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Chapter 1

Uniform Pseudo Random Number
Generation

At the heart of any Monte Carlo method, is a Random Number Generator (RNG), i.e. a
procedure that produces an infinite stream of random variables Uy, Us, ... i w that are
independent and identically distributed (i.i.d.) according to some probability distribution
w. In particular, if p is the uniform distribution on [0,1], i.e. = U([0,1]), the generator
is called a Uniform Random Number Generator.

Although generators based on physical devices that exploit universal background ra-
diation or quantum mechanics effects exist, the vast majority of current random number
generators are based on algorithms that can be implemented on a computer. As such,
these algorithms produce a purely deterministic stream of numbers Uy, Us, ..., which,
however, resembles a stream of iid random variables in the sense that the stream is indis-
tinguishable from a random one according to a number of statistical tests. Algorithmic
generators are called Pseudo-Random Number Generators (Pseudo-RNG).

Pseudo-RNG have the general structure, illustrated in Algorithm where S is a
finite state space, U the output space, f: S — S and g: S — U two given functions.

Algorithm 1.1: General structure of a Pseudo-RNG

1 take Xg € S ; // seed
2 fork=1,2,...do

3 Xk = f(Xk-1) ; // recursion on state variable X, €S
4 Uk = 9(Xk) ; // output Uy € U
5 end

Few remarks are in order:

e The initial state Xg is called the seed. A Pseudo-RNG starting from a given seed
will always produce the same sequence Uy,Us,.... This is actually a convenient
feature when testing or debugging a code.

e Since the state space S is finite, the generator eventually will repeat itself (i.e. it
will revisit an already visited state). All Pseudo-RNGs are periodic.
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We call period the largest number of steps ¢ taken before visiting an already visited
state. The mazimal period that a generator can have is £ = |S| (where |S| denotes
the cardinality of the state space).

A good uniform Pseudo-RNG should possibly:

1. Have a large period: if we need to run a Monte Carlo analysis using M (pseudo)
random variables, the period ¢ of the generator should be ¢ > M (otherwise the
property of independent samples is clearly broken).

2. Pass a battery of statistical tests for uniformity and independence.

3. Be fast and efficient: many MC techniques require the generation of billions of
random variables. In certain fields (e.g. finance) the generation time is a big issue.

4. Be reproducible: in certain cases it is important to be able to reproduce a stream
Ui, Us, ... without the need of storing it (debugging purposes, advanced MC vari-
ance reduction techniques etc.)

5. Have the possibility to generate multiple streams. This is important when running a
Monte Carlo analysis in a parallel environment: each processor should use a stream
not overlapping with the ones used by the other processors.

6. Avoid producing the numbers 0 and 1. The value zero might produce undesirable
results as “division by zero”. Since the event “U = 0” has zero probability, the
Pseudo-RNG should never produce the value zero.

1.1 Some common uniform Pseudo-RNG

The most commonly used generators are based on linear recurrences. We present hereafter
some examples.

Linear Congruential Generator (LCG)

It is characterized by a state space S = {0,1,...,m — 1} (m is called the modulus), two
natural numbers a,b € N and the following recurrence and output

X
X = (aXp_1+b) modm, Up=>" k>1.
m

LCG have been popular for many years but are now somewhat outdated (e.g. Matlab ver-
sions up to 5 were using one of those). LCG can generate any number in {0, %, ce mﬁfl}
and m ™! should be chosen of the order of the floating point machine precision (e-machine).

A popular choice is the Lewis-Goodman-Miller LCG with a = 7° = 16807, b = 0,
m = 231 —1 ~ 2-10°, which has a maximal period of m —1 =~ 4-10?, too small for today’s
applications.
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Multiple recursive generator (MRG) of order ¢

For natural numbers ay,...,a, € N and seeds Xo, X_1,..., X 441 €{0,...,m — 1}, it is
defined by the recurrence and output
X
X = (CLle,1—l—aQXk,Q—i----—‘raqu,q) mod m, U, = Ek, k> 1. (1.1)

A MRG can be written in the general form of Algorithm by introducing the vector
X (k) — (Xk—gtiy--- , X%) " and the integer matrix A € NI*9,

0 1 ... 0
A= . . . .
0 o ... 1
Gq Qg—1 ... al

As such, the recurrence ((1.1)) can be written equivalently as

X (k)
X® = AX*1 mod m, Uy = ( )", k> 1, (1.2)
m
for which the state space is S = {0,1,...,m — 1}? and the maximal period can be up to

m? — 1. For a more general integer valued invertible matrix A, a generator of the form
(1.2) is called Matriz Congruential Generator of order q.

Combined Generators

Here, the idea is to combine the output of several generators which, individually, may be
of poor quality, to make a superior quality generator.

Example 1.1 (Wichman-Hill). This combines 3 LCGs

X, = (171X,—1) mod my (m1 = 30269)
Y = (172Y;—1) mod ma (mg = 30307) (1.3)
Zy = (170Z;-1) mod ms (mg = 30323)
with
Ukzﬁ—kﬁ—l—é mod 1.
miq meo ms

It has a period of £ ~ 6.95 - 10'2 (which is not very large for today’s applications) and
performs quite well in simple statistical tests.

Example 1.2 (MRG32k3a). This is a combination of 2 MRGs:

X = (aeXp_o + a3Xk_3) mod my
Y. = (bIYk—l + ngk_g) mod ms

with

Xp—=Yi+m .
“Soir s Xk <Y
Uk =

XY ,
R if Xy > Yy
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and suitable values of as,as, b1, bs, mi, ma. This has a period of £ ~ 3 - 10°7 and passes
all statistical tests. It has been implemented in many packages including Matlab, Mathe-
matica, Intel’s MKL library etc.

Modulo 2 Linear Generators

These are Matrix Congruential Generators with modulus m = 2. Since binary operations
are in general faster than integer operations, these generators are usually fast. To have
long periods, the order ¢ has to be large (the maximal period is 29 — 1). Among these
generators a popular one is the Linear Feedback Shift Register (LFSR) Generator
also called the Tausworthe generator. The recurrence formula is in the form of a MRG
(1.1) with m = 2, whereas the output is given by

w
Up =Y Xpuwre—127,
=1

where each word of w bits (Xo, ..., Xw-1), (Xw,..., X2w—1), ... is interpreted as a binary
representation of a number in [0, 1]. For fast generation, most of the a; are zero. In many
cases there is only one non-zero multiplier a, apart from a4, and the operation in the
recurrence correspods to a (modulo 2) bit addition X}, = X, @ Xj_,. Generalizations
of the LFSR generator include the Mersenne Twister generator that is now the default
generator in Matlab, and R. It has a period of 219937 — 1, is very fast and passes all prac-
tical statistical tests. The default generator in Python (numpy) is instead a Permuted
Congruential Generator (PCG). It uses a “medium quality” LCG with m = 2!?8 (un-
signed long long long integers represented by 128 bits) and improves its performance by
preforming a state dependent permutation on the 128 bit and outputing only the first 64
of them. It has period of 2128, excellent statistical properties and is very fast with jump
ahead and multiple straming possibilities.

1.2 Empirical tests for RNG

Several statistical tests have been proposed to asses the quality of a RNG. Today’s most
comprehensive test suite is TestU01 developed by L’Ecuyer and Simard [3]. In the next
section we review some non-parametric Goodness-of-Fit tests that can be used to assess
the uniformity of the sequence Uy, Us,... produced by a Pseudo-RNG. For generality
purposes, we present these tests assuming that U; has a general cumulative distribution
function F' not necessarily uniform. Then, in Section we discuss some tests to assess
the independence of the sequence.

1.2.1 Non-parametric Goodness-of-Fit Tests

Let U be a random variable with values in a certain interval I C R, and cumula-
tive distribution function (CDF) F(x) = P(U < z). We will assume that F' is abso-
lutely continuous so that a probability density function f : I — Ry exists, such that

f[a,b}c] f(x)dx = F(b) — F(a).
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Figure 1.1: Empirical cumulative distribution function.

Let U = (Uy,...,U,) be a random sample and denote by F,(x) the empirical distri-
bution function

. 1 « #{U;j <z, i=1,...,N

n

See Figure for an illustration. In the figure, (UM U®), ... U™) denote the ordered
sample U. We want to test the hypothesis Hy that U has been drawn independently
from the distribution F'.

Q-Q plot

A first simple graphical test to see if the sample U has been drawn from the distribution
F is to plot the quantiles of F;, versus the corresponding quantiles of F'. We recall that
the t-quantile of F' is defined as

qt = argmin{ F'(x) > t},
X

and similarly for empirical distribution ¢ = argmin,{F),(z) > t}, which leads to ¢, i =
UU,Vj=1,...,n,ie. the L . quantile of the empirical distribution is the j-th Value in
the ordered sample U. A better quantile estimator is actually given by ¢ ; = UU),

n+1
If the sample U is indeed drawn from the distribution F' independently, the empirical

quantiles ¢ ; , when plotted against the corresponding true quantiles 4 should be
+1

+
well aligned on the diagonal, as in Figure
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(n) =g n
U qn+1
U®R =g »
+1
v =g 4
n+1
q1L~1H qnil qnil

Figure 1.2: Q-Q plot.

Kolmogorov-Smirnov Test

This is a more quantitative test that compares the empirical distribution F), with the true
one F' (see Figure . Let D,, = sup, |E,(x) — F(z)| (which is a random variable as it
depends on the random sample U). For a continuous distribution F', and under the null
hypothesis Hy, it is known that

vnD, K independently of F

where K is a Kolmogorov random variable with CDF
oo
: )
Fr(z) =P (K <a)= [14+2) (-1)/e " | 1,0
j=1

and corresponds to the distribution of max,c(g 1) |B(t)| where B(t) is a Brownian bridge

in [0,1]. This result shows that, under Hy, F,, — F uniformly at a rate O(1/y/n) in a
probabilistic sense. Based on this result, we can reject Hy at level « if \/nD,, > K, with
K, the a-quantile of K: P(K < K,) =1 — a. The quantiles K, are tabulated.

x? Test

We split I in m + 1 non-overlapping subintervals (classes) I, j = 1,...,m + 1 such that

U;:El I; = 1. For each j, let pj =P (U € I;) be the probability that U is in I; and define

Nj = e,y = #{Ui that fall in I;},
i=1
Then, under Hy, we have E [NV;] = np;. We define then the statistics

On=3" (N; —np;)°

npj
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Figure 1.3: Kolmogorov-Smirnov test
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Figure 1.4: x? test

which has an asymptotic x?(m) distribution with m degrees of freedom (m = # classes —
1). We can then reject the null hypothesis Hy at level « if Qm > q1—q Where q;_, is the
1 — a quantile of the x?(m) distribution. Notice that {(I;, N;), j =1,...,m+ 1} defines
a histogram of the sample and Q. estimates the deviation from the “true” histogram

{(Zj,np;), j=1,...,m+1}, as in Figure [1.4]

1.2.2 Empirical tests for independence

We consider here a sample U = (U, Us, ..., U,) produced by a uniform Pseudo-RNG and
present two statistical tests that can be used to test the null hypothesis Hy that {U;};
are mutually independent and uniformly distributed in (0, 1).
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Serial Test

We test whether groups of variables are jointly uniformly distributed. Namely we group
U in groups of length d: Uy = (Up,...,Uq—1), Us = (Uyg,...,Uzq—1), ... and test whether

{Uj, 7 = 1,...,%5} are drawn independently from a multivariate uniform distribution
U([0,1]%), using for instance a x? test on the partition I, j, = [317;1, L. x [%, 4],

(j1,. .-, da) € {1,...,m}% Of course, n/d should be sufficiently large compared to m? so
that each class has enough samples and one can apply the asymptotic result.

Gap Test

Let T1,T5, ... denote the times when the process {U;}!' ;| visits a given interval (o, ) C
[0,1], namely T} is such that Ur, € (o, 8) and Uk ¢ (a,f), K ¢ {T1,T2,...}. Let
Z; =T; —T;—1 — 1 be the gap length between two consecutive visits (here Ty = 0). Under
Hy, Z; are iid with a geometric distribution with parameter p = 8 — «, i.e.

P(Z=j)=p(1-p), j=01,2,....

One can use a x2(m) test to test whether the {Z;}; have the correct geometric distribution,
using the classes Z =0,Z2=1,....Z=7r, Z >r.



Chapter 2

Random Variable Generation

From a uniform (pseudo) random number generator one can construct (pseudo) random
generators for many other distributions. We discuss hereafter a few approaches.

2.1 Inverse-transform method

The inverse transform method is probably the most straightforward method to generate
a random variable with a given distribution and relies on the possibility to invert the
cumulative distribution function. We present it separately in the case of a discrete and a
continuous random variable.

Discrete random variable

Consider a discrete random variable X, which can take the values 1 < 29 < --- < z,
with probability mass function (pmf) p; = P(X = ;). Let F; = Z;lej =P(X <ux),
1 = 1,...,n and Fy = 0 be the cumulative probabilities. Then X can be generated
starting from a uniform random variable U ~ U(]0, 1]) by the following

Algorithm 2.1: Discrete inverse-transform.

Input: Values {z;}!" ;, cumulative probabilities F; = 23'21 pi,i=1,...,n
1 Generate U ~ U([0, 1])
2 Set X =a; if F;_1 <U<FE;

That this algorithm generates the correct random variable is easily seen since P (X = x;) =
P(Fi-1 <U < F;) =P (U C (F; — pi, Fi]) = p;. Figure gives a graphical illustration
of the method.

Example 2.1 (Bernoulli). Let X ~ Be(p) be a Bernoulli random variable that satisfies
P(X=0))=1—p, P(X=1)=p. GivenU ~U([0,1]), one sets X =1 if U >1—p and
X =0 otherwise.

13
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I28

P

X = I3

| |
l l
x1 x2 z3 . Tn

Figure 2.1: Discrete inverse transform method.

Continuous random variable

Consider a continuous random variable X taking values in an interval [a, b] with continuous
and strictly increasing cumulative distribution function (cdf) F' : [a,b] — [0,1], F(x) =
P(X < z), with F(a) = 0 and F(b) = 1. In this case the inverse function F~1:[0,1] —
[a, b] is uniquely defined and X can be generated starting from a uniform random variable
U ~ U([0,1]) by the following

Algorithm 2.2: Continuous inverse-transform

Input: Inverse CDF F~!
1 Generate U ~ U(]0,1])
2 Set X = F~}(U)

Again, one verifies easily that this algorithm generates a random variable with the cor-
rect distribution. Indeed P(X <) =P (F~}(U) <z) = P(U < F(z)) = F(z). Figure
gives a graphical interpretation of the method.

Example 2.2 (Exponential). Let X ~ Exp(A) be an ezponential random variable with pdf
f(@) = Xe ™ and cdf F(z) =1 — e **. Inversion gives X = F~1(U) = —11log(1 — U).
Since U = 1 — U has the same distribution as U, an equivalent inversion formula is

X = —31logU with U ~U([0,1]).

Both the discrete and the continuous case can be combined together by defining a
proper right inverse of ' when it is not continuous or not strictly monotone. Let X be a
random variable with cdf F'. Its Generalized inverse is defined as F~(u) = inf{z : F(z) >
u}. Actually, the infimum can be replaced by a minimum since F' is right continuous.
Then X can be generated as X = F~(U) with U ~ U([0,1]). Notice that with this
definition of F'~ we recover the discrete inverse-transform as a particular case.
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a X b

Figure 2.2: Continuous inverse transform

2.2 Composition method

Suppose that a random variable X has a mixture distribution, i.e. its cdf has the form
F(z) = Y1 piFi(z) where Fj, ¢ = 1,...,n are cdf functions and p;, i = 1,...,n are
positive weights such that Y ;" ; p; = 1. If the cdfs F; are absolutely continuous with
corresponding densities f;, then X has a pdf f(z) = >, pifi(xz). The random variable
X can be generated by the following:

Algorithm 2.3: Composition method

Input: Mixture cdf F(z) =" | piFi(x)
1 Generate discrete r.v. Y, P(Y =) = p;
2 Generate X ~ Fy e.g. by inversion

Example 2.3 (Laplace distribution). Let X ~ Lapl()\) with pdf

A el Ly s 1 z
flz) = 56 Alzl — 5)\6 A Lii>o0) +§ Aet Tia<oy -

~ Exp(1) ~—Exp(1)

Then, X can be generated by the composition method by first generating B ~ Be(%),
Y ~ Exp(\) and then setting X =Y if B=1 and X = =Y if B =0, or, equivalently,
X=(2B-1)Y.

2.3 Alias method

A discrete random variable X taking the values x1 < 2 < .-+ < z, with non-uniform
probabilities p; = P (X = ;) can be generated by the discrete inverse-transform method.
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However, if n is large, the search for the interval (F;_1, F;] such that U € (F;_1, Fj],
where F; = Z;Zl pj, might be costly. In this case, an alternative approach consists in

representing the cdf F(z) as a mixture distribution F(z) = 3.7 | 2G;(x) such that each
G; is a two points distribution (Bernoulli) and apply the composition method.

