))δy(x)) dx

)
f(y) dy

=

∫
B
P (y,A)f(y) dy.

To assess the convergence to equilibrium of the chain, we should further check irre-
ducibility and aperiodicity. In particular, irreducibility should be checked with respect to
the invariant density f .

• f -irreducibility is something that should be checked every time depending on the
choice of the proposal density. If it holds, then for all φ : X → R, Ef [|φ|] < +∞,

lim
n→∞

1

n

n∑
j=1

φ(Xj) = Ef [φ] =
∫
X
φ(x)f(x) dx.

• Concerning aperiodicity, observe that in general P (Xn+1 = x | Xn = x) > 0 as long
as α∗(x) < 1, since the transition kernel P (x, ·) has an atom at x. Consider the set
C = {x : α(x) < 1}. This is a f -zero measure set, i.e.

∫
C f(x) dx = 0, if and only if

110 CHAPTER 8. MARKOV CHAIN MONTE CARLO

(exercise) f(x)q(x, y) = f(y)q(y, x) for f -almost every x, y ∈ Df which corresponds
to the case in which the proposal q is in detailed balance with f . In this case, the
acceptance-rejection step is useless and one should check the aperiodicity of q. If,
on the other hand, (q, f) are not in detailed balance, then the chain is aperiodic.
If, moreover, the chain is f -irreducible, then for any initial distribution λ ≪ f we
have (denoting π the measure associated to f)

lim
n→∞

∥πn,λ − π∥TV = 0.

We describe in the next subsections few methods to choose proposal densities q.

8.3.1 Independence sampler

Let g : X → R+ be a probability density function such that g(x) > 0 whenever f(x) > 0
(i.e. f ≪ g). We choose simply q(x, y) = g(y) independently of the current state x (hence
the name of independence sampler).

Algorithm 8.3: Independence sampler Metropolis-Hastings

Given: X0 ∼ λ, supp(λ) ⊂ Df

1 for n = 0, 1, . . . , do
2 Generate Yn+1 ∼ g

3 Compute α(Xn, Yn+1) = min
{
f(Yn+1)
f(Xn)

g(Xn)
g(Yn+1)

, 1
}

4 Generate U ∼ U(0, 1) and set

Xn+1 =

{
Yn+1, if U ≤ α(Xn, Yn+1)

Xn, otherwise

5 end

Concerning the convergence to equilibrium, we recall first a useful result for general
state space Markov chains.

Lemma 8.16. Let P : X × B(X) → [0, 1] be a Markov transition kernel with invariant
measure π. If there exists ϵ ∈ (0, 1) and a probability measure ν on (X ,B(X)) such that

P (x,A) ≥ ϵν(A), ∀x ∈ X , A ∈ B(X) (8.3)

then
∥πn,λ − π∥TV ≤ 2(1− ϵ)n.

More generally, if there exists k0 ∈ N such that P (k0)(x,A) ≥ ϵν(A) for all x ∈ X ,
A ∈ B(X), then ∥πn,λ − π∥TV ≤ 2(1 − ϵ)⌊n/k0⌋. The condition (8.3) is called uniform
minorizing condition.

Idea of the proof. (For k0 = 1): We build two coupled chains {Xn} ∼ Markov (λ, P) and
{Yn} ∼ Markov (π, P) using the following algorithm. Notice, in particular, that the chain
{Yn} is at stationarity.

8.3. METROPOLIS-HASTINGS ALGORITHM IN GENERAL STATE SPACE 111

Algorithm 8.4: Coupled chains.

1 Let X0 ∼ λ, Y0 ∼ π
2 for n = 0, 1, . . . , do
3 Draw Zn ∼ Be(ϵ), P (Zn = 1) = ϵ, P (Zn = 0) = 1− ϵ
4 if Zn = 1 then
5 draw W ∼ ν and set Xn+1 = Yn+1 =W
6 else

7 draw Xn+1 ∼ P (Xn,·)−ϵν(·)
1−ϵ and Yn+1 ∼ P (Yn,·)−ϵν(·)

1−ϵ independently

8 end

9 end

It is easy to verify that indeed {Xn} ∼ Markov (λ, P) and {Yn} ∼ Markov (π, P).
Let T = inf{n ≥ 0 : Zn = 1}. It is clear that after T , the two chains have the same
distribution Xn ∼ Yn, n > T . Moreover, P (T ≥ n) = (1− ϵ)n. Now