With little abuse of notation, we describe the algorithm using the probability “den-
sity” function which, in this case, is a linear combination of concentrated masses (delta
distributions) in the points {z;}, i.e. f(z) = ;" pids,(x). We therefore aim at rewriting
it as f(z) = Y., Lg;(x) where each g;, i = 1,...,n, has the form g;(z) = @0z, () +
(1—0;)ds,, (), with £;, k; € {1,...,n} and the distributions g; are constructed iteratively.

e Choose ¢1 and k1 such that p,, < % and pg, + pr, = % (such a choice always exists
since {p;} are not uniform) and set a; = npy,. Then

f(z) = f(o)(x) = pf169341 (z) +pk15$k1 (z) + Z pile, ()
1£01,k1
n—1

= () + " )

with
g1(z) = al&wel (z)+ (- a1)6$k1 (z), a1 =npgy

1)y _ P +Pr) =1 n 4
() n—1 693k1 () + n—1 Z pila, ().

i#41 k1

Notice that now f(!)(z) contains only point masses in {z;,4 # £1}
e Iterate the procedure on f(), f) . until we reach the desired form.

We can now construct the following algorithm which does not require a search (however
it requires to build in advance the table of distributions {g;})

Algorithm 2.4: Alias method
Input: Values {z;}X ,; probabilities {p;}*,
1 Build Bernoulli distributions g; = 041‘5:% +(1- ai)émki, i=1,...,n
2 Generate U ~ U(]0,1]) and set Y = [nU] // hence Y ~U({1,2,...,n})
3 Generate X ~ gy // hence X ~ Be(ay) with values {zy, , %k, }

2.4 Acceptance-Rejection method

Consider a continuous random variable X with pdf f and cdf F. In cases where F is
difficult to invert, the inverse-transform method is not viable. Another situation which
may arise is when f is known only up to a multiplicative constant, i.e. f(x) = kf(z), with
k= (Jz f(x)dz)™! and we only know f whereas « is difficult or impossible to evaluate.
In both cases, the acceptance-rejection method might represent a good alternative to
generate X.
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The idea is to find an auxiliary pdf g which is easy to sample from, and a constant
C > k™! such that f(z) < Cg(z) for all € R. Then, the acceptance-rejection algorithm
reads:

Algorithm 2.5: Acceptance-Rejection (AR) algorithm

Input: f, g, C, such that f(a:) < Cy(x)
1 Generate Y ~ g
2 Generate U ~ U(]0,1]) independent of Y
fY)
Cy(Y)

3 IfU < set X =Y, otherwise return to step 1

Lemma 2.1. The acceptance-rejection Algorithm[2.5 generates a random variable X with
the desired pdf f(x) = kf(z) (even without knowing k), as long as f < Cg.

Proof. Observe that the distribution of X is the distribution of Y conditional to the event

f(Y) _ for) | _ P(rsevsdi)
U< Col) Therefore P(X <z)=P(Y <z |U < Cg(Y)) = (US g{gz,)")) . Now,

i\ [ s [T ) 1T
P<Y<x U309<Y>)‘/_oo [ ) sway= [ gy =g [

(notice that g =0 = f = 0 and we can set arbitrarily ol g(?y

OO\ [T L[
' (U - Ogm) = f =g [ Fo

Nl

=1 if g(y) = 0) and

so that

O
The probability of acceptance in Algorithm is P (U < g;z;))) = % and since
the trials (Y, U) are independent, the number of trials required to obtain a successful pair
(X,U) has a geometric distribution Geom(-% o) with expected value xC. For the algorithm
to be efficient, C should be as close as possﬂale to k1.
We now give a geometric interpretation of the acceptance rejection method, which is
illustrated in Figure [2.3] Such interpretation is based on following lemma.

Lemma 2.2. Consider a non-negative integrable function h:R — Ry, with fRiL # 0,
the region A; = {(z,u) : x € R,0 < u < h(x)}, and the (normalized) probability density

function h(x) = (x) — associated to h. A pair of random variables (X,U) is uniformly

J () 5
distributed in A; if cmd only it X ~h and U|X ~ U([0, h(X)]).
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Figure 2.3: Graphical illustration of the Acceptance Rejection method: only the blue points are
retained and their abscissas are distributed according to f.

Proof. Assume first (X,U) ~ U(A;). Then, its probablhty density function is f xu) (T, u) =

1 1 h(z) M) _
A7 = TR @ . Tt follows that the pdf of X is fx () = [;"" fix,v) (2, ) du = ] = h(@)

and the conditional probability density function of U|X is fyx (ulz) = Wfii)(g‘;“) = ﬁ,

hence U|X ~ U([0, h(X)]). )
Consider now the converse case, X ~ h and U|X ~ U([0,h(X)]). Then clearly

T () = fux (ula) fx (2) = 7hh(@) = S, hence (X,U) ~ U(Ay). =

This observation leads to the following geometrical interpretation of the AR algorithm:
in Steps 1-2 of Algorithm one draws samples (Y, U) uniformly in the region Ac, =
{(y,u) € R?: 0 < u < Cg(y)}. In step 3, one retains only those samples that fall in the
region Az = {(z,u) € R2 0 <u < f(z)}. Hence, the abscissas of the retained points have

the desired density 7 f = f(x).

Example 2.4. Let Z ~ N(O, 1) and suppose we want to sample from X = Z|(Z > 1),
i.e. we want to sample the tail of a standard normal distribution for Z > 1. The pdf
of X is f(x) x 6_332/2]1{221} We could take as proposal distribution g an exponential

Exp(1 ) translated in 1, i.e. g(z) = e _1)1{121} (see Figure H) We have in this case
flz) = e /2 Tiy>1y and f(z) < ( ) for all x > 1, hence we can take C' = % The
AR Algomthm reads

1. Generate Y =1+ Exp(1)
2. Generate U ~U(0,1)

3. IfU < e Y2/2HY=1/2 gop x = Y, otherwise return to step 1.
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Figure 2.4: Sampling the tail of a Normal distribution by AR with an exponential proposal

The acceptance probability is \/Efloo e~v'/2 dy = V2me(l — ¢(1)) = 0.66 with ¢ the cdf of
a standard normal distribution. Notice that if we just sample from N(0,1) and reject all
samples less than 1, we would have an acceptance rate ~ 0.16.

2.4.1 Squeezing

In certain cases, the expression f () might be complicated and costly to evaluate, whereas
g(x) has generally a simple expression. To minimize the number of evaluations of f, one
could look for another auxiliary function ¢, which is also inexpensive to evaluate, such
that §(z) < f(z) < Cg(x) for all z € R and modify the AR algorithm as follows:

Algorithm 2.6: AR algorithm with squeezing.

Input: f, g, g, C. such that § < f <Cyg
Generate Y ~ g
2 Generate U ~ U(]0,1])

Y )
IfU < 9Y) set X =Y, otherwise, evaluate f(Y)

=

3
~ Cy(Y)
a U < Z00 set X =Y
5 else reject Y and go back to 1

2.4.2 Adaptive AR for log-concave densities

A particularly effective adaptive AR algorithm can be set up in the case where log f (z)
is a concave function. We illustrate the procedure graphically in Figure [2.5

Let Z, = {z1,...,2} be an initial set of points. Thanks to the log-concavity of f,
we have e%®) < f(z) < ™ for all z € R, with s(x) and 3(z) as in the figure. Setting
now C' = [p @) dz, g(z) = C~ 1@ §(x) = %) we can apply the AR algorithm with
squeezing. Notice that g(x) is a piecewise exponential function and can be sampled effec-
tively by the composition method. Moreover, once a new sample X has been generated,
it can be added to the set Z, — Z,41 = Z, U{X} so that the squeezing becomes more
and more effective the more variables we generate.
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zZ1 z2 Zr

S()

log f(=)

Figure 2.5: Graphical illustration of log concave density

2.5 Ad Hoc methods

The methods illustrated above are ‘general purpose’ methods, applicable to any distribu-
tion. However, for specific distributions such as Normal, Gamma, Possion, Binomial etc,
there are often much more efficient methods for random variable generation, which exploit
the special structure and probabilistic interpretation of the underlying distribution. (See
[2, Chapter 4]). We mention only one possible algorithm to generate variables from the
Normal distribution N (0,1).

2.5.1 Box-Muller method

Let X,Y ~ N(0,1) be independent standard normal random variables, and (p,#) their
representation in polar coordinates. Since X2 4+ Y2 ~ 2 = Exp(%) (x2 is a chi-square
distribution with 2 degrees of freedom, which coincides with an exponential of parameter
%), it follows that p? ~ Exp(%). Moreover, by the radial symmetry of the bivariate normal
distribution N (0, I2), the distribution of (X,Y) given p? = X2 + Y2 is uniform in [0, 27).
From these considerations, an algorithm to generate (X,Y) ~ N (0, I2) is:

Algorithm 2.7: Box-Muller method.

1 Generate U ~ U(0,1) and set p = /—2logU // hence p? ~ Exp(3)
2 Generate V ~ U(0,1) and set © = 27V // hence © ~ U([0,27])
3 Set X =pcosO, Y = psinO.
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2.6 Multivariate Random Variable Generation

We consider now the problem of generating from a multivariate distribution. Let X =
(X1,...,X,)" € R” be a vector of random variables with joint cumulative distribution
function F(z) = F(z1,...,2n) = P(X5 < z1,..., X, < z,) and probability density func-
tion f(x) = f(x1,...,x,), if it exists, such that

z1 Zn
F(zl,...,zn):/ / flx1,. .. xp)dey ... doy,.

The inverse transform method is not (directly) applicable in this case since the cu-
mulative distribution function F' : R® — R is not invertible. The acceptance-rejection
method, on the other hand, generalizes straightforwardly to the multivariate case. How-
ever, it is in general not an easy task to find an auxiliary function g(x) and a constant
C > 1 such that f(x) < Cg(x), V& € R", leading to reasonable acceptance rates.

In general, the problem of generating from a multivariate distribution can be very
hard. We mention, hereafter, few cases where generation is relativey easy.

2.6.1 Independent components

The simplest case is when the components X1,..., X, of X are independent, each with
cdf F; : R — [0,1], so that F(z) = Fi(z1) - Fy(2y). (Similarly, if each X; has a density
fi, there holds f(z) = fi(z1) - fn(zn).) In this case, each component X; can be gener-
ated independently of the others by using any of the techniques described for univariate
functions.

Example 2.5. Suppose we would like to draw a point X = (X1, X2) that is uniformly dis-
tributed in the unit cube (0,1)2. Since F(z) = P (X1 < 21, X2 < 29) = 2122, we conclude
that X1, Xo are independent and X; ~ F;(z) = z, i.e. each X; is uniformly distributed in
(0,1). We can then draw X1, X2 ~U(0,1) independently and set X = (Uy,Us).

Example 2.6. Suppose now that we would like to draw a point X = (X1, X2) that is
uniformly distributed on the unit ball B = {(x,y) : 2* + y*> < 1}. One possibility is to use
an acceptance-rejection method. For instance, we could draw 'Y wuniformly on the cube
(—1,1)2 and accept it by setting X =Y only if Y € B. The acceptance rate is T~ 18.5%.
(Try to do it now in dimension n > 2 and see what happens ...)

Alternatively, we could try to generate directly a point X with the correct distribution,
without the acceptance-rejection step. For this, let us consider a transformation in polar
coordinates, X1 = Rcos©, Xo = Rsin©. Then, if f(x, x,) denotes the joint density of
(X1,X2) and fre) the joint density of (R,©), we have f(x, x,)(z,y) = %, (x,y) € B
and

0(x1,x2)

. P 1
) — 0.psind) || = 2
fire)(p,0) = fix, x5)(pcost, psin )‘ d(p,0)

x  Tog

We see then that (R, ©) are independent with © ~ U(0,27) and R having pdf fr(p) = 2p
and cdf Fr(p) = p?, which can be easily inverted. Therefore, starting from Uy, Uy ~ U(0,1)
independent, we set R = /Uy and © = 2rwUs so that X = (Rcos ©, Rsin ©) is a uniformly
distributed point in the unit circle.
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2.6.2 Generation from conditional distributions

Another situation which may lead to a relatively easy generation algorithm is when the
marginal and univariate conditional distributions of X are easily accessible. For instance,
let us assume that the conditional density of X;|X.;_1,

Fee (2] 2y = Jonei f(210 0 25, 241, oo Z0)d2Zqn - dzy
A Y fR”*jﬂLl fz,... 24y Zj41y s Zn)dede+1 ..odzy

with X1.; a shorthand notation for (X1,..., Xj), is known explicitely for any j =1,...,n.
Assume, moreover, that we know how to generate a variable from the density f X1 X151 (| z1:5-1),
for any 2.1 € RJ~1. We can then generate X with the following iterative Algorithm:

Algorithm 2.8: Generation from conditional distributions.

Input: conditional densities fx |x, _, (or cumulative distributions Fx x, . ,)
1 Generate X; ~ fx, (z)
2 Fori=2,...,n,
3 Generate X; ~ sz| X141 (] X1,...,Xi—1)

Again, the generation of X; from fx,| x,, ,(- | X1:i-1) can be done using any of the
techniques available for univariate variables.

Example 2.7 (Generating order statistics). Let X = (X1,...,X,) ~ U(((0,1)") and
denote by X1y < X(9) < -+ < X(y) the ordered sample (order statistics). To generate
Xy, -y X(n), one can simply generate X = (X1,...,X,) with X; i U(0,1) and then
order the components of the vector. However, if n is large, the ‘sort’ operation might
become costly so one may prefer to generate directly X(y),..., X from the distribution
of the order statistics.

Observe that X(,) = max;=1,_ n X; ~ FX(n)(z) = 2" so that X(,) can be generated
easily by inversion as X, = (U)Y™ with U, ~ U(0,1). Moreover, it can be shown
(exercise) that for all j < n,

FX(,;‘) | X1y X () (Z ’ ijrl:n) =P (X(j) <z ’ X(j+1) =ZTj+15--- 7X(n) = ﬂfn)

z

J
ZP(X<J'>§Z|XU+1>=%'+1)=< ) , 2@,

Lj+1

z .
where FX.(J-). | Xy X (;' | xj+'1:n) = /5 fX(f).' XX (t | xj41:n)dt is the cumula-
tive conditional distribution, which can be easily inverted. Hence, we can generate X j

as X(jy = (Uj);X(jH) with Uj ~ U(0,1) independent of the previously generated ones.

2.6.3 Generation by transformation using copulas

Consider a vector X = (X1,...,X,) with dependent components X;, i = 1,...,n, with
marginal distributions F; : R — [0,1]. Often the dependency structure is described in
terms of copulas.
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Definition 2.1. A copula is a cdf C : [0,1]" — [0,1] of n dependent uniform random
variables Uy, ..., Uy, ~U(0,1)

Cluty... un) =PU; <up,...,Up <uy).

We say that the dependency structure of X is described by the copula C' and marginal
distributions F;, i =1,...,n, if

Fx(xl,.. . ,.%'n) = P(Xl S $1,...Xn S wn) = C(Fl(l'l),.. . ,Fn(mn)),

i.e. the transformed variables U; = F;(X;) have a uniform marginal distribution and a
joint cdf given by the copula C. In such a case, an algorithm to generate X is

Algorithm 2.9: Generation of dependent components via copulas

Input: marginals {F;}} ;; copula C
1 Generate U = (Uy,...,U,) ~C
2 Output X = (X1,...,X,) = (F; (Uh),..., F, (Uyn)).

n

Clearly the implementability /efficiency of this algorithm depends on the possibil-
ity to generate U ~ C. A typical example is the case of a Gaussian copula. In this
case, let Y = (Y1,...,Y,) ~ N(0,%) with ¥ € R™" symmetric and positive def-
inite and denote o; = y/Var(Y;) the standard deviation of Y;. Set, moreover, U =

(Uh,...,U,) = ((I) (ﬁ> e, @ (Z—:)) with @ the cdf of a standard normal random vari-

g1
able and C’(E;(ul, cooun) =P (U <ug, ..., U, < uy). Such a copula is called a Gaussian
copula with covariance matrix . To generate a vector X with copula C(E; and marginals
F;, we can therefore use the following algorithm.

Algorithm 2.10: Generation of samples from a Gaussian copula

Input: marginals {F;}! ;; covariance matrix X
1 Generate Y ~ N(0,%)
2 Compute U = (<I> (};—1) yee, D (Z—Z))
3 Compute X = (F| (Uh),...,F, (Uy)

n

A way to generate Y ~ N(0,X) is discussed in the next Chapter.
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Chapter 3

Generation of (Gaussian random
variables and processes

3.1 Generation of multivariate Gaussian random variables

A multivariate Gaussian random variable X ~ N (u,Y) with mean g € R™ and covariance
matrix ¥ € R™*"™ gymmetric and positive definite has joint pdf

1 1 Ty —1 n
o) = o (~3@-ws @), eck
and characteristic function ¢(t) = E [eitTX} = exp (itTu - %tTEt). Notice that the
characteristic function is well defined also in the case of a singular covariance matrix X,
whereas the pdf is not.