∥πn,λ − π∥TV = 2 sup
A∈B(X)

|P (Xn ∈ A)− P (Yn ∈ A) |

= 2 sup
A

|P (Xn ∈ A, T < n) + P (Xn ∈ A, T ≥ n)

− P (Yn ∈ A, T < n)− P (Yn ∈ A, T ≥ n) |
= 2 sup

A
|P (Xn ∈ A, T ≥ n)− P (Yn ∈ A, T ≥ n) |

= 2 sup
A

|P (Xn ∈ A, Yn /∈ A, T ≥ n)− P (Xn /∈ A, Yn ∈ A, T ≥ n)|

≤ 2P (T ≥ n) ≤ 2(1− ϵ)n.

In the case of the independence sampler, the following result holds.

Theorem 8.17. If there exists M < +∞ such that f(x) ≤ Mg(x) for all x ∈ X , then
the chain generated by the independence sampler algorithm 8.3 is uniformly ergodic and

∥πn,λ − π∥TV ≤
(
1−

∫
f(x) dx

M

)n
, for any λ.

Proof. If f is not normalized, let f̃ = f/C, C =
∫
X f . Notice that

α(x, y)q(x, y) = g(y)min

{
f(y)

f(x)

g(x)

g(y)
, 1

}
= min

f(y)
g(x)

f(x)︸ ︷︷ ︸
≥1/M

, g(y)︸︷︷︸
≥f(y)/M

 ≥ 1

M
f(y).

It follows that for any A ∈ B(X),

P (x,A) =

∫
A
(α(x, y)q(x, y) + (1− α∗(x))δx(y)) dy ≥ 1

M

∫
A
f(y) dy ≥ C

M
π(A)

and the result follows from Lemma 8.16.

112 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Under the same condition as in Theorem 8.17, it can be shown that the expected
acceptance probability satisfies E [α(Xn, Yn+1)] ≥ C

M (exercise). This result has to be
compared with a pure acceptance-rejection sampling strategy, for which the expected
acceptance probability is C

M . Hence, independence MH sampler accepts more often than
a pure acceptance-rejection sampler.

8.3.2 Random walk Metropolis

Let gσ : X → R+ be a probability density function with zero mean, σ being a scaling
parameter; a typical choice is gσ = N(0, σ2). In the random walk Metropolis we choose
q(x, y) = gσ(y − x), i.e. the proposal density is gσ centred in the current state x. If we
further assume gσ(·) symmetric around the origin, the acceptance probability takes the
simplified form

α(x, y) = min

{
f(y)

f(x)
, 1

}
.

The choice of σ is rather delicate. Small σ imply small steps from the current state,
hence high correlation in the chain. Large steps might lead to high rejection rate, hence
the chain will stay for a long time in the given state, which also leads to high correlation
in the chain. One should then expect that some “optimal” choice of σ exists.

Concerning convergence of this algorithm, one could try to verify a uniform minorizing
condition

gσ(y − x) ≥ ϵf(y)

for all x, y ∈ Df . By the same arguments as for independence sampler, this would imply
P (x,A) ≥ ϵπ(A) hence uniform ergodicity ∥πn,λ − π∥TV ≤ 2(1− ϵ)n for all initial distri-
butions λ. However, such minorizing condition does not hold, in general for unbounded
or non-compact Df ⊂ X . We mention a result by Mengersen and Tweedie (’96) showing
geometric ergodicity for tail-log-concave f and X = R.

Definition 8.19. A probability density function f on R is log-concave in the tails if there
exists α,M > 0 such that log f(x)− log f(y) ≥ α(|y| − |x|) for all |y| ≥ |x| ≥M .

Theorem 8.18. If the invariant density f on R is log concave in tails for some α,M > 0
and inf |x|≤R f(x) > 0 for all R > 0, then the Markov chain generated by the random walk
Metropolis-Hastings algorithm with symmetric proposal gσ(·) is geometrically ergodic.

8.3.3 One Variable at a time Metropolis-Hastings

Suppose that a state x ∈ X has several components, x = (x(1), . . . , x(d)), with x(i) ∈ X (i).
One can thus construct a Metropolis-Hastings algorithm by updating one component at a
time, either chosen randomly or by performing a systematic sweep over the components.
Say that the i-th component has been chosen. We use the notation x = (x(i), x(−i)) with
x(−i) = (x(1), . . . , x(i−1), x(i+1), . . . , x(d)). Let qi : X × X (i) → R be a family of proposal
density functions on X (i), i.e. qi(x, ·) is a density function on X (i) for any x ∈ X . Then
the one variable at a time MH algorithm with random coordinate selection reads:

8.3. METROPOLIS-HASTINGS ALGORITHM IN GENERAL STATE SPACE 113

Algorithm 8.5: One variable at a time MH with random selection.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Draw index in ∼ β (p.m.f on {1, . . . , d})
4 Draw y ∼ qin(Xn, ·) and set Yn+1 = (y,X

(−in)
n)

5 Compute αin(Xn, Yn+1) = min

{
f(Yn+1)
f(Xn)

qin (Yn+1,X
(in)
n)

qin (Xn,Y
(in)
n+1)

, 1

}
6 Set Xn+1 =

{
Yn+1 with prob. αin(Xn, Yn+1)

Xn otherwise

7 end

whereas the one variable at a time MH algorithm with systematic sweep over the coordi-
nates reads:

Algorithm 8.6: One variable at a time MH with systematic sweep.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Set Yn+1,0 = Xn

4 for i = 1, . . . , d do

5 Draw y ∼ qi(Xn, ·) and set Ỹ = (y, Y
(−i)
n+1,i−1)

6 Set Yn+1,i =

{
Ỹ , with prob. αi(Yn+1,i−1, Ỹ)

Yn+1,i−1, otherwise

7 end
8 Xn+1 = Yn+1,d

9 end

8.3.4 Gibbs sampler

The Gibbs sampler is a one variable at a time MH algorithm in which the component-wise
proposal density is the conditional density qi(x, ·) = fX(i) | X(−i)(· | x(−i)). Observe that,

in this case, the Hasting ratio for X = (X(i), X(−i)) and Y = (Y (i), X(−i)) is

αi(X,Y) = min

{
f(Y)

f(X)

f(X(i) | X(−i))
f(Y (i) | X(−i))

, 1

}
= 1

i.e. the move is always accepted, or, in other words, the transition kernel Qi which
samples independently the i-th component from the conditional density f(· | X(−i)) pre-
serves the density f . The next algorithm presents the Gibbs sampler with random sweep.

114 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Algorithm 8.7: Gibbs with random sweep.

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Draw in from a pmf β on {1, . . . , d}
4 Generate y(in) ∼ f(· | X(−in)

n)

5 Set Xn+1 = (y(in), X
(−in)
n)

6 end

8.3.5 Metropolis Adjusted Langevin Algorithm (MALA)

The MALA algorithm relies on the following observation: consider the stochastic differ-
ential equation (Langevin dynamics)

dXt = ∇ log f(Xt) +
√
2 dWt, t > 0, X0 ∼ λ (8.4)

with Xt ∈ Rd, where f is the target density, Wt is a standard Wiener process and λ is a
probability density function on Rd. At any t, let us denote by ρ(x, t) : X ×R+ → R+ the
probability density function of Xt, i.e.∫

A
ρ(x, t) dx = Pλ(Xt ∈ A).

It is well known that ρ satisfies the so-called Fokker-Planck equation

∂tρ+ div(ρ∇ log f)−∆ρ = 0, in Rd, t > 0,

with ρ(x, 0) = λ(x), from which we see that ρ̄(x, t) = f(x) is a stationary solution. Indeed,

∂tρ̄+ div(ρ̄∇ log f)−∆ρ̄ =
d∑
i=1

∂xi

(
ρ̄
∂xif

f

)
−∆ρ̄ = 0.

Under mild assumptions on f , such stationary solution is unique and limt→∞ ρ(·, t) = f
(in a suitable sense) for any initial density λ. Hence, the time continuous process (8.4)
has f as unique invariant distribution. The problem is that we are not able to find exact
solutions of (8.4), in general, and we have to use some numerical scheme for example the
Euler-Maruyama:

Xn+1 = Xn +∆t∇ log f(Xn) +
√
2∆tξn, ξn ∼ N(0, I) (8.5)

i.e.