The standard algorithm to generate X relies on explicit factorization of the covariance
matrix as ¥ = AA", with A € R"*", which can always be done since ¥ is symmetric and
positive definition. There are two common ways to compute the factor A:

e Cholesky factorization. It is applicable if ¥ is strictly positive definite (hence in-
vertible) and leads to a lower triangular factor A.

If 3 is nearly singular, a more stable procedure is given by the pivoted Cholesky
factorisation, which can also be used in the singular case.

e Spectral decomposition. It is based on diagonalization of the covariance matrix
as ¥ = VDV with D = diag(\1, ..., \,) the matrix of eigenvalues and V the or-

thonormal matrix of eigenvectors. We set then A = VD2, with D'/ = diag(v/ A1, - .

It can be used also in the singular case.

Using either factorization, X can be generated by the following algorithm.

Algorithm 3.1: Multivariate Gaussian generator

Given: p € R” and ¥ = AAT € R™™ (spd)
1 Generate Y ~ N(0, I,,xp) (ie. Y =(1,...,Y,), Y,
2 Compute X = pu+ AY

M N(0,1))

25

).
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It is easy to check that X has the correct distribution. Indeed, X is Gaussian being
an affine transformation of a standard normal vector. Moreover, E [X] = p and

Cov[X] =E [(X — p)(X — u)T} —E [AYYTAT} — AE [YYT} AT =3,

The algorithm can be easily modified in the case the precision matric A = ¥ is
given, instead of ¥.. (Of course we assume here that ¥ is invertible.)

Algorithm 3.2: Multivariate Gaussian generator from precision matrix
Given: p € R" and A = 7!
1 Compute the Cholesky factorisation A = LLT
2 Generate Z ~ N(0,1) // n independent standard normals

3 Solve the linear system L'Y = Z // upper triangular linear system
4 Output X =pu+Y

Again it is easy to verify that X has the right distribution. Indeed E[Y] = L™ "E[Z] =
0 which implies E [X] = p and

E[(x - p(x— H)T} —E[YYT] =E [L*TZZTL*1 — L Tl =A =y,

3.2 Generation from conditional Gaussian distribution

Consider a multivariate Gaussian random variable X € R", X ~ N(u,3), which we split
into two components, X = (Y1,..., Y, r, Z1,...,Z;) = (Y, Z), which we suppose unob-
servable and observable, respectively. The mean p and covariance ¥ also split accordingly

as
ny Yyy Xyz
E X == , 2 =
X] (uz> (2}2 EZZ>
with py = E[Y], pz =E[Z], Syz =E[(Y —py)(Z — pz)"] = £y, and similarly
for Yyy, Xzz.
We are interested to generate the conditional random variable Y'|Z. It is well known

that the conditional distribution of Y given Z is again a multivariate Gaussian N (uy | z, Xy | z)
with

By |z =ny +SvzS55(Z — p2) (3.1)

Ey| 7z =2Xvy — Eyzzglzzzy. (3.2)

Assuming we have observed the realization z of Z, to generate Y | Z = z one can,
of course, factorize the covariance matrix Yy |z = AAT (by Cholesky or spectral de-
composition). This, however, can be expensive or cumbersome if the size of Y is big.
In particular, there might be cases (typically in the generation of stationary Gaussian
random fields) in which generating X = (Y, Z) is easy, even for very large dimensions,
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but generating Y | Z = z e.g. by Cholesky factorization, would be very costly. Here is
an alternative algorithm to do so.

Algorithm 3.3: Generation from conditional Gaussian distribution - I

Given: pu,Y and z € R*
1 Generate X ~ N(u,)
2 Set y= (Xl, . ,Xn,k) and Z = (Xn,kJrl, - ,Xn)
3 Output Y =Y + Sy z%5, (2 — 2)

Again, we can easily verify that Y has the correct distribution. Indeed,
EY]=E[Y]+SyzE,%(z —E[Z]) = py + SyzS,5(2 — pz) = py | z—»-
Moreover, setting Y’ =Y —E[Y] = (¥ — py) — Sy zY,5(Z — nz), we have
Cov(Y) =E [Y'Y'T| =E [¥'Y'T| - Sy z5,5E |2V
—E[V'27] 55,5z + Sy 23 55E (227 55,5y 2
=Yyy — SyzE, 5 zy.

This construction can be generalized to the case where, instead of observing a subset
Z of components of X, one observes k linear combinations of the components of X. Let
H € R**™ be an “observation” operator and assume one has noisy obeservations

Z=HX+n
with 77 a zero mean Gaussian vector, independent of X, with covariance I' € RF*F,
hence Z ~ N(Hp,S), with S = HYH' +T. Notice that the previous setting can be
recovered by choosing 7 = 0 and H;; = 1 whenever j = i and 4 corresponds to an observed
componend of X, and H;; = 0 otherwise.
We can now define the extended vector X = (X, Z) € R"** which has

E[X] = (;ﬂ) Cov(X) = (1?2 Z{f)

and use the previous formulas to obtain X | Z ~ N(ux|z,Xx | z) with
px|z=p+IH' STNZ - Hp), (3.3)
Sx|z=YX-XH' ST'HY. (3.4)

The matrix K = YH 'S is called the Kalman gain whereas the vector d = Z — Hpu
the innovation. Generating X | Z = z can be done with the following algorithm.

Algorithm 3.4: Generation from conditional Gaussian distribution - II

Given: pu,Y and z € R*

Generate X ~ N(pu,X)

Generate n ~ N(0,T")

Compute perturbed innovation d=z—-HX + n
Compute Kalman gain K = XHT(HXH" +T)7!
Output X = X + Kd

(S U VN
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It is easy to check that the output X of the algorithm has the right distribution.
Indeed, clearly X has a Gaussian distribution. Moreover

EX]=p+K(z-Hp)=px|z=2
and
Cov(X) =E |((I - KH)(X —p) + Kn) (I - KH)(X — p) + Kn)"

=(I-KH)S(I-KH)" + KTK"
=Y-KHS-SH'K'+KHSH' +T)K' =Sx| 7.

3.3 Gaussian process generation

Let I ¢ R% A collection of random variables {X;, ¢t € I} indexed by t € I is called a
stochastic process when d = 1 (usually ¢ denotes time) or a random field if d > 1 and t
denotes the space variable.

Definition 3.1 (Gaussian process). A Gaussian process (or Gaussian random field) is a
stochastic process (random field) for which all finite dimensional distributions are Gaus-
sian, i.e. for alln € N and tq,...,t, € I, the random vector X = (X¢,...,Xs,) has a
multivariate Gaussian distribution. Equivalently, any linear combination Yy = >_1" | b; Xy,
has a Gaussian distribution.

Given a Gaussian process {X;, t € I}, we can define

Mean function : px I — R, ux(t) =E[X, tel,
Covariance funct.: Cx:IxI—R, Cx(t,s)=E[(X; — pux(®))(Xs —ux(s))], t,s € I.

If we now take a set of points t1,...,t, € I and consider the Gaussian random vector
X = (Xy,...,Xy,), it clearly holds X ~ N(u,X), with p = (ux(t1),...,px(tn)) and
Yij = Cx(t;,tj). As such, the matrix ¥ has to be symmetric and non negative definite.
This poses restrictions to the class of functions that can be covariance functions of a
stochastic process.

Definition 3.2. A function C' : I x I — R is positive (semi-)definite if, for all n and
t1,...,tn € I, the matriz ¥ € R™*", ¥;; = C(t;,t;) is positive (semi-)definite.

Proposition 3.1. A Gaussian process {Xy,t € I} is uniquely determined by the mean
function px : I — R and a symmetric and positive (semi-)definite covariance function
Cx:IxI—R.

We use the notation X ~ N(ux,Cx) to denote a Gaussian process {X;,t € I} with
mean function px and covariance function Cly.

A Gaussian process X ~ N(ux,Cx) can be generated exactly in a set of points
ti,...,t, € I by generating the corresponding random vector X ~ N(u,Y), with p =
(ex(t1), ..., pux(tn)) and 3;; = Cx(t;,t;). This can be done by either Cholesky or spectral
factorization of the matrix X.



3.3. GAUSSIAN PROCESS GENERATION 29

Similarly, assume that we have generated already Z = (Xy,,..., X, ) and we want to
generate new values Y = (Xy,,,,..., Xy, ) conditional to the previously generated ones.
This can be done by the Algorithm illustrated in the previous section. Figure
gives a graphical interpretation of the procedure.

t1 tn+1 tQtn+2 t3 tm tn

Figure 3.1: Conditioned Gaussian Process.

3.3.1 Wiener process (Brownian motion)

Definition 3.3. The Wiener process is a Gaussian stochastic process {Wy,t > 0} with
the following properties:

o W()Zoz

e Independent increments: for all 0 < t; <ty <ts < ts, (Wi, —Ws,) and (Wi, — Wy,)
are independent random variables

o Gaussian stationary increments: for all 0 < t; <to, Wy, — Wy, ~ N(0,t3 — 1)

The Wiener process is a Gaussian process with mean function up (t) = 0 and co-
variance function Covyy(s,t) = min{s,t}. Indeed, if ¢ > s, Covy(s,t) = E[W, W] =
E [Ws(Wy — W,)] + E [W2] = s. Similarly, if ¢ < s then Covyy(s,t) = ¢. It can be shown
that almost every realization t — W} is a continuous function (or, more precisely, is almost
everywhere equal to a continuous function) in ¢. This property is referred to as pathwise
continuity.

To generate {W;, t > 0} on a set of points (¢1,...,t,), one could either compute a
Cholesky/spectral decomposition of the covariance matrix 3;; = min{¢;,¢;}, or, more
efficiently, rely on the property of independent Gaussian increments as the following
Algorithm shows.
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Figure 3.2: Brownian bridge.

Algorithm 3.5: Wiener process generation
Set tg =0 and Wy, =0
for k=1,...,ndo
Generate AWy, ~ N(0,t — tr—1)
Set Wtk = Wt,%l + AWk
end

LN VL

A Brownian motion with drift v and diffusion coefficient o2, is the solution of the
stochastic differential equation

dB, = vdt +odW,, By=0

that is, By = vt + oWy, t > 0. Hence, it can be easily generated on a set of points
(t1,...,tn) as an affine transformation of the Wiener process.

3.3.2 Brownian bridge

A Brownian bridge process {X;,t € [0, 1]} is a Wiener process {W4,t € [0,1]} conditioned
upon Wy = b. See figure for a realization of a Brownian bridge.

The conditional mean and covariance function of a Brownian bridge can be calculated
using the standard formulas for conditioned multivariate Gaussian variables. Indeed, let
us first calculate the conditinal mean. For that, we set Y = W;, t € (0,1) and Z = Wi,
for which we have ¥yy = ¥y z =t and X7z = 1. Therefore, using formula for the
conditional mean, we conclude that

px(t) =E[X] =E[W; | Wi =b] = pw(t) + Sy 25,5 (b — pw (1)) = th.
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An analogous procedure can be followed to compute the conditional covariance. Take this
time Y = (W,, W,), s,t € (0,1) and Z = Wy, so that

s min{s,t s
EYYZ( { })7 E5/Z:<t>, Yzz =1

min{s, ¢} t
Therefore

Sy |z =Syy — Syz85,5zy
B s min{s,t}\ (s B 5 — s? min{s,t} — st
B (min{s,t} t > <t> (s,8) = (min{s,t} — st t—t2 '

Covx(s,t) = Cov(Ws, W|[Wy1 = b) = (Xy|z)12 = min{s, ¢} — st.

To generate a Brownian bridge in a set of points 0 < t; < ... < t, < t,+1 = 1 one can first
generate (Wy,,..., Wy, , Wy, . ) from a standard Wiener process and then use Algorithm
with Y = (Wy,,...,Wy,) and Z = W, . This leads to the following procedure.

and

Algorithm 3.6: Brownian bridge generation.

Given: 0 <t; < - <tp <tpr1=1landbd
1 Generate Wy, ¢ =1,...,n+ 1 from standard Wiener process
2 Output Xy, = Wy, +;(b—Wy,,,), i=1,...,n.

3.4 Stationary Gaussian processes / random fields

Definition 3.4. A Gaussian process { Xy, t € R} is weakly stationary if Cx(t,s) depends
only on (s —t) and is (strongly) stationary if it is weakly stationary and px(t) does not
depend on t.

A weakly stationary Gaussian process can be generated very efficiently on a uniform
grid {t; = to + jh,j = 0,...,n} with the use of FFT. This avoids the costly step of
computing the Cholesky or spectral decomposition of the covariance matrix. We denote
by X = (Xy,,...,Xs,) the discrete Gaussian process on the uniform grid. Since {t;,j =
0,...,n} is a uniform grid, it follows that the corresponding covariance matrix

Y = Cx(ti,tj;) = Cx(0,(j —9)h)

depends only on j — ¢, hence is a symmetric Toeplitz matrix and we have to store only
the vector (oy,...,0,) with o; = Cx (to, to + ih):

a0 g1 gy ... On
01 g0 g1 Onp—1
02 01

On Op—1 ... o1 0
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Consider now the following circulant embedding of >:

ol o1 o9 ... Op—1 On 1 Op—1 Op—2 ... o1
o1 o9 O1 ... Op—1 | On Op—1 ... 09
oy 01 3
1 On—1
o o oo o | e gonnen
L On Ont e 0000 3 00 e e Tn—1_.
Op—1 On  Op-1 o1 1 0o o1 On—2
Opn—2 On—1 oy 1 01 a0
o1 Op—1 Op Op—1 } On—2 01 o)
and the generating vector o« = (0¢,01,...,0n,0n-1,...,01) given by the first column.

We write compactly ¥ = circ(a) and assume that ¥ is also non-negative definite.

Lemma 3.2. Let o = (av1,...,a2,) € R and ¥ = circ(a). Then the vectors v(®),
{=1,...,2n, v,(f) = 2m=DE=1)/2n gre eigenvectors of ¥ with corresponding eigenvalues
A = 211 ape 2mil=0(k=1/27 which are real and non-negative if ¥ is semi positive

definite.

Proof. 1t is enough to verify that Zzil f]jkvl(f) = )\wj(-g), forall j =1,...,2n. Notice that

Y can be written as Xjr = a(2n4j—k+1) mod 2n}, Where we set ap = ag,. Then

2n 2n

S ¢ Ti(£— — n
ZEjkv,i) :Za{(2n+j—k+1) mod anpe T DD/
k=1

k=1
2n
_ Z Of(2ntjoht1) mod 2n}627ri(€—1)(k—j—2n)/2n€27ri(€—1)(2n+j—1)/2n
k=1
2n
_ (Z ake—27ri(é—1)(k—1)/2n> UJ(,E).
k=1

O

It follows from this Lemma that the matrix ¥ can be diagonalized as SF* = F*A
where Fyy = e~ 2= (=1)/2n corresponds to the FFT matrix as defined in Matlab (and
numpy up to a shift of indices £ — 1 — ¢, k —1 — k) and A = diag(A1,..., A\an).
Moreover, the vector of eigenvalues corresponds to A = Fa = FFT(a). Observe that
F*F = FF* = 2nl,, so that & = iF*AF and can be factorized as > = AA* with

A = \/%F*Al/z. We consider now a vector Y = (Y1,...,Y2,) of complex standard
normal 1.v.s, i.e. Y = Yr +iY; with Y3, Y7 id N(0, I,), and set

~ 1

X = AY = — F*AY2 = iFFT(V27AY?Y),

V2n
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where the iFFT matrix is given by %F *. The following holds:
e E[YY*]=2L,=E[YY*], E[YY'|=E[YY']=0,

o E XX} —E[AYY*A*] =25 =E [5(5(*}, E [XXT} ~E {

P
>iz|
I

. :RG(X)RG(X)T} g [x;x (X;xf] _S_E [Im(fc) Im(X)T},

21

. N Sz oo N T
o E Re(X)Im(X)T} ~E [ng (X—.X) } = 0.
Hence Re(X), Im(X) ~ N(0,%) and are independent and Re(X1.n41), Im(X1.n11) Y
N(0,%). This suggests the following algorithm to generate X ~ N(u, ).

Algorithm 3.7: Circulant embedding.

oo 01 ... Op
) o1 09 ... Op_q -
Given: py € R" and ¥ = | . . i e Rntixnt
Op ... (1)
1 Generate the vector a = (09,01,...,0n,0n_1,...,01) € R?"