Xn+1 ∼ N(Xn +∆t∇ log f(Xn), 2∆tI). (8.6)

However, after discretization, (8.5) does not have anymore f as invariant distribution.
Yet (8.6) can be used as a proposal in a Metropolis-Hastings algorithm. This leads to the
following

8.4. CONVERGENCE DIAGNOSTICS 115

Algorithm 8.8: Metropolis Adjusted Langevin Algorithm (MALA).

1 Generate X0 ∼ λ
2 for n = 0, 1, . . . do
3 Generate Y ∼ N(Xn +∆t∇ log f(Xn), 2∆tI)

4 Compute α(Xn, Y) = min
{
1, f(Y)

f(Xn)
exp(−∥Xn−Y−∆t∇ log f(Y)∥2/2∆t
exp(−∥Y−Xn−∆t∇ log f(Xn)∥2/2∆t

}
5 Set Xn+1 =

{
Y with prob. α(Xn, Y)

Xn otherwise

6 end

8.4 Convergence diagnostics

Let us consider an f -irreducible Metropolis-Hastings Markov chain, which is in particular
Harris recurrent and ergodic. Given any function φ : Ef [φ] < +∞, by the ergodic theorem

lim
n→∞

1

n

n∑
j=1

φ(Xj) = Ef [φ].

Hence, to compute µ = Ef [ϕ], we can consider the estimator

µ̂mcmc
N =

1

N

N∑
j=1

φ(Xj).

The question is how to monitor properly the convergence of µ̂mcmc to µ and how to choose
N .

We start by analyzing the Bias. The estimator µ̂mcmc
N is biased, in general, since

Xn ∼ f only asymptotically as n→ ∞. The bias is generally of order 1
N as shown in the

next lemma.

Lemma 8.19. Let {Xn} ∼ Markov (δx, P) with P a Metropolis-Hastings transition kernel
with invariant distribution π and density f . If {Xn} is geometrically ergodic, that is, there
exists γ > 0 and h : X → R+ such that ∥πn,δx − π∥TV ≤ h(x)e−γn then for any bounded
φ : X → R, there exists Cφ > 0 such that

|E [µ̂mcmc
N − µ] | ≤ C

N
.

116 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Proof.

|E [µ̂mcmc
N − µ] | =

∣∣∣∣∣∣ 1N
N∑
j=1

E [φ(Xj)− µ]

∣∣∣∣∣∣
≤ 1

N

N∑
j=1

∣∣∣∣∫X φ(y)(πj,δx(dy)− π(dy))

∣∣∣∣
≤ 1

N

N∑
j=1

sup
x∈X

|φ(x)|∥πj,δx − π∥TV

≤ 1

N
sup
x∈X

|φ(x)|h(x) 1

1− e−γ
.

Such bias can be further reduced by considering the estimator µ̂mcmc
N,B = 1

N

∑N+B
j=B+1 φ(Xj)

i.e. by disregarding the first B terms of the chain. The lag B is often called the burn-in or
warm-up period. Under the assumptions of the previous lemma, the bias of the estimator
µ̂mcmc
N,B is bounded by

|E
[
µ̂mcmc
N,B

]
− µ| ≤ e−γB

N
sup
x∈X

|φ(x)| h(x)

1− e−γ

and is thus reduced by a factor e−γB with respect to the base estimator µ̂mcmc
N = µ̂mcmc

N,0 .

The quantity 1
γ is often called the relaxation time and choosing B = m

γ with moderate
m makes the bias negligible. Estimating the relaxation time is not easy. However, a
graphical inspection of the trace plot of the chain {ϕ(Xn)} is often sufficient to have a
reasonable estimation of the time at which the chain reaches stationarity.

We focus now on the variance of the estimator µ̂mcmc
N (or µ̂mcmc

N,B). Assuming that a suf-
ficient burn-in period has been considered, we can reasonably assume in the analysis that
follows that the chain is at stationarity when computing the estimator µ̂mcmc

N , i.e. {Xn} ∼
Markov (π, P). Let us denote c(k) = Covπ(φ(X0), φ(Xk)) = Covπ(φ(Xj), φ(Xj+k)) for
all j thanks to the stationarity of the the chain.

Lemma 8.20. Let {Xn} ∼ Markov (π, P) Then

Varπ[µ̂mcmc
N] =

σ2mcmc,N

N
, with σ2mcmc,N = c(0) + 2

N−1∑
ℓ=1

(
1− ℓ

N

)
c(ℓ).