M

Compute A = FFT ()

Generate Y = Yi + 1Y with YR, Y] id N(0, Ioy,)

Compute X = iFFT(y/2n diag(v/A)Y)

Output XM = g + Re(X1:n+1) and X©@ = p + Im(X1:n+1)

[S SR N U

One may encounter the problem that the matrix & might not be semi positive definite,
even if X is. In such a case, one could try to enlarge the circulant embedding

_ * * * *
= (00,01, 00,0 1s- 3Oy Opy1s-+ 3Oy 15Oy -+, O1)
where m > n and o}, j =n+1,...,m are chosen such that ¥ = circ(a) is semi positive

definite. A typical choice is to take o7 = 0; = Cx(0, jh) and m large enough.
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Chapter 4

Generation of Markov processes

4.1 Discrete time / discrete state Markov chains

Let us consider a stochastic process {X,, n € Ny} defined on the countable set Ny =
{0,1,...} and taking values in a countable set X = {y1,y2,...} i.e. X, € X for all
n € Np.

Definition 4.1. A stochastic process {X,, € X, n € Ny} is a Markov chain if it satisfies
the Markov property

P (Xn+1 = Yn+1 ‘ Xn = y’an—l =Yn—15--+; XO = yO) = ]P)(Xn—‘rl = Yn+1 ’ Xn = yn)
with Yo, .., Ynt1 € X.

The process is therefore entirely defined by the distribution A of the initial state Xg
and the transition matrices

P(n) = (Pij(n))i, with Pyj(n) =P (Xn =y; [ Xn1 =)
which are, in particular, stochastic matrices i.e. they satisfy
Y Pj(n)=1, Vi=12,..., VneN.
J

A Markov chain is time-homogeneous if P(n) does not depend on n. Generating a discrete
time / discrete state Markov chain is rather straightforward.

Algorithm 4.1: Generation of discrete time / discrete space Markov process.

Given: \ and P(n),n € N
1 Generate Xg ~ A
2 Forn=1,2,...,
3 Generate X, ~ Px,_,.(n) // pmf given by X,_i-th row of P(n)

35
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Exercise 4.1 (Random walk on a lattice). A random walk on the integers {X,, € Z, n €
No}, starting at Xo = 0 is a Markov chain defined by the following transition probabilities

P(Xpi1=j| Xpn=j—1)=P(Xpp1=3| Xp=j+1)=ac(0,1),
P(Xpt1=3| Xpn=j)=1-2a,
PXnp1=7| Xn=14)=0, i#j,j-1j+1

Figure shows a graph representation of the Markov chain. An arrow between two
states denotes a connection, i.e. a mnon zero probability of moving from the base to the
head of the arrow.

1—2a

a a

R 3

Figure 4.1: Random walk on lattice.

4.2 Discrete time / continuous state Markov chains

Consider now a stochastic process {X,, n € Ny} defined on Ny = {0,1,...} and taking
values on a continuous set X C R%. We denote by B(X) the Borel o-algebra on X so that
(X,B(X)) is a measurable space.

Definition 4.2. A Markov transition kernel on (X,B(X)) is a function P : X x B(X) —
[0,1] such that

e forallye X, P(y,-) is a probability measure on (X,B(X));
o for all A€ B(X), P(-,A) is a measurable function on X.

Often, the transition kernel is defined starting from a density function p : X x X — Ry
such that for all z € X, A € B(X), P(x,A) = [, p(z,y) dy.

Definition 4.3. Given a Markov transition kernel P : X x B(X) — [0,1], a stochastic
process {Xp, n € No} with values in X is a homogeneous Markov chain with kernel P and
initial distribution Xo ~ A, denoted {X,,} ~ Markov(\, P), if for any n € Ny, A € B(X),

IP)(‘X?“Hrl EA| Xn:?/na-"aonyO):P(XnJrl GA| Xn:yn):P(ynaA)-

Again, generating a discrete time / continuous state Markov chain is rather straightfor-
ward, provided we know how to generate random variables from the probability measure
P(y,-) (resp. probability density function p(y,-)) for all y € X.
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Algorithm 4.2: Generation of discrete time / continuous space Markov process.
Given: A and P

1 Generate Xg ~ A

2 Forn=1,2,...,

3 Generate X,, ~ P(X,,—1,")

Exercise 4.2 (Random walk in 2D). Let X = R? and consider the stochastic process
{X,, € X, n € Ny} starting at Xo = (0,0), defined by
Xpp1 = Xn+ & & N(0,0°1).

This is clearly a homogeneous discrete time / continuous state Markov chain with transi-
tion kernel

1 =
P(y,A)=P(X,41 € A | Xn:y):]P’(ﬁn+yeA):27m2/Ae 202 dE

and transition density function p(x,y) = 5~ exp (f (yl_x1)2+(y2_$2)2),

270 202

4.3 Continuous time / discrete state Markov chains

Let X = {y1,y2,...} be a discrete (finite or countable) set and {Xy, ¢ > 0} a stochastic
process taking values in X. The process is said to be right continuous if each path is so,
i.e. for any realization w,

lim Xiip(w) = Xe(w).

i Xa(w) = Xi(w)

Since the process takes only discrete values, the right continuity property implies that if
X; = y; at some t, it will stay in state y; for a certain amount of time, i.e. there exists a
(random) & > 0 s.t. Xg =y, for all t < s <t +e. We denote J, the n-th jump time

Jo =0, Jp=mf{t > Jp1: Xe # X5, .}, n>0
and S, the n-th holding time

‘S_{%—%q,ﬁ%4<m,n:LZm

0, otherwise.

The discrete time process {Y,, = X, n € Ny} is called the jump process (or jump chain)
of {X;,t > 0}. The process is therefore completely characterized by the sequence {.J,},
of jump times (equivalently the sequence {S,}, of holding times) as well as the sequence
{Y,, }, of visited states, i.e. the jump chain. Figure gives an illustration of a continuous
time / discrete state Markov process.

The (first) explosion time T™* is defined as T* = sup,, J, = > ooy Sp. If T* < +o0, we
consider only the process {X;, ¢t € [0,7*)} or, equivalently, we set X; = oo for ¢ > T*.
This is called the minimal process.
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Y31 -—————

Yo e————

Sa
—
Y1+ S —
—
t=0 J1 Ja J3

Figure 4.2: Continuous time / discrete state Markov process and associated jump and holding
times.

4.4 Poisson process

The Poisson process is the simplest example of a continuous time / discrete state Markov
process.

Definition 4.4. A Poisson process {N;y € No,t > 0} with initial state No = 0 and
parameter 0 < \ < 0o, is a non decreasing, right-continuous, integer valued process which
satisfies the following properties.

1. Independent increments: for all 0 < t; <ty <t3 <ts, Ny, — Ny, and Ny, — Ny are
independent;

2. Poisson stationary increments: for all 0 < s <t, Ny — Ns ~ Pois(\(t — s)) i.e.

(At —s)) o= A(t—3)

It follows, in particular, that Ny ~ Pois(At). Moreover, V; satisfies the Markov prop-
erty: for any s > 0, N; = Ngit— Ng, t > 0 is also a Poisson process of rate A, independent
of {Ny, t < s}, as well as the strong Markov property where s is replaced by a stopping
time T'. (T is a stopping time if the event {T' < t} is measurable with respect to the o-
algebra F; generated by { N, s < t}). The following are two equivalent characterizations
of a Poisson process:

a. For any t > 0 and h — 07", uniformly in ¢ it holds
]P)(Nt—i-h - Nt = 0) =1- )\h-f- O(h),
P (Nt—l-h — Nt = ].) = Mh+ O(h),
P (Nt—l-h — Ny > ].) = O(h)

The last condition is actually a consequence of the first two.
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b. The holding times S, S, ... are independent exponential random variables Exp(\)
and the jump chain is ¥;, = N; = n.

The first property follows immediately from the Poisson distribution of the increments.
For the second proprety, observe that P (S; > t) = P (N; = 0) = e~* hence S; ~ Exp(\).
Similarly, P (S, 11 >t) =P (Nj, s — Nj, =0) = e 50 5,41 ~ Exp(\) and independent
of S1,...,5, by the property of independent increments of N;. The second property
suggests an easy algorithm to generate a Poisson process with parameter .

Algorithm 4.3: Homogeneous Poisson process 1.
1 Set No=0,Jp=0,Yy=0

2 Forn=1,2,...,
3 Generate S, ~ Exp(\) and set J,, = Jp—1 + Sy
4 Set Nt:NJn,p te [Jnfl,Jn) and Njn :Njn71+1.
4 —
Ny
3 -—
2 —
1 —
J1 J2  J3 Ja t

Figure 4.3: Homogeneous Poisson process.

Figure [4.3] shows a realization of a Poisson process. Another useful property of the
Poisson process is the following.

c. Conditional on Ny = n, the n jump times are uniformly distributed in (0, ), i.e.
Ji,...,Jn have the same distribution of the order statistics U(yy, ... U, with U; id
U(0,t).

Property c. suggests an alternative algorithm to generate a Poisson process of rate A
on [0, 7.

Algorithm 4.4: Homogeneous Poisson process II.

1 Generate Ny ~ Pois(AT)
2 Generate Uy, ...,Un, ifi\C}Z/{(O,T)
3 Order the sample Uy < -+ < Uy

4 Set Jop=0, J, = U(n), and N, =n, t € [Jn,Jn+1), n=1,...,Nr
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Finally we mention that a Poisson process {Ny, t > 0} can also be thought of as
a random counting measure. For a given interval A = (t1,t2), u(A) = 3232, 1jca)
counts the number of jumps that occured in A (which is clearly a random number). Thus
dp(t) = Y272, 87, (t) and it holds Ny = No + [if dul(t).

4.5 Non-homogeneous Poisson process

A non-homogeneous Poisson process with rate A(t) varying over time can be defined by
extending the property b. of a Poisson process.

Definition 4.5. {N;, t > 0, Ny = 0} is a non-homogeneous Poisson process with rate
A [0,00) = Ry if it is a right-continuous process with independent increments, such that
P(Nepp — Ny =0)=1—At)h + o(h),

P (Nt-l—h — Nt = 1) = )\(t)h + O(h)

Therefore, the non-homogeneous rate A(¢) can be characterized by the following limits

1P (Nypy — Ny = P (Npj, — Ny =1
A(t) = lim Weph = Ne=0) _ jypy PWWNen — N =1)

h—0+ h h—0+ h

To be able to generate a non-homogeneous Poisson process we need to derive the
distribution of the holding times. This is shown in the next lemma.

Lemma 4.1. Let {N;, t > 0, N9 = 0} is a non-homogeneous Poisson process with rate
A :[0,00) = Ry and denote by F the cdf of the n+1 holding time Fy,11(t) = P (Sp+1 < t).

It holds
T+t
Foi1(t)=1—exp {—/ A(s) ds} .

Proof. We have

Fpia(t+h) = Faya(t)

Frpa(t) = lim

h—0 h
. Pt <Shy1 <t+h) . P(Spt1 <t+h| Spp1>1)
lim - lim 3 ( nt1(t))
P(N N =
= tim DVt >0 | Nowre =n) () gy
h—0 h
h—0 h

= A+ B)(1 = Foyy (1)),

Solving this differential equation with initial condition F,41(0) = 0 leads to the desired
result. O

Hence, a non-homogeneous Poisson process with rate function A\(¢) can be generated
by the following Algorithm.
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Algorithm 4.5: Non-homogeneous Poisson process.

1 Set Ng=0,Jy=0,Y;=0

2 Forn=1,2,...

3 Generate S, ~ F,(t) =1 —exp {— i::ﬁt A(s) ds}
Set Jn = Jp-1+ Snv
Set N; = NJnil, t e [Jnfl, Jn),
Set Nj =Nj _,+1

If we define the function A(t) = fot A(s) ds, and let N; be a homogeneous Poisson
process with rate 1, it can also be shown (exercise) that the non homogeneous Poisson
process N; with rate function A(¢) can be obtained as Ny = Ny o A = Ny ().

4.6 Compound Poisson process

A compound Poisson process {X;, t > 0,Xy = 0} is a Poisson process with variable
jump intensity. Let v(dy) be a probability measure on R and {N;, ¢ > 0} a homogeneous
Poisson process with rate A > 0. Then, the compound Poisson process with jump measure
Av(dy)dt is given by

Ny
iid
X, = § Zi, Zi~ow.
=1

Algorithm 4.6: Compound Poisson process.
1 Set Ng=0,Jy=0,Yy;=0

2 Forn=1,2,...

3 Generate S, ~ Exp(\) and set J,, = J,—1 + Sy,

4 Generate Z, ~ v,

5 Set X; = XJn717 t e [Jn—l, Jn) and Xjn = XJn71 + Zn,

4.7 General continuous time / discrete space Markov pro-
cess

Let X = {yo,y1,...} be a discrete (finite or countable) set and let p = {u;}; be a
probability mass function on X, i.e. p; > 0, Vi and >, u; = 1. A continuous time
Markov chain {X; € X, ¢ > 0} with initial state X ~ p, is fully characterized by the
transition probabilities

h—0+ h
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Y>

Y1
S3 = Exp(qy,) ¢
— "
Yo
Jo=0 Jo J3 Ja

Figure 4.4: Homogeneous continuous time Markov process.

If g;(t) and ¢;;(t) do not depend on ¢, the Markov chain is homogeneous. The (possibily
infinite) matrix @ = (Qj;):; given by

qGij 1F]
Qij:{w T
—q¢ 1=

is called the generator of the Markov chain. We assume here that @) is stable, i.e. q¢; < oo
for all 7 and conservative, i.e. E#i qij = G-

Definition 4.6. A homogeneous continuous time Markov chain {X; € X, t > 0} with ini-
tial state Xo ~ p and (stable and conservative) generator matriz Q, is a right-continuous,
piecewise constant process denoted Markov (i, Q) s.t.

o the jump process {Y, = X, n € No} is a discrete time Markov chain with transi-
tion probability

qij . . .
7T¢j=$7 i #j, mii =0, if i #0
(2
7Tij:07 Z?éjv 7'['1'1':17 ZfQ’LZO
e conditional on Yy, Y1,...,Y,_1, the holding times Si,...,S, are independent ran-
dom wvariables, S; ~ Exp(qy,_,), i=1,...,n.

Notice that in this case, the holding time S, depends on the current state of the
chain S, ~ Exp(qx Jn—l) and the chain can jump to any other state j with transition
probability mx, ;. An algorithm to generate such a process Markov (1, Q) is given next.
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Algorithm 4.7: Markov (¢, Q).
1 Generate Xg ~ p and set Jy =0, Yy = Xg

2 Forn=1,2,...

3 Generate S, ~ Exp(—Qy,y,) and set J,, = J,—1 + Sp,
4 Generate Y, 11 ~ Ty, .

5 Set Xy =Yy, t € [Jn-1,Jn), and Xy, =Y,

The importance of the matrix @ is illustrated by the following calculation. let us
denote p;(t) = P(X; =) the probability of finding the chain in state y; at time ¢ and
p(t) = (p1(t), p2(t),...) the (row) vector of suc probabilities. Then

Wiy = i PEDZPO g 28 (X, = )~ pi0)

dt " ho0+ h h—0t+ h

.1 . . . .

= hh%lJr 5 ZP(Xt—i-h =7 | Xe=1)pj(t) + P(Xoqp =1 | X¢ =14) pi(t) — pi(2)
- i#i

=Y aii(Opi(t) — a®)pi(t) = Y pi(1)Qy; (1)

J#i J
from which we deduce the follwing differential equation
d

—p(t) =p(E)Q(t
() =p(HQ()
for the evolution of the probability vector p.

Exercise 4.3. The Poisson process {Ny, t > 0, Ng = 0} with rate A > 0 is a continuous
time Markov chain Markov (dp, Q) with Q-matrix

A A0
0=]0 =1 A
0

since
P (N, =3| Ny=1)—1
Qi = —A = lim (Nign =3 | N =7)
h—0+ h
N P(Nt+h:Z—|-1‘Nt:Z)
Qi =A= iy :
Qij=0, j#4i+1

Exercise 4.4 (Birth process). Let X; € N be the size of a population at time t. Births
of new individuals arrive after exponential time with rate AX; proportional to the actual
size of the population. Hence, the birth process is characterised by the Q-matrix

A\
—2) 2\
Q= 3\ 3\
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Chapter 5

Monte Carlo method

Let us consider a random variable Z that is the output quantity of a stochastic model
and the goal of computing its expectation: p = E[Z]. We assume that the probability
distribution of Z is not known analytically, but Z can be simulated.

Example 5.1. Consider a continuous time stochastic process {X;,t > 0} with values in
a subset X C R% and the goal of computing the expectation of Xt at a given time T > 0,
i.e. Z = X, or the expectation of a stopping time Z = inf{t > 0: X; € A C X} for
some measurable set A.

The Monte Carlo method consists simply in generating N i.i.d. replicas Z(), ..., Z(N)

of Z and estimating u = E [Z] by a sample mean estimator

| N
» _72: (4)
'UN_N,_lz .

We assume here that Var (Z) = o2 < +oo.

5.1 Properties of the Monte Carlo estimator and confidence
intervals

The sample mean estimator jin, which we will call also the Monte Carlo estimator, has
the following properties.

1. [y is unbiased, i.e. E[an] = p.
The expectation here is taken with respect to the distribution of the sample (Z ...

2

2. Var ([LN) = UW.

45

,ZM).
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Indeed,
1< ’
Var (iy) = E [(An — E[in])?] <N > (2 >

1 Y . .
= 2 E [(Z(’) — ) (Z9 —u)}

ij=1
Ly i _ 0 _ )= o
— 7 —
-y E[@0-w? + ZE[ (29 -] = 5.
i=1 —,_/
=02 Vi since Z() are iid =0 since Z(?),Z() are indept.

~ N—oo
3. Almost sure convergence: iy —— | a.s.

This comes from the Strong Law of Large Numbers (SLLN), since E [Z] = u < 0.

4. Asymptotic normality

\/N(/:LN - :u) i> N(O, 1)

where ~%5 means convergence in distribution. This comes from the Central Limit
Theorem (CLT), since Var (Z) < 4o0.

Using the CLT, we can construct an asymptotic 1 — a confidence interval (i.e. an
interval with coverage probability 1 — «)

. o . o
N — Cl—a/2ﬁ7 UN + Cl—a/2ﬁ

with ¢, the a-quantile of the normal distribution satisfying ®(c,) = « and ® the cdf of a

standard normal random variable. This means that P (u € I, n) N2 1 —a. See Figure
for an illustration. Equivalently, the error |u — fin| satisfies

lw— | < cl,a/g\;LN with probability 1 — «, asymptotically.

The CLT shows that the Monte Carlo error is of order N~/2, which is a very slow
convergence rate (to reduce the error by a factor of 10, one has to multiply N by a factor
of 100) and is peculiar of Monte Carlo estimates, generally not improvable. On the other
hand, it holds under quite weak assumptions (Var (Z) < 4+00).

The previous error estimate and confidence interval is not practical as it involves
the, usually unknown, variance o? = Var (Z). We can replace it by the sample variance
estimator computed using the same sample (Z(1), ..., Z(N),

S EOICEE
i=1
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AN — ﬂN+C1—a/2ﬁ

Figure 5.1: Asymptotic confidence interval for the sample mean estimator.

which is also an unbiased estimator and converges almost surely to o2. It follows that

2 3 1a.s. and
N

VNG —p) _ o \/N(ﬂzv—u)gN(O D
oN ij/\L o e

—1 a.s. i}N(O,l)

Then, a computable asymptotic confidence interval is given by

~ ON ON

IoNn = |fiN — Cl—a/2ﬁv AN + Cl—a/Q\/N

N—oo

which leads to P (u S fa7N) —1—a.

5.2 Implementation aspects

As an output of a Monte Carlo simulation, one should always provide, beside the point
estimate fiy, also an estimate of the error, quantified by e.g. the 1 — a asymptotic
confidence interval IAa, N-

In practice, one would also like to choose IV so as to achieve a prescribed tolerance tol.
Again, this could be for instance in term of the length of the 1 — a confidence interval:

choose N : |Io.n| < 2tol.

This can be done by a two (or more) stages procedure as illustrated by the Algorithm

Bl
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Algorithm 5.1: Two stages Monte Carlo.
Given: tol, o )
1 Do a pilot run with N replicas (Z(i), cee Z(N)) and compute

1 N ‘ N
A_:NZ;Z(Z)’ (3 — Z: l)_ _

2 Based on the previously estimated variance, fix

N — C% oz/2o-2
tol?

3 Generate a new sample (Z), ..., Z(N)) and compute iy and 63
4 if 6]2\, > &]2\7 then
5 ‘ Set N = N and go back to 2.
6 else
7 ‘ Output gy and IAOCVN.
8 end

Alternatively, one can adopt a sequential procedure as illustrated by Algorithm

Algorithm 5.2: Sequential Monte Carlo.
Given: tol, o

1 Do a pilot run with N replicas (2@, ..., Z(N)) and compute
1

&?V: ﬁZz (Z (l)—/‘N) .
2 SetN:N, ﬂN:uN, O‘N:O'N.
3 while UNleNa/? > tol do
4 set N=N+1
5 generate Z (N) independent of Z®W, i < N
6 recompute fiy, &]2\,
7 end

An efficient implementation of Algorithm requires stable update formulas for iy
and 6. Two such formulas are the following:

N 1
A Z(N+1)
AN+t = AN T N
N -1 1 N2
N1 = N ON T T (Z(NH) _“N> '

If N(tol) denotes the sample size at the end of the while loop, which is a random variable,
and fin (o) the corresponding sample mean estimator, it can be shown [I] under the sole
assumption that Var (Z) < 400, that

tI%mO}P’ (| N(tol) — M| < tol) =1 —« (asymptotic consistency)
—
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and

N (tol)tol?
#31 as tol — 0.

2
9°C _a)2
The drawback of this algorithm is that if N is chosen too small so that the estimator
o is unreliable, this may cause the algorithm to terminate too early, leading to a poor

estimation of E [Z].

5.3 Non asymptotic error bounds

The confidence interval for the sample mean estimator, derived in Section is
based on the CLT and is only valid asymptotically. Sometimes, if the distribution of the
random variable Z is far from being Gaussian and the sample size is small, the distribution
of the rescaled sample mean estimator % may still be far from the asymptotic
Normal one and the corresponding confidence interval fa, ~ will be unreliable. Other more
robust confidence intervals could be used instead, in this case, which however often lead

to very conservative bounds. We mention:
e Bound based on Chebyshev inequality P (|Z — E[Z]| > a) < V%gz) which implies

P(\M—Ms(’) >1-a
vV N«

from which we can compute the approximate confidence interval

SCheb 1~ oN . ON
= [N — —F—, [N + ——].
a,N [t AN H TN]

This should be compared with the CLT result P <\,&N —pl < Lﬁ) >1—a. For

a small, one has typically ¢|_,/» < ﬁ E.g. for a = 0.05 we have cg75 = 1.96
whereas % = 4.47 and for a = 0.01 we have cg95 = 2.576 whereas ﬁ = 10.

e Bound based on Berry-Essén (for random iid variables with bounded third moment)

P <\/MV_M SJJ) — ®(z)

g

E[|Z — pul?]
VNo3

<k (k ~ 0.4748)

sup
X

which quantifies how far the distribution of M is from the standard Normal

1
cdf based on 3rd moment estimates. Given an estimate 4y ~ E [|Z — p|*]3 one can
then solve the problem:

KAy

VNG,

find &4 : D (1) 1

and output the confidence interval fff] =[N — i’a%, AN + i’a%]
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5.4 Vector valued output

The Monte Carlo method extends trivially to a vector valued output Z = (Z1,...,Zy,)
and the estimation of its expected value o = E [Z]. In this case, we generate iid replicas
A N i
ZW, .., ZWN) and set ,;,N:%zizlz@. ) .
We can also estimate from the same sample the covariance matrix Cy = ﬁ Zf\i (ZO—
an)(Z® — an)T. The considerations on asymptotic confidence intervals based on the
CLT extend to the case of a vector valued output as well. Indeed we have fiy —= pu,
Cy =% C and
N TA—1/x d 2
N(py —p) Oy (AN — p) — X
where an denotes the y? distribution with m degrees of freedom. Based on this asymptotic
result, a computable 1 — o asymptotic confidence region is

2
A N A ~ X ;1—
Lhn={y eR™: (ax —y) " Cy'(an —y) < B

where X?n;l—a is the 1 — a quantile of the x?2, distribution, so that P (p, € fa’N> oo,
1—oa.

5.5 Smooth functions of expectations and delta method

Consider, as in the previous section, a vector of output quantities Z = (Z1,...,Zn)
of a stochastic model. However, now, we wish to compute a nonlinear function of the
expectation of Z, i.e.

(=FfE[Z],... . E[Zn])

with f : R™ — R smooth. If we denote u; = E[Z;] and p = (p1,...,pm) € R™, the
natural Monte Carlo estimator for ( is

N
2 . . . . 1 Z k
CN:f(MLN,---,Mm,N) Wlth MiJV:N Zz( )
k=1

with ZM ..., ZW) iid replicas of Z. If f is continuous at p, then éN 2% Cie. (yis a
consistent estimator of (.

The question is now how to estimate the error on 6 ~ and provide a confidence interval.
One way of doing this is provided by the so calles delta method, based on a first order
Taylor expansion of f around pu:

(v = C = flan) — f(p) = Vi) (an — 1) + oy — pl).-

where we have used the convention that Vf is a row vector. Let C = Cov(Z) =
E[(Z - u)(Z —p)"]. Then

VN(Cy =€) -5 N0, VF(R)CVf()T).
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A computable 1 — o conﬁdenpe interval can then be constructed by replacing C' with
N = 1 oy (29 = 0)(Z29 — )T and V() with V£ (jy) as

L =[v —An, v +Ax), Ay = 222 \/Vf NCNV ()T

Obverse that the estimator ﬁ N is biased in general.

Example 5.2. Let Z be a scalar random variable, output of a stochastic model. Suppose
we want to estimate the coefficient of variation of Z

o(z) \E[Z]-E[Z]
w(z) E(Z]

Setting Z = (Z1,Za) = (Z,2%) and f(x,y) = /% — 1, then ¢ = f(E[Z1],E[Z2)). If {n
denotes a Monte Carlo estimator for C, the delta method can be used to produce a 1 — «
asymptotic confidence interval. Explicit calculations are left as an exercise.

5.6 Monte Carlo to compute integrals
Consider a simple stochastic model Z = ¢(X,...,Xy) with ¢ : R? — R bounded and

X = (X1,...X4) a random vector with joint probability density function f : R? — R,.
Then,

E[Z] = Rd¢(:c1,...,xd)f(x1,...,xd)dl‘l coodrg = » Y(x)f(x)de.

A Monte Carlo approximation of y = E [Z] consists of:
e generating N iid replicas of X() ~ f
e computing iy = ZZ L (X @) R fga () f(z) da.

Hence, the formula % EZ]\; LU(X (i)) can be seen as a quadrature formula to approximate
the integral [pq () f(x) da.

Conversely let us consider the problem of computing an integral I = [, ¢(x)w(x) dx
where w : R — R, a non negative weight such that fRd w = 1. Then we can estimate
the integral by a Monte Carlo formula

P(X D)

\\Mz

with X @ & ud
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B

Figure 5.2: Monte Carlo to estimate the volume of €.

Example 5.3. Let Q C RY be a bounded domain. We want to compute its volume |§].
Let B be a rectangular domain containing Q. Then I = Q] = |B| [ ]lg(m)ﬁ dx and its
Monte Carlo approrimation is

N .
- |B] iy #HXD ey
I—WZ]IQ(X )=—Fx 1Bl

=1

with X ) ZlﬂiZ/I(B) i.e. we draw independently uniform points in B and count how many
fall in Q. See Figure for a graphical illustration.

The error in the Monte Carlo approximation is

~ g
|I_ I| < A—a/2 7=

VN

with probability 1 — « asymptotically, where
2 _ 2 2 2
o = Vi (x)w(x)de — I* < Y (x)w(x) de.
Rd Rd

Hence, the rate of convergence is O(N~'/2) and is achieved under the sole condition
Jra Y?(z)w(x)dx < +oo. Observe, in particular, that this rate is independent of the
dimension d! (assuming that the variance o2 remains bounded when we increase the
dimension of the problem). Although Monte Carlo has a very poor convergence rate
O(N -1/ 2), its use is still very appealing for high dimensional problems.

As a term of comparison, consider the problem of computing an integral I = f[O,l]d Y(x) de
on the unit hypercube by a tensor quadrature formula, e.g. tensor mid-point rule

N 1 N
=3 p(Xht = 5> w(X )
=1

i=1



5.6. MONTE CARLO TO COMPUTE INTEGRALS 53

Figure 5.3: Uniform grid to estimate the integral of ).

where X () are the centres of the cells and h = N~/% is the length of each cell (see Figure

53).

The error of the quadrature formula can be bounded as:
I — 17| < Ch? ¥l qoagey = CN ™l o2 o.110)-

Therefore, such a formula achieves a rate N™2/¢, with respect to the number of points
used, provided ¢ € C?([0,1]%) (hence regularity is required on the integrand to achieve
such rate) and already for d > 4 the rate will be worse than Monte Carlo (this effect is
usually referred to as the “curse of dimensionality”).
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Chapter 6

Variance Reduction Techniques

As in the previous chapter, let Z be a random variable, output of a stochastic model, and
consider the goal of computing the expected value p = E [Z]. It will be useful to assume
that Z can be written as Z = ¢(X) with X = (X,...,Xy) a random vector with pdf
f: R4 = R,, so that

p=Elz]= | v()f@)d
The Monte Carlo approach (hereafter called “Crude Monte Carlo”) to approximate

[ consists in generating N iid replicas Z(®), ..., Z(N) with Z() = (X @) X0 id f and
computing

1 N
/ - (4)
fiome = E Z.

=1

As we have seen in Chapter [5| by the CLT we have that

| . < Var (Z)
_ Cl_q/aV——r—"
M HCMC| = G /2 \/N

with probability 1 — «, asymptotically as N — oc.
The techniques of variance reduction aim at improving the performance of a Crude
Monte Carlo approximation by reducing the constant /Var (Z), hence the name “variance

reduction”. The idea is simple: instead of applying the sample mean estimator /i = a(Z)
to the variable Z, one applies it to a cleverly modified version Z which satisfies

E[Z]=E[Z]=p and Var(Z) < Var(Z).

Hence, a Monte Carlo approximation with variance reduction will look like
1N
om = — 7 (i)
fve = z; Z
1=

with 20 % Z,

55
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6.1 Antithetic Variables

Suppose N even. Instead of generating IV iid replicas of Z, the underlying idea of anti-
thetic sampling is to generate N/2 iid pairs of negatively correlated random variables

(zW, zWMy, (2@, Zz2), (2N ZIN2)y

a

where all Z(®), Zé“ have the same distribution as Z but Cov(Z®, Z(Si)) <0,i=0,...,N/2.
If we now consider the estimator

1 Y2 560 4 g0

N2 2

flay =
it follows immediately that

and

Var (jiav) NZ LZ() — L var (Z(1> + Z(1>)
2N @

=1
( ( ) + Var (Z( )) + 2Cov(z<1>,zgl>))
ar (Z

) + Cov(z™ ZC(LI))
N

< Var (ficmc)

since, by assumption, Cov(Z (1),Zél)) < 0. The estimator fi4y has therefore a smaller
variance than the Curde Monte Carlo estimator ficasc at the same computational cost
i)

(provided the generation of Z,E has the same cost as the generation of Z (i)).

The question is now how to generate pairs of negatively correlated variables (Z 0N Z(gi)).
The following proposition presents a situation in which variance reduction can be achieved
by a rather simple construction of antithetic sampling.

Proposition 6.1. Assume that the random wvariable Z has the expression Z = ¥(X),
with X = (X1,...,Xq) a random vector with independent components, such that

e X has a symmetric distribution around its mean, i.e. 2E[X] — X ~ X
e Y is a monotone function in each of its arguments.
Then Z = ¢¥(X) and Z, = Y (2E [X] — X)) satisfy
E[Z]=E[Z,] and Cou(Z,Z,) <O.

Under the assumptions of the previous proposition, a Monte Carlo approximation
of p = E[Z] with antithetic variables can be constructed by the following algorithm.
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Algorithm 6.1: Antithetic variables.

1 Generate N/2 iid replicas X1 ... X(N/2) of X;

2 For each X® compute Z® = (X)) and 2 = »(2E [X] — X@);
3 Compute fiay = & vaz/f(Z(i) + Z,gi)).

N/2 (ngzgw R )2

. . 1
4 Estimate 6% = N1 Yot — fiav

5 Output f1av and a (asymptotic) 1 — « confidence interval

Ion = |fav —c AV fiav + ¢ A
«, 1-a/2 N/2v 1—a/2 N/2

The proof of Proposition relies on the following Chebyshev Covariance inequality.

Lemma 6.2 (Chebyshev Covariance inequality). Let X be a real-valued random vari-
able with pdf f : R — Ry and let g,h : R — R be functions that are both non-
decreasing or both non-increasing, such that E[|g(X)|],E[|h(X)|],E][|lg(x)h(z)]] < +o0.
Then Cov(g(X),h(X)) > 0.

Proof. We consider the case of g, h both non-decreasing. The other case can be proven
analogously. Let g(z) = g(x) — E[g(z)] and h(z) = h(z) — E [h(z)]. Observe first that

3 [ (9@ = ) (b@) ~ 1) £ ) dody =
5 6@ = 5w)(b@) - i) (@)1 ) dwdy
— [ttt ( [ s de ) ([ sdy) = Corta(x).0)
=0 =0
Hence

The previous inequality generalizes to the multivariate case, whose proof is left as
exercise.