Moreover, if
∑∞

k=0 |c(k)| < +∞, then

lim
N→∞

NVar (µ̂mcmc
N) = σ2mcmc

with σ2mcmc = c(0) + 2
∑∞

k=1 c(k).

8.4. CONVERGENCE DIAGNOSTICS 117

Proof.

Varπ[µ̂mcmc
N] = Eπ

 1

N

N∑
j=1

φ(Xj)− µ

2
=

1

N2

N∑
j=1

N∑
k=1

Eπ[(φ(Xj)− µ)(φ(Xk)− µ)]

=
1

N2

 N∑
j=1

Varπ[φ(Xj)]︸ ︷︷ ︸
c(0)

+2
N−1∑
j=1

N∑
k=j+1

Covπ(φ(Xj), φ(Xk))︸ ︷︷ ︸
c(k−j)


=
c(0)

N
+

2

N2

N−1∑
j=1

N−j∑
ℓ=1

c(ℓ)

=
c(0)

N
+

2

N

N−1∑
ℓ=1

N − ℓ

N
c(ℓ)

=
1

N

(
c(0) + 2

N−1∑
ℓ=1

(
1− ℓ

N

)
c(ℓ)

)
.

Under the assumption
∑∞

ℓ=0 |c(ℓ)| < +∞, it follows that limN→∞NVarπ[µ̂mcmc
N] = σ2mcmc.

The quantity σ2mcmc is called time-average variance constant (TAVC) or asymptotic
variance. If {Xn}Nn=1 were independent and all distributed as π, then the variance of the

Crude Monte Carlo estimator µ̂MC
N = 1

N

∑N
j=1 φ(Xj) would be Var

(
µ̂MC
N

)
= c(0)

N . From
this we see that

lim
N→∞

Var (µ̂mcmc
N)

Var
(
µ̂MC
N

) =
σ2mcmc

c(0)
= 1 + 2

∞∑
k=1

c(k)

c(0)
.

Hence µ̂mcmc
N is generally less effective than a pure iid sampling from π, due to the corre-

lation in the chain. The quantity

ESS = N
c(0)

σ2mcmc

is called the effective sample size and represents the size of an equivalent independent
sample that would lead to the same variance of the estimator.

For the estimator µ̂mcmc
N a CLT is also available (and more generally for aperiodic,

irreducible and reversible chains with invariant distribution π.).

Theorem 8.21 (CLT for Metropolis-Hastings Markov Chains). Let {Xn} be an f -
irreducible, aperiodic Metropolis-Hastings chain, with invariant distribution π (resp. den-
sity f) and φ : X → R such that

σ2mcmc := Varπ(φ(X0)) + 2

∞∑
ℓ=1

Covπ(φ(X0), φ(Xℓ)) < +∞,

118 CHAPTER 8. MARKOV CHAIN MONTE CARLO

then, √
N(µ̂mcmc

N − µ)
d−→ N(0, σ2mcmc)

as N → ∞.

From the CLT, asymptotic confidence intervals can be derived. The practical question,
however, is how to estimate σ2mcmc.

8.4.1 Estimating the asymptotic variance by covariance methods

We recall the formula σ2mcmc = c(0)+2
∑∞

k=1 c(k). Given a path {Xn}Nn=0, if we discard a
sufficient burn-in lag B, we can reasonably assume that {Xn}N+B

n=B+1 is (nearly) stationary,
so that a sample estimator for c(k) is

ĉ(k) =
1

N − k − 1

N+B−k∑
j=B+1

(φ(Xj)− µ̂mcmc
N,B)(φ(Xj+k)− µ̂mcmc

N,B)

and an estimator for σ2mcmc is

σ̂2mcmc = ĉ(0) + 2
N−2∑
k=1

ĉ(k).

However, the last terms in the sum are very unstable since these are sample averages of
very few terms. It is often wiser to truncate the sum much earlier

σ̂2M = ĉ(0) + 2
M∑
k=1

ĉ(k).

whereM < N−2. It has been shown [Geyer ’92’] that the sequence Γk = c(2k)+c(2k+1)
is strictly positive, decreasing and convex for a reversible Markov Chain. Hence a good
choice is

M = 2min{k : ĉ(2k) + ĉ(2k + 1) < 0}.