Lemma 6.3. Let X = (X1,...,X,) € R? be a random vector with independent compo-
nents and let g,h : R — R be functions whose dependence on each argument is either
non-decreasing or non-increasing for both of them. Then Couv(g(X),h(X)) > 0.
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Proof of Proposition[6.1. Since 2E[X] — X ~ X we have Z, ~ Z, hence E [Z,] = E[Z].
Moreover, observe that if ¢)(X71,..., Xy) is e.g. non decreasing in the i-th argument, so is
the function —¢(2E [X;] — X1,...,2E [X4] — X4) and, from the previous Lemma, we have
Cov(¢(X), =9 (2E [X] — X)) > 0, hence Cov(Z, Z,) < 0. O

Example 6.1. Let Z ~ Exp(\). Then Z = —3log X = ¢(X) with X ~ U(0,1) and ¢
monotone (decreasing). It follows that (X)) and ¥ (1 — X) are negeatively correlated and
a Monte Carlo estimator with antithetic variables for the computation of p = v = E[Z]

is flay = WZz’:l (—%log(X( )) — %log( — X(i))), with X “f\?lM(O, 1).

Example 6.2. Consider the problem of pricing a European option pu = E[Z] with Z =
Y(St) = e "T(Sp — K) . where S; is the solution of the stochastic differential equation

dSt = T'St dt + O'St th

with Wy a standard Wiener process and Sy given. It can be shown that Xy = log(S;/So)
satisfies the stochastic differential equation with constant coefficients

dXy = (r—o%/2)dt +odW;, Xo=0

whose solution is X; = (r — a%/2)t + oWy ~ N((r — 02 /2)t,0%t). Hence Sy = SpeXT has
a log-normal distribution with X7 ~ N((r — 0%/2)T,0*T) and E[St] = Soe"’. Observe
that v is a non decreasing function of St, which, on its turn, is an increasing function
of X7 whose distribution is symmetric about its mean. Hence ¥(Xr) = 1(SoeXT) is non
decreasing in Xt and an antithetic variable estimator

| N2

v =y 2 (B0 + b - AT - X)), xP N (-

i=1

2

%)T, 02T>

will lead to variance reduction.

Example 6.3. Consider a random walk on the integers: Zny1 = Zn + Xpnt1 with X; iid
such that P(X; =1) = P(X; = —1) = 1/2 and Zy = 0. We want to estimate by Monte
Carlo p =P (Zn > s) with s € N. Denote

¢(ZN) = ]l{Zst} = ]1{271:;1 Xp>s) = TZJ(Xl, ce ,XN).

Then p = E[Y(Zy)] = E [@(Xl,.. ,XN)|. Since ¢ is a non decreasing function in
each Xy, and each Xy, has a simmetric distribution around its mean E[X,] =0, a MC
estimator with antithetic variables will lead to variance reduction. It consists in generating
N/2 iid paths Z(Z)1 = Z( ) + X(Z) as well as the antlthetlc paths Z0 )1 = Z( 2 X,(Li), and

build the estimator fiay = o ZN/Q( v(Z 1\;)) + w( N ))
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P(ST)

pdf S

K E[ST] = S()eT'T

Figure 6.1: European option.

6.2 Importance Sampling

Let X € R? be a random vector with pdf f: R — Ry and Z = ¢(X) with ¢ : R? — R.
Then, computing the expected value of Z corresponds to computing the multidimensional
integral

u=E[7] = /R (@) f () do

Let now ¢ : R? = R, be an auxiliary pdf such that g(x) = 0 only if ¢)(z)f(x) = 0. Then,
the integral can be rewritten as

where E, denotes expectation under the measure g(x)dz. It follows that in a Monte
Carlo approach, instead of generating iid replicas of X to estimate pu = Ef[¢)(X)], we

could generate iid replicas of X having pdf ¢, and estimate pu = E, [d’(g()f ()X)}. This
technique is known as importance sampling. The auxiliary distribution g is called the
importance sampling or dominating distribution and the correcting factor w(z) = ACI

often called the likelihood ratio. o)

In more general terms, if X has measure vy and v* is another probability measure
that dominates vx, i.e. vx is absolutely continuous with respect to v*, then there exists
a density p = d”X (Radon-Nicodyn derivative), and E [Z] can be rewritten as

2)= [v@yivx(a) = [ @)’ (@) = E.lvg
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Algorithm 6.2: Importance sampling

1 Generate N iid replicas XM, ..., X(N) ~ ¢
N N XY F(x @)
2 Compute jiis = % doict %
. . N XY pXO) . 2
3 Estimate O’IQS = ﬁ Y oict (% - MIS)
4 Output fiys and a (asymptotic) 1 — « confidence interval

~ N

N 01s . ag1s
I, = [,UIS - C1fa/2ﬁ,ms + Claﬂm}

E[ST} - S()(i’lT K

Figure 6.2: European option.

and an importance sampling strategy consists in generating iid replicas X (@) id vt =

1,..., N and estimating the empirical mean fis = + SN (X D) p(X @),

Example 6.4. Let us consider again the option pricing problem of computing p = E [Z],
Z =(St) = e (S7 — K) 4 with St = Syexp(X7) and X1 ~ N((r — 0%/2)T,o*T). If
K > E[S7] = Soe™”, most of the the mass of St falls in the region where )(St) = 0.
Hence a crude Monte Carlo estimator will be very ineffective as only few replicas of St
will fall in the “interesting” region Sp > K. The idea would then be to “artificially”
push the distribution to the right. This can be achieved, for instance, by increasing the
drift parameter r in the dynamics of S;. We can therefore simulate a geometric Brownian
motion
dgt == fgtdt—f—ggtth

with an increased drift rate 7 > r. Let X1 = log(Sr/So) ~ N((r — ¢*/2)T,0*T) and
X7 = log(S1/S0) ~ N((F — 02/2)T,0°T), and denote by fx, and [x,. the pdfs of Xr
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and Xp, respectively. It follows that

_ / D(Soe®) fxp () dz = / B(Soe” (@) fg, (x) da
R R

with likelihood ratio

fxp(2) _ {(7:7“)((7:+7“02)T2x)} pn_imr GnareoT
X =(e") e 2

= e p 20
[z, (@) 202

w(z) =

and an importance sampling estimator is

N O\~
. 1 =)\ [ St =) (Ftr—oHT
M]S = N Zzl¢(ST ) (Sb [ 202

with »
log (sgf) /so) Y N((F — 02/2)T, o2T).

6.2.1 On the choice of the importance sampling distribution g

The importance sampling estimator
U( X(Z ) (X @) = (i) iid
= — X Z) ~
MIS N E ) 3 g

is unbiased and has variance

v () - (L ) - (o] )

Therefore, the optimal choice of g is the one that minimizes Var (fiis), i.e. it minimizes
the term [pq 1/12%2 dz, under the conditions [p, gdz = 1 and g > 0. It is clear that the
optimal distribution should vanish outside I' = supp(z/2f?). Moreover, introducing the

Lagrangian function
P f?
= / dr + A </ g— 1>
r g r

and taking variations, the (necessary) optimality condition reads
oL f?
—(6g) = — 24— \) 6gdr =0 )
8g(g) /Rd<¢g2 )gw : g

which implies g% = 111”—;. We see that the optimal ¢ is given by

el
Eflvl]

With such optimal ¢g*, the variance of the importance sampling estimator is Var (fijg) =
E[|¢*] - E [)?. In particular, if ) > 0, we have Var (fiis) = 0! However, working with
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g* is clearly not practical as the normalizing constant E¢[|1]] is, in general, as difficult to
compute as the original quantity p = E [¢], and we need to know it explicitely to compute
the likelihood ratio.

Although the optimal distribution ¢* can not be used in practice, this optimization
argument shows that the dominating density ¢ should resemble as much as possible to
|| f while still being easily simulatable and with explicit expression.

Often, this optimization is performed over a parametric family of pdfs {f(-,0), 6 €
©}. Assuming that the original pdf also belongs to the family, with parameter 6y, i.e.
f = f(-,60) and that the support supp(f(-,6)) of each distribution in the familiy is the
same, we can take as dominating distribution

2 ¢2

g(-) = f(-,0%), with 0* = argmin Eq [T/) / ("90)}

0cO

f2(" 9)

f(vg)

= argmin Ey,
0cO

V}Qf(w@oq ‘

A typical case is when {f(-,6)} is an exponential family f(x,0) o exp(d'z — k(0)), for

which the likelihood ratio };((92,990)) takes a simple form. The optimization above can be
performed numerically replacing the exact expectation with a sample average over a pilot
run.

Algorithm 6.3: Importance sampling with variance minimization

1 Generate N iid replicas YV ..., YY) ~ (-, 60)
2 Solve the minimization problem

N .
. 1 . f(y(z) )
03 = argmin — g 2y (L7
Y e?ge@ N £ P( )
3 Generate N iid replicas XM ..., X(NV) ~ f(,é;)

) ) @ g,
4 Compute firs = 3 Zivzl Q'Z)(X(z));c(())((("i)b;))'

The estimator jirg of Algorithm is unbiased. Indeed, if we denote by X =
(X(l), . 7X(N)) and Y = (Y(l), . ,Y(N)), and use the tower property, we have

Elius] = Ey [Ex[ius | Y]] =Ey lfw(x)mf(%é?)dw] = p.
Z, Uy

We can write as well an adaptive version of this algorithm. Notice that at step [3| we
generate a sample from 6 = 63.. On the other hand, our functional to minimize can be

written as
_ sz?f('v 00) . w2f2('7 00)
0 =80 |50 =5, [f<~,e>f<-,é>]'

This suggests the following adaptive algorithm
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Algorithm 6.4: Adaptive importance sampling with variance minimization
Given: tol, o, N > 1,v> 1

1 Set N = N /7, Opew = 00, 6 = 00

(5’61,&/2

> tol do

3 Set 6 = énew and N =yN
4 Generate N iid replicas Y, ..., Y(N) ~ £(., é)
5 Compute

2 while

o E ey, 1 S Fr@) Y
MIS:N;¢(Y(Z)) =, 0= > (v g fus

FY®,6) N-14 Y .0)
6 Solve the minimization problem
i N . 2y (i)
Onew = argmin % Z¢2(y(l)) f‘ Y ,90) )
bco N = FYD,0)f(YD,0)
7 end
8 Output firg

An alternative approach to determine an optimal parameter 6* consists in minimizing

over 0 the Kullback-Leibler divergence (or cross entropy) between the candidate distribu-

_ @)@ o)

tion f(-,0) and the optimal importance sampling distribution g*(z) w5y T
0

Definition 6.1. The Kullbach-Leibler divergence Dy (g|f) between a target pdf g and a
candidate pdf f is defined as

Disi(al) = Eyllog 4] = / 9(2)log g(z)dz — / 9(2) log f(z)dz

In our setting, with ¢ = ¢* and f = f(-,0) we have
Dir(g*|f(+,0)) = Eg-[log g*] — Eg+[log f(-, 0)]

. 1
~ By llogg’) — g [ 19001, 0) log £z, )
90[|¢H
Notice that 6* minimizes Dgr(g*|f(,8)) if and only if it maximizes the quantity

f(,@)

which can be approximated by an empirical mean from a sample drawn from the distri-

bution f(-,0). Moreover, for certain families of distributions, such as the exponential one,
the function 6 — J(#) is concave, which makes the maximization problem easy to solve.

J(0) = / (@) f(z,00)log f(z,0)dz = E; [w<->| log f(-,0)
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An cross-entropy adaptive Importance Sampling algorithm can be easily construted
using Algorithm and replacing step [6] with

N .
; - oy FED, ) -
Opew = argmin — y @), Y(Z), 0).
gm N;w )| FY0.0) g f(Y®,0)

6.2.2 Weighted importance sampling

In certain cases, the pdf f and/or the dominating pdf g, are known only up to a nor-
malizing constant. (We assume, however, that we can still generate X ~ g e.g. by
Acceptance-Rejection). Let f = ¢, f and g = ¢,g, with ¢y = ([ f)' and ¢, = ([ §)~".

A modified (self-normalized) version of the importance sampling estimator, which does
not require the explicit knowledge of the normalizing constants (cyf, cg) is

Al = >ty Y(XD)w(X @)

P T )
) i y id L () ) N
with w(z) = gég and X0 X ¢, Calling w; = %, the estimator fiJ can be
written as a weighted average
N

To see that /l}/‘s/ is a consistent estimator, observe that

in oy as, [F@) o g
N o) 2 [ S de = 2

by the strong law of large numbers (SLLN) and
1 Y f c
— X@y(x @) 25 / Lode =22
N ;:1 P )w(XH) vZ9de ot

again by SLLN. This estimator is biased, although the bias is usually small. Observe
that this weighted version of the importance sampling estimator requires the stronger
condition f(z) = 0 if g(z) = 0 (as opposed to the condition ¥ (z)f(x) = 0 if g(x) = 0 of
the standard estimator).

6.2.3 Importance sampling for stochastic processes

Discrete time Markov Chains.

Consider a discrete time Markov chain in RY, {X,, n € Ng} ~ Markov (pg, P), with
Markov transition kernel defined by a probability density p : R? x R4 — R :

P, A) =P (Xnp1 € A | X =) = / p(e,y)dy, Ae B(RY,
A



6.2. IMPORTANCE SAMPLING 65

and initial probability pg, i.e. Xy ~ pg. We are interested in computing
p=E[Z] =E[¢(Xo,...,Xm)]

for some finite horizon m € N. Importance sampling in this case can be done by replacing
the transition kernel P by another kernel QQ with probability density function ¢ : R¢ x
R? — R, which dominates p, i.e. g(x,y) =0 = p(z,y) = 0, and the initial density
po by a dominating one gg. We will use the shorthand notation Xj.,, to denote the
path (Xo, ..., X,,) and a subscript pg, P to denote a Markov process Markov (pg, P). By
successive conditioning, we have

p=E[)(Xo, - Xm)] = Exg_1mpo, PIEX~P(X—1,) [ (X0m) [ Xin—1, - - -, Xo] ]

:EXo:mﬂNpo,P /wXOm 1,% p( m—1;% ) ]

= EXq.n-1~po,P /@ZJ Xoim—1, 7 p( mL )q(Xml,z)dz}
Q( m—1,% )
(

(Xm 1 m)
—E o P | Ex Xogp)oomoboZm)y x X
Xoom-100,P | Exinn Q1) ) [ (Xo:m) (X 1,Xm)| 1 0]
— EX 0 /(/](XO )pO(XO) ﬁ p(X]_17XJ)
. go(Xo) 57 a(Xj-1, X;)
= EXO:quon [¢(XO m) (XO m)]
with likelihood ratio
(X1, X
w(onm):po(Xo) p(Xj-1,X;)
q0(Xo) i q(Xj-1,Xj)

The previous argument can also be adapted to the case in which the process is stopped
at some stopping time 7, e.g. 7 = inf{n : X,, € B € B(R%)}. Suppose now we want to
compute the quantity

p=E [Z] =E [wT(X07 RS XT)]I{T<+OO}] .

When doing importance sampling with the dominating transition probability ¢, we require
that Py(7 < 400) = 1. Then. it can be shown that (exercise)

n= E[Z] = EpO,P[wT(XOZT)ﬂ{T<+OO}] = qu,QWr(Xm oo 7XT)w(XOZT)]

and p can be estimated by the following algorithm:

Discretized stochastic differential equations

Consider a stochastic differential equation in R%

dX; = b(Xy, t)dt + o(X;, t)dW;, t>0,  with Xq given, (6.1)
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Algorithm 6.5: Importance sampling for Markov processes.
1 Generate N iid pgths Xég(i) = (X(()i), cee Xﬁz)), i=1,...,N, each one up to the
stopping time 7@ of the Markov chain with transition probability
¢ :R? x RY - R, and initial probability ¢y : R¢ — Ry _
) = po(X) r@ p(X2,x)
a0(Xg") T =1 (g x()

. N ;
3 Compute firs = & i q ¥, 0) (Xég(i))w(Xég(i))
4 Output fi1s and a confidence interval based on &ig.

2 Compute likelihood ratio w(X ((]2(1.)

where W is a d-dimensional Brownian motion (i.e. each component is a Browninan
motion and the components are independent), and b : R xR — R% and o : R? x
R — R%4 are assumed sufficiently smooth so that a unique strong solution exists. We
assume throughout that the matrix o (z,t) has full rank for any (z,t) € R¥*1. We aim at
computing

p=E[Z] =E[({Xi}o<i<r)]

where v is a function of the path {X;}o<i<7 as, for example, ¥ ({X: }o<i<r) = fOT o(Xs)ds
or Y({Xtto<i<r) = ¢(Xr). For this, we introduce a discretization of the stochastic
differential equation (6.1)) by the Euler-Maruyama scheme, on a grid {t, = nAt, n =
0,...,m= L}

TR Al

Xnt1 = Xn +0( X, tn) At + 0 (X, t0)En,  &n ~ N(0, IgxqgAt).

Yo(z,t)T At.

It follows that Xy 41| Xn ~ N(Xn+b(Xn, tn) AL, X(Xn, t,)) with X(2,1) = o (2,1
) = 1/1(507 s 7§m—1)

Then, Z = ({ X+ }o<t<T) can be approximated as Za; = ¥a¢(Xo, - .., Xom
and

ppar=Ee g, 1 [0(S0s- - Em—1)]

Importance sampling in this case, can be done, for instance, by changing the drift
b(z,t) to a new one b(x,t). This can be achieved in the Euler-Maruyama scheme by
changing the distribution of the Gaussian increments to én ~ N(p(Xp, tn)At, LgxqgAl)
with

o(x,t) = o (z, t)(b(z, t) — bz, t)).

so that the discretized path
Xn—l—l =X, + b(Xn7 tn)At + U(Xn7 tn)gnu
has now conditional discrtibution X,1]X, ~ N(X, 4+ b(X,, tn)At, (X, t,)) with the

desired modified drift. If we denote by z — p(z; u, 2) the joint probability density function
of a Gaussian vector with mean p and covariance matrix 3, then we have

bat = Ef():mfl [72)(50:77171)] = E5~0:m71 [72)(50:77171)7”(50:711*1)}
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with likelihood ratio

m—1

p(&,0, IoxaAt)
i=0 p(£27 ¢(X17 tz)At7 IdXdAt)

m—1
_ 2 _ ot 2
= [T e (gl + gl — ot anr)

w(gO:m—l ) -

—

H exp (G100 )17 — (%1076

= exp ( Z At||¢ Xl,t H2 Z ¢ Xzat >

An importance samping algorithm then reads

Algorithm 6.6: Importance sampling for SDEs.
1 Generate N iid paths Xo(i)n, 1=1,..., N with modified drift

X0y = X0+ b(XD, ta) At + o (XD, 1)€Y, ED ~ N(G(Xon, tn) AL, LixgAt)
(6.2)
2 Compute likelihood ratio

w(€, 1) —exp< ZAW ta)])% — Z¢Xn,t Tw)

3 Compute jus = foil i(félznfl)w(fé%fl)
4 Output fi1s and a confidence interval based on &1g.

As a matter of fact, what we have done is to change the distribution of the brownian
increments. In the limit Az — 0 this corresponds to defining a drifted Brownian motion
W, which satisfies dW; = ¢(Xy,t)dt + dWy. Then, the likelihood ratio represents the

“ratio between the (joint) densities of W; and W;” which we denote as ﬁ
in the limit At — 0 the likelihood ratio (??) becomes

w({ibosrer) =ex ( 3 / 6(Xe,0)Pdt / ot -dW) (63

and we have

Y({ Xt}o<t<r ZEW (Wt)] )

1= Ew, [ ({Xio<i<r)] = By,

This is a well known result, known as Girsanov’s theorem, which says that, given a
standard Brownian motion W; and a “drifted” one W; = W; + fg Zsds where {Z;}; is

an adapted process with enough integrability, e.g. E [exp(% fOT ||ZS||2ds)} < 00, then the



68 CHAPTER 6. VARIANCE REDUCTION TECHNIQUES

likelihood ratio (more technically, the Radon Nikodym derivative ﬁx’/ of the original
process with respect to the drifted one is given by t

Pwi gy — o /TZ dB; + X /THZ |2dt
=exp | — . = .
dPﬁrt ¢ P 0 t t 2 0 ¢

Continuous time discrete space Markov processes.

Consider a continuous time Markov process {X; € X', ¢ > 0} taking values in the discrete
space X = {y1,%2,...}, defined by the stable and conservative generator matrix (Q;;)i;
(see Section [4.7) and the initial distribution Xo ~ A = (A1, Ag,...), with \; = P(Xo = v;).
We aim at computing

p=E[Z] =E[p({Xito<t<r)]

where v is a function of the path {Xt}0<t<T We can do importance samphng in this
case by changing the generator matrix to @, and the initial distribution to \, with the
conditions that Qw =0and \y =0 only if @;; = 0 and A\;, = 0, respectively. Then, if we
denote by N(t) the number of jumps of {X;} occurred in [0,t], by J,, n =1,...,N(T)
the jump times, by S,, = J, — Jp—1 the holding times, and by Y,, = X ;, the jump process,
it can be shown that

n=Exov({Xito<i<r)] = E5 g ({Xi}o<ecr)w({ Xi}o<i<r)]

with likelihood ratio given by

w({ Xi}o<t<r) =

a Nﬁ) Qviyyi exp{=8iQy,_, } | exP{=(T — In))Qver }
Ax, w1 @iy, expi{=SiQyi} | exp{—(T' = In(r)@vier) b

N(T)

T
= (] 292 e Lo [ Gy - Qo)

AXo i=1 Qv,_1vi

where we recall that Q; = —Q;; = Z#i Qij-

6.3 Control variates

We consider again the goal of computing the expected value p = E[Z] of a random
variable Z, output of a stochastic model. The idea of the control variate technique is to
find an auxiliary variable Y, called control variate, of which we know the mean value, and
which is strongly correlated with the variable Z. We can then construct the modified

variable
Zo=27Z—aY —E[Y])

with a € R, that satisfies

and
Var(Z,) = Var (Z) + o*Var (Y) — 2a Cov(Z,Y).
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The latter is a quadratic expression in « and is minimized for

B Cov(Z,Y)
Gopt = Var (V)

With such optimal choice, one has

B Cov(Z,Y)?

ov 2
Var (Zay,,) = Var (Z) Var] =@ 0- 02y), Cov(Z,Y)

2 _
PZY = Yar (Z) Var (Y)

which is always smaller than Var (Z). The amount of variance reduction increases as pzy
approaches 1 or —1. It is clear that the ideal control variate is Y = ~vZ, v € R for which
Var(Za,,,) = 0. However, E[Y] = 7E[Z] is not known in this case, and such a control
variate is not a viable option. The control variate Y should be a reasonable approximation
of Z, of which, however, we can compute exactly its expected value, or, more generally, a
random variable highly informative on Z (hence highly correlated to Z). In practice, the
optimal « is not known, but it can be estimated from a pilot run.

Algorithm 6.7: Control variate with pilot run.
1 Generate N iid replicas (Z("),Y®) i=1,... N of (Z,Y)

2 ~2
. A~ g . A ag . .
2 Estimate dqpnt = —4¥ if (7}27 known, or do,t = 4= otherwise, with
op 0’%’ ’ op a’% ’

N N

. 1 D) A i . 1 i

U%Y:N_1§ (Z()_MZ)(Y()_E[Y])a NZ:ﬁ§ AL
i=1 =1

3 Generate N iid replicas (20, Y®)i=1,...,N of (Z,Y)
4 Compute ficy = % Zi]il(Z(i) — @opt(Y(i) —E[Y])
5 Output ficy and a confidence interval based on 6¢oy .

The estimator ficy is unbiased and, in the case 012/ known, has variance (exercise)

Var (icv) = E [(Acy — p)?] = % (Var (Za,,,) + Var (Gopt) 03 ) -

where Var (Gopt) = O(1/N) since dqpt is a Monte Carlo estimator, hence usually small
compared with the first term. Moreover, Var (Z%pt) can be estimated by the estimator

which is unbiased if 032/ is known. Based on these observations we can construct an
approximate 1 — « confidence interval as

A &(Zaopt) M]

Io N = [ficv — Cloaf2— 735 ficv + Ci_a/2 N
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which is justified, for N not too small, by the observation that v/ N povop 4y (0,1)

B 6% (Zagpt)
as N, N — oo.
Alternative to the previous algorithm, which uses a pilot run to estimate aqpt, one
may consider a “one-shot” strategy.

Algorithm 6.8: Control variate — one shot
1 Generate N iid replicas (Z("), Y®), i=1,... N of (Z,Y)
2

. R & .
2 Estimate dopy = %, with
Y

N

i A i - 1 i

0y = 2 (2D =) (YO -E[Y)), hz=-> 2Z¥
N -1 NI

3 Estimate ficy = & o0 1 (Z0) — Gope (Y —E[Y]))

4 Output ficy and a confidence interval based on 6oy .

This estimator is biased, in general, contrary to the previous one. However, a CLT
result still holds (exercise) and

\/N:':LCVi_'u AN 0,1
2 Za) O

as N — oo from which asymptotic confidence intervals can be obtained.

Example 6.5. Consider again the problem of pricing a European call option: p = E[Z],
with Z = (St) = e "1 (S — K)y, Sp = SoeXT and X7 ~ N((r — 0%/2)T,0°T). To
compute B [Z] with Monte Carlo, we can use as a control variable the variable Y = St
whose exact mean is E[Y] = E[S7] = Spe’T. Observe that, since 1 is a non decreasing
function of ST, Z and'Y are positively correlated, so that a should be taken positive. If the

sample mean fis, = % Zfil Sg,f) is above the true mean Soe"!, it is reasonable to assume
that also the sample mean fiz will be above the true (unknown) mean, since (Z,Y) are
positively correlated, so we add a negative correctin to fiz given by —a(fis, — Soe™™), with
a > 0.

6.3.1 Multiple control variates

The control variate technique can be generalized to the case in which multiple control
variates Y7,...,Y), are used. We define the modified variable

p
Za=7-3a;(¥;~Ej) = Z - a- (Y ~E[Y])
j=1
with Y = (Y3,...,Y,) and a = (o1, ..., p). Then

Var(Z,) =E [(Z —p—a- (Y —E[Y]))’]
= Var (Z) —2Cov(Z,Y) - a+a' Cov(Y,Y)a
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K E[ST] = S()eTT

Figure 6.3: European option.

where Cov(Z,Y) = (Cov(Z,Y;))?_; € RP and Cov(Y,Y) = (COV(Y;,Y)) _1 € RPxP,
Again Var (Z,) is a quadratic function in e and is minimized by

aopt = Cov(Y, YY)t Cov(Z,Y).

Algorithm 6.9: Multiple control variates — one shot
1 Generate NV iid replicas (Z(i),Yl(i), . ,Y},(i)) of (Z,Y)

2 Estimate
N .
(6%y) Z ) — i)V ~E[Yj]), j=1,....p
and
1 0) 0)
(ff%y)gk—NZ(Yj —EY;D)(Y," —E[Yk])
=1

3 Estimate the optimal agpt by Gopt = (6%1,) 1[7ZY

4 Compute ficy = & S (29D — Gope - (YD —E[Y])).
5 Output ficy and a confidence interval based on 6¢oy .

6.4 Stratification

As in the previous sections, we consider the problem of computing p = E[Z] where Z
is the output of a stochastic model. We assume here that Z = ¢(X1,...,Xy) = ¥(X)
where X € R? is a random vector with pdf f : Q@ C R? — R, so that u = [, ¥(z)f(z) dz.
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The idea of stratification is to divide the sample space ) into s non overlapping
regions ..., Qs called strata such that P (X € Q;) = [, Lo, (z)f(x)dx = p; is known
and ijl pj = 1. Assume now that we can generate X conditional upon X € ;. The
conditional density of X given X € ; is fj(z) = pi]_f(a:)]l{xegj}. Let now X; ~ f; and
Zj = (X;), j=1,...,s Cleatly, p =E[Z] =3 | E[Z| X € QY|P (X € Q) =
>oi i p;E[Z;]. The idea is then to sample independently each Z; = ¢(X;) leading to the
following stratified estimator

s N
. . . 1 i . id
fistr = ijm, fui =+ ZZJ(-Z), with ZJ() <z (6.4)
j=1 I
The stratified estimator (6.4]) has the following properties:

1. The estimator [igt, is unbiased. Indeed,
S
E [fist:] Zpg i) = pE(Z;] =E[Z].
j=1

2. The variance of the estimator satisfies

Var (i) ijVar (i) Z

and can be estimated by

N
UStr Zp Z j 2'

3. Let N = >7% | N; and choose N; = ¢;(N), with > . ¢;(N) = N, such that

limpy oo ¢j](VN) =¢; € (0,1) for any j = 1,...,s. Then limy_,oc NVar (fistr) =
> p?a?-/Cj < 400 and it can be shown (exercise) that

l\')

<.

M N N(0,1), as N — oo.
Var (MStr)

Therefore, a computable 1 — o asymptotic confidence interval is given by
I = [fistr — c1—a/205tr, fistr + C1—a/205t:]

We summarize the procedure in the following Algorithm.

Algorithm 6.10: Stratification
1 forj=1,...,sdo

(@)

2 Generate N; iid replicas Z Ghi=1,. N; of Z

N N; i N
3 Compute fi; = N% >oih ZJ@ and ¢ ] = __1 - 1( M _ fi)?
4 end

N N R 52
5 Compute fisyy = > 5y pjity and 63y, = 371 Pt
6 Output fist; and a confidence interval I, = [figty — ¢1_q /26Str, fstr + C1_a /Q&Str]
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Stratification guarantees that each stratum contains a fixed number of evaluations. It
remains the question of how to choose N; in each stratun and quantify the amount of
variance reduction that we can achieve.

6.4.1 Proportional allocation

If N is the total sample size, proportional allocation simply chooses N; = Np;. With this
choice, we have

> Var
Var (fistr) Z p2 —= == Z p;Var (Z;).

Defining the discrete random variable J € {1,...,s}, J = j <= {X € Q;}, we can
rewrite Var (fist;) as

1
Var (figty) = NZp]Var (Z | J=j) = NE][Var(Z| J)]
7=1

and, recalling the law of total variance Var (Z) = Var (E[Z | J]) + E[Var (Z | J)| we
have

Var (2)
N

Var (jise) = ; (Var (2) — Var (B[Z | J])) < = Var (jfieuc)

Hence proportional allocation always leads to variance reduction. The amount of variance
reduction is given by v = E [Var (Z | J)] /Var (Z).

Example 6.6. Let X ~ Z/I(O 1) and Z = (X)) for some function v : [0,1] — R. To
compute p = fo x)dx, we could use stratification by dividing the interval
Q=1(0,1) ins submtemals of equal size, (2; = (%, %), j=1,...,s. Then

o= Z/ W(w dw—z / U(x sdx—zf [b(X;)], withXj~U<j;1,‘i)

7=1
and a stratified estimator reads

N

N 11 i . 7id -1
=3 Ly ), mthx;uu( : )
7=1 =1

Figure gives an illustration of the stratification procedure with 7 strata and 2 replicas
per stratum.
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(a) E[Var (Z | J)]: sum of green (b) Var (Z): green ‘squared’ area
‘squared’ areas

Figure 6.5: Proportional allocation

Figure 6.4: Stratification.

Figure illustrates the variance reduction when considering proportional allocation.
The variance of a crude Monte Carlo estimator is proportional to the green area in the
right plot, whereas the variance of the stratificed estimator is proportional to the green
area in the left plot. From this graphical illustration we see that large variance reduction
has to be expected when the function ¢ is highly non-constant. If 1 is piecewise constant
over the partition of the domain, then we even have Var (fisy) = 0.
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6.4.2 Optimal allocation

Instead of doing a proportional allocation, one may try to find the best choice of N; that
minimises Var (fise,):

S s
\%
{N*} = argmin sz ar ( : Zj) such that ZNj — N.

(N17 ) S)] 1 -] ]:1

Introducing a Lagrangian function £(IN,\) =>7%_, pjz Va]r\(szj) +A(7521 Nj — N), we have
oL yVar(Z;)

Var (Z;)
oN; ~ PiTN?

+A=0 — Nj:pj \

and, enforcing the constraint y_; N; = N, we obtain V= M

to the optimal choice

which leads

Npjo;

> h—1 POk

; o;j =/ Var (Z;)
2
and optimal variance Var (i§,,) = (Z;:l pjaj> .
Since this variance is smaller than that with proportional allocation, stratification
with optimal allocation will always lead to variance reduction. In practice, the o; are not
known and can be obtained from a pilot run.

Algorithm 6.11: Stratification with optimal allocation

1 forj=1,...,sdo
2 Generate N; iid rephcas Z(l , i=1,...,N; of Z;

70 52
3 | Estimate 67 = __1 Zl (2 —Mj)
4 end
5 Choose N = (¢1_q/2 Z;lejé’j/tol)Q (to guarantee that |, x| < 2tol)
6 For j =1,...,s, generate N; = gcpgjgk iid replicas ZJ@ of Z;

3

R N* G . .
Compute ji; = N%* >oih ZJ(-Z) and (g, = Ej‘zl Pjiky

6.5 Latin Hypercube Sampling

Consider the problem of computing the expected value p of Z = ¥(Xy,...,Xy) where
X; € R are independent and with pdf f; : R — R,. One might want to stratify each
variable X in s strata. However, this would lead to s% strata which becomes unaffordable
for large d. A way to overcome this problem is offered by the Latin Hypercube Sampling
(LHS). For simplicity of exposition, let us assume that X = (X1,...,X4) ~ U([0,1]9).
The idea of LHS is to stratify each component X; but not the whole sampling domain
Q = [0,1]%. In particular, N (correlated) points X, i =1,... N are drawn in [0, 1]¢ i
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such a way that each component is stratified with IV strata and one point per stratum.
Figure [6.0] illustrates the idea.