8.4.2 Estimating the asymptotic variance by the batch means method

An alternative idea to estimate σ2mcmc is to split the sequence {Xn}N+B
n=B+1 into M blocks

of size T = N/M (assumed to be an integer). Then we can build M different sample
averages

µ̂(i) =
1

T

iT+B∑
j=(i−1)T+B+1

φ(Xj), and µ̂mcmc
N,B =

1

M

M∑
i=1

µ̂(i).

If T is sufficiently large (larger than the relaxation time), the M blocks are nearly inde-

pendent so Var
(
µ̂mcmc
N,B

)
≈ σ2

mcmc
N ≈ Var(µ̂(1))

M and Var
(
µ̂(1)

)
can be estimated by a sample

variance estimator

Var
(
µ̂(1)

)
≈ σ̂2

µ̂(1)
=

1

M − 1

M∑
i=1

(
µ̂(i) − µ̂mcmc

N,B

)2
.

8.4. CONVERGENCE DIAGNOSTICS 119

Finally, an estimator for σ2mcmc is

σ̂2mcmc =
N

M
σ̂2
µ̂(1)

=
T

M − 1

M∑
i=1

(
µ̂(i) − µ̂mcmc

N,B

)2
.

120 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Bibliography

[1] Y. S. Chow and Herbert Robbins. On the asymptotic theory of fixed-width sequential
confidence intervals for the mean. Ann. Math. Statist., 36:457–462, 1965.

[2] D. Kroese, T. Taimre, and Z. Botev. Handbook of Monte Carlo Methods. Wiley, 2011.

[3] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software, 33(Article 22),
2007.

[4] Wei-Liem Loh. On Latin hypercube sampling. Ann. Statist., 24(5):2058–2080, 1996.

[5] S. Meyn and R.L. Tweedie. Markov chains and stochastic stability. Cambridge Uni-
versity Press, Cambridge, second edition, 2009. With a prologue by Peter W. Glynn.

[6] Art B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM J. Numer.
Anal., 34(5):1884–1910, 1997.

[7] Michael Stein. Large sample properties of simulations using Latin hypercube sampling.
Technometrics, 29(2):143–151, 1987.

121

	Uniform Pseudo Random Number Generation
	Some common uniform Pseudo-RNG
	Empirical tests for RNG
	Non-parametric Goodness-of-Fit Tests
	Empirical tests for independence

	Random Variable Generation
	Inverse-transform method
	Composition method
	Alias method
	Acceptance-Rejection method
	Squeezing
	Adaptive AR for log-concave densities

	Ad Hoc methods
	Box-Muller method

	Multivariate Random Variable Generation
	Independent components
	Generation from conditional distributions
	Generation by transformation using copulas

	Generation of Gaussain processes
	Generation of multivariate Gaussian random variables
	Generation from conditional Gaussian distribution
	Gaussian process generation
	Wiener process (Brownian motion)
	Brownian bridge

	Stationary Gaussian processes / random fields

	Generation of Markov processes
	Discrete time / discrete state Markov chains
	Discrete time / continuous state Markov chains
	Continuous time / discrete state Markov chains
	Poisson process
	Non-homogeneous Poisson process
	Compound Poisson process
	General continuous time / discrete space Markov process

	Monte Carlo method
	Confidence intervals
	Implementation aspects
	Non asymptotic error bounds
	Vector valued output
	Smooth functions of expectations and delta method
	Monte Carlo to compute integrals

	Variance Reduction Techniques
	Antithetic Variables
	Importance Sampling
	On the choice of the importance sampling distribution g
	Weighted importance sampling
	Importance sampling for stochastic processes

	Control variates
	Multiple control variates

	Stratification
	Proportional allocation
	Optimal allocation

	Latin Hypercube Sampling

	Quasi Monte Carlo methods
	Low discrepancy sequences and point sets
	Randomized QMC formulas

	Markov Chain Monte Carlo
	Markov Chains on discrete state spaces (review)
	Metropolis-Hastings algorithm in discrete state spaces
	Convergence results

	Markov chains on general state space
	Metropolis-Hastings algorithm in general state space
	Independence sampler
	Random walk Metropolis
	One Variable at a time Metropolis-Hastings
	Gibbs sampler
	Metropolis Adjusted Langevin Algorithm (MALA)

	Convergence diagnostics
	Estimating the asymptotic variance by covariance methods
	Estimating the asymptotic variance by the batch means method