Figure 6.6: Latin hypercube.

A Latin hypercube sampling design can be generated by the following Algorithm.
Algorithm 6.12: LHS

1 Generate N iid points U® S Uu(,1)%,i=1,...,N
2 Generate d independent permutations 7;, j =1,...,d of {1,...,N}. Let

o) = (7r1<i), 7r2(i), e 77Td<i)>

: i) _ %) .
3 Return X () :%, i=1,...,N.

Once the LHS desing generated, the LHS estimator of p = E [¢(X)] is simply

N
X 1 i
fns = ;WX( ).

The following proposition illustrates the two main properties of the LHS sample and
estimator.
Proposition 6.4. Let {X®) i=1,... N} be a LHS design. Then

o XO ~U((0,1)%) (not independent, though)

e The LHS estimator is unbiased, E [firs] = E [v(X)].

Proof. By construction, each vector X = M has independent components.
Therefore it is enough to show that each component X ](Z) j =1,...,d, is uniformly

distributed in (0,1). Now, wj(i) = 7;(4) is the i-th component of a random permutation

of {1,..., N}, hence P (7r](.i) = k;) = % for all k = 1,...,N. Moreover, the conditional
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(@)

cumulative distribution function of X, given 77( D=k is

0, T < %
Py o (@) =P (X <z | m) = k) = INo—k+1, ae [554]
1, T > %

ie. XJ@ | F;i) = k has distribution U (k;Nl, %) and

(X( <x>:kZ:]bP(XZ <x|7rj(-i):k:>::v.

From the uniform distribution of each X@, it follows immediately that E [arps] =

E[§ X 9(XD)] = E[p(X)). O
Concerning the variance of the estimator fiy g, we mention the following two results.

Proposition 6.5 ([6]). Let Z = ¥(X), X ~ U((0,1)), with p = E[Z] < +oc and
0% =Var (Z) < +oo. The LHS estimator firns based on N points satisfies

0_2

N-1

Var (fius) <

This result shows that, asymptotically, Var (fiLns) is not worse than Var (fcmc) =

0.2

2~ since limy_;o0 Var (fiLns) /Var (ficmc) < 1. Moreover, LHS is very effective if the

function 1 (X) has an additive structure ¢(X) = u+ Zl 1 ¥j(X;) as the estimator firus
corresponds to a stratified estimator with NV strata on each functlon ;. For a general
R4 = R, let

ij(xj):/[ o l(w(xl,...,xd)—,u,) d$1...dxj_1d.%'j+1...d$d
0,1]¢—

and
d

~

PUX) =B W]+ ().

i=1
The function @@j can be interpreted as a conditional expectation @(Xj) =E[Y(X) —p| Xj]

and is often called the main effect of X; in 1. Then, it can be shown that:

Proposition 6.6 ([7,4]). For Z = ¢(X), X ~ U((0,1)%) and p = E[Z] < +o0, 02 =
Var (Z) < 400 and firgs, the LHS estimator for u based on N points satisfies

\Y _ .yadd
Var (fipns) = <¢N¢) o @) .

Moreover, if E [|Z|*] < 400, then VN (fipas — 1) N N(0, Var (v — ¢2)) as N — oo.
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This result highlights the amount of variance reduction that can be achieved by the
LHS estimator, compared to the CMC one. Unfortunately, the estimate of Var (fippg) in
Proposition is not computable and can not be used to build confidence intervals for
the estimator [i;pg.

To control the error in the LHS estimator, we proceed in a different way by gener-
ating few independent replicas of [irs and estimating its variance by a sample variance
estimator.

Algorithm 6.13: LHS estimator
1 Generate K independent LHS designs {X(i’j)}ij\i1 of size N, for j=1,..., K.
2 For each desing compute ,&g}ls = % ij\;l P(X @),
: . 2
~ K -~ ~ K ~ ~
3 Compute fiLns = % =1 M(LJJ)LIS and Gfys = oy 2j=1 (M(LJI){S - NLHS)

4 Output s and the confidence interval

fo = uns 12 8 s +1-cp




Chapter 7

Quasi Monte Carlo methods

As in the previous chapter, we consider the problem of computing the expected value
w = E[Z], of some random variable Z output of a stochastic model. We assume in this
chapter that Z = ¢(X), with X = (X1,...,Xy) ~ U([0,1]%), hence computing y turns
into computing a possibly high dimensional integral over the unit hypercube

= (X1, ..., xq)dxy ... dxg.
[0,1]¢

A Crude Monte Carlo estimator ficpas¢ that uses N iid replicas of X, achieves an error

Y X
| — fiomc| < C1a/2ar\/(%())

with asymptotic confidence 1 — «. The idea of Quasi Monte Carlo (QMC) sampling,
is to consider, instead, a purely deterministic sample {X(l), . ,X(N)} to improve the
rate 1/ VN, while keeping the simple structure of the sample average estimator figmc =
%Zfil (X @) with equal weights 1/N. Tt relies on the observation that a random
uniform sample does not seem to cover “uniformly” the hypercube and hopefully there
exist better designs that achieve this goal.

= T = T T T
1 ° o, s ° Ly . e ° 0. |
o ° ° ® o
YY) o e % °.
05l % e ®° et e, o
D f 5 ° i
RN POl Tt e
o®® © 0’ °
e o, o o ® ., < °
& o ° i °
0, v | ° L 0 L. \. ° L]
0 0.5 1 0 0.5 1
(a) random sampling (b)) QMC Sampling (Sobol se-
quence)

Figure 7.1: Comparing a uniform random sample (left) and a QMC sample with the same number
of points on the unit hypercube.
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Figure shows a random sample and a QMC sample, with 50 points each, on the
unit square.

The main notion behind QMC sampling is that of discrepancy. We introduce the
following notation: for a point y € [0,1]%, y = (y1,...,v4), we denote by [0, y] the hyper-
rectangle [0, y] = H;.i:l[o, yi], with volume Vol([0, y]) = Hle y;. For an arbitrary sample
P={XW, . .., XM of N points in [0, 1]%, hereafter called a point set, we introduce the
empirical volume estimator for Vol(]0, y]), based on the point set P.

oy _ #1XW € [0,y]}
Volp ([0,y]) =N Z 7y () N .

Definition 7.1. We call discrepancy function Ap : [0,1] — [~1,1] the function

N

d
Ap(y) = Volp([0, ) ~ Vol(10,5)) = 1> 10 (X?) ~ [T uy
j=1

=1

From Ap, we define the following measures of discrepancy of a point set P:

)

1/q
Ly-discrepancy: Dy y(P) = ||Ap|re = (/ \Ap(y)\qdy> , 1<q< oo,
[ d

Star-discrepancy: Dy (P) = ||Ap||re = sup |Ap(y)l.
ye[0,1]¢

Remark 7.1. There is actually nothing special in choosing only the rectangles [0,y], so
one can define also the so called extreme discrepancy

Dn(P) = sup [Volp([z,y]) — Vol([z, y])|-
y,zE[O,l]d
z<y
It can be easily shown that D% (P) < Dn(P) < 24D%(P). The left inequality is obvious
and the right one follows from the observation that a rectangle [z,y] can be written as a
composition (union/intersection) of 2% rectangles of the type [0, z]. Hence, it is enough
to study only the star-discrepancy.

The reason why the discrepancy plays an important role in the study of QMC quadra-
ture formulas follows from the famous Koksma-Hlawka inequality, which we illustrate first
in dimension d = 1. We start by deriving the following identity.

Lemma 7.1 (Zaremba’s identity). Let ¢ : [0,1] — R be an absolutely continuous
function with integrable derwative and let P = {XM ... XN be any point set in [0, 1].

Then
) 1
/d)dw— wﬂ%:/wwmﬂw@ (7.1)
i=1 0

1
:/0 V' (y)Ap(y) dy — Ap(1)(1).
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Proof. Using the identity ¢ (z) = ¥ (1) — fml Y’ (y) dy in the left hand side of (7.1]), we have

1 1 X ~ L 1 X 1M /
/sz)dz—NileX y=om-[ ] w<y>dydm—N;¢<1>+N;/X(nwy)czy

=Jo J§' ¥ () dzdy =Jo ¥ W)L,y (XD)dy
! 1Y .
= /0 V' (y) [N D Ay (X9 - y] dy
i1

1
- /0 () Ap(y) dy.

The second inequality follows immediatlely by observing that Ap(1) = 0 for any point
set P. O

From the Zaremba’s identity, we derive easily the Koksma-Hlawka inequality:

1 1 N '
| ) o= 5 3 w(x )

Inequality ([7.2)) shows that the quadrature error is proportional to the discrepancy mea-
sure ||Ap||z,, provided that ¥/ € L,(0,1), ie. ¢ € WHP(0,1). In particular, if ¢ is
integrable (or 1) has bounded total variation) then

1 LN
/wa)dx—N;wX )

The previous analysis extends with same care to the multi-dimensional setting. We intro-

1 1
< ¥l AP,  Vpg €l 0], PR )

< [[¥llrvDy (P).

duce the following notation: let u = {uy,...,ux} C {1,...,d} be a subset of dimensions
(without repetition) and set |[u| = k. For & = (z1,...,24) € [0,1]¢, we denote by
Ty = (Tuy,-- -, Tu,) € [0,1]% and z = (xy, 1) the vector with components z; = z; if j € u

and z; = 1 if j ¢ u. With this notation at hand, the Zaremba’s identity generalizes to
the multi-dimensional case as follows.

Lemma 7.2 (Hlawka’s identity). Let ¢ : [0,1]7 — R be an integrable function with
integrable mized first order derivatives of any order, and let P = {X(l), . ,X(N)} be an
arbitrary point set in [0,1]%. Then

N
1 , oluly
N - [ @) de (—1) (@ )AP(@0, 1) da
N Zz; [071]d UC{;,d} [071]|u\ amu
where 2% _ Ok 1s o mixed first order derivative.

oxruy Ba:ul...axuk
Proof. By induction on d, one can prove the following identity

alalqy)

[mu,l] 8$u

@)= Y (= (yu, 1) dya,  Va €[0,1)%, (7.3)

uc{l,....d}
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which generalizes the d = 1 identity ¢ (z1) = (1) — [ L oY () dy already used in the proof

T 321

of Lemma In ([7.3]) we have used the convention that for u = ‘“l f (@] gi:l Y(Yu, 1) dyy =
¥(1,...,1). Then

1 i
NS wx ) - /[ V(@) do

prt 0,1)d
L Z / M 1) d / / O 1) dyud
= yua Yu yu» Yu AT
uc{l,..d} x 1] 0,14 J[#u,1] Oy
:f[0,1]\UI %w(y“71)1[0,yu](x‘(li))dyu :f[0,1]\UI Jio,yul %‘ﬂw(yU7l)dwu dyu
u N
= e [ B ) (RSt () - Vo0, )
= ul ox yu7 N [0,yu] u s Yu
uc{l,...d} [0,1] u i=1
A’P(yuvl)
O

From the Hlawka’s identity, the multidimensional version of the Koksma-Hlawka in-
equality follows. Let us define the following norm

a‘ul p p//p 1/pl
kup,p’ = (/ > (Yu, 1) dyu>
uc{;,d} o1l |0
Then, the multidimensional Koksma-Hlawka inequality reads
1 1 1 1
[0’1](1 Z H pr H Hq q D q p/ q/

provided |4, < +00. In particular, if ||¢)]|1,1 < 400, then

1 & .
z) da — ;zp(x@)

Again, this inequality shows that the quadrature error is proportional to the star-discrepancy
D} (P) provided v has integrable mized first order derivatives.

< [[¥ll1,1 DN (P).

[0,1]4

7.1 Low discrepancy sequences and point sets

There exist constructions of point sets P = {X® ..., XM} < [0,1]¢ that have star-
% . It is widely believed that this result

is sharp, i.e. there do not exist points sets that achieve a better bound. In general,
these constructions do not lead to a nested sequence of points, that is, the point set
Pl = {X(l), e ,X(M)} with M > N does not contain P, in general.

discrepancy as low as Dy (P) = O(
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For the nested point sets, i.e. point sets P = {X(l), . 7X(N)} that are generated
as the first N points of an infinite sequence S = {X ™), X} the lowest achievable

star-discrepancy is slightly worse, namely D3, (S) = O <M). In view of these results,
we give the following definition.

Definition 7.2. (low discrepancy sets).

e A family P = {Pn}nen of non-nested point sets Py = {XD ... XM} < [o,1]¢
. . . . . * log N d—1
is called a low discrepancy family of point sets if D}(P) = O (%);

e A point sequence S = {X O X@ } < [0,1]%is called a low discrepancy sequence
if D3 (8) = 0 (15).

From the above definitions and considerations, we see that a QMC quadrature for-
mula can achieve convergence rate 1/N up to logarithmic terms (which however grow
exponentially in the dimension!), provided the integrand function has integrable mixed
first derivatives. Before presenting some common low discrepancy sequences/points sets,
we give two important clarifying examples:

Example 7.1. Consider the family P = {Pn}nen of point sets Py = {X1) ... XN}
with X % U([0,1]9), i.e. a random did sample. Then, |Ay(y)| = |\//81([0,y]) -
Vol([0,y])| is the error of the sample average estimator of Vol(]0,y]), which decays as
0] (%), in a probabilistic sense. We conclude that the family of random iid point sets

has not low discrepancy.

Example 7.2. Consider the family P = {Pn}nen of point sets given by reqular lattices

(see figure

k 1/2 k 1/2
PN—{<1+ /7..-, at />7O§kjgm_17]_1avd}’ N:md

m m

Figure 7.2: Regular lattice.
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Ford =1, it is easy to see that D} (P) = ﬁ = ﬁ, hence P has low discrepancy. On
the other hand, in dimension d > 1 we have

1 1
DN(P)= sup |Ap(y)| > sup |[Ap(t,1,...,1)]=—=——.
V() ye[(),l]d’ W) te[O,l]’ ( ) 2m  2N1/d

We conclude then that the family of regular lattices has not low discrepancy in dimension
higher than 1.

Van der Corput-Halton sequence

Let b > 2 be an integer. Any natural number n € Ny can be expanded in a b-adic

expansion n = ng + n1b 4+ nob® + . ... The radical inverse of n is defined as
_no ., m

Obviously ¢y : Ng — [0,1). In 1D, the b-adic Van der Corput sequence is

(,Db(()), Wb(l)a Qob(Q), e

For example, for b = 2, the Van der Corput sequence is 0, %, %, %, %, %, %, %, e

The Halton sequence generalizes this construction for d > 2: Let by,...,b3 > 2 be
integers pairwise relatively prime. Typically bq,...,by are taken as the first d prime
numbers. Then, the Halton sequence is

S = {X(n)v n e NO}? X(n) - ((pb1 (n), Pba (n)7 s 7@@1(”))

and achieves the optimal bound on the star-discrepancy D7} (S) < c(d)w.

Hammersley point set

It is derived from the Halton sequence by taking Py = {X(©) ..., X(N=D} with X =
(%, by (N)y ... ,gobd_l(n)). The family P = {Px} of Hammersley point sets is non-nested

d—1

and achieves the better bound D} (P) = c(d)%

Rank-1 lattice point sets

Let N € N and g € N%, g = (g1,...,94) such that g; has no factor in common with
N. (Typically N is taken as a prime number.) Then the rank-1 N-lattice point set with
generating vector g is defined as

o= {¥}

where {-} denotes the fractional part. Figure shows an example of lattice point set.
Good choices of g lead to low discrepancy non-nested point sets.
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Figure 7.3: Lattice point set with N = 14 and g = (3,5)

(t-m-d)-nets and (t-d) sequences in base b

Let 0 <t <m € Nand b > 2. A (t-m-d)-net in base b is a point set Py consisting of
N = b™ points such that each elementary rectangle of volume b'~™,

d
N aj—l Qaj o )
_Hl[ ) =t

with p; +p2 + ... +pg = m — t contains exactly b’ points. E.g. if t = 0, each elementary
rectangle of volume b~™ contains exactly 1 point.

Example 7.3. A (0-3-2)-net in base b = 2 is a point set with N = 23 = 9 points, such
that each elementary rectangle with volume 2~ (M=t = 973 — 1/8 contains exactly 2t =1
point. Figure shows graphically this property.

A (t-d) sequence in base b is a sequence S = { X, X} such that for any m > t,
every block of b™ points {X(@™) . XD =D1 "¢ ¢ N is a (t-m-d)-net in base b.
The star-discrepancy of a (t-m-d)-net satisfies D3 (P) = O <bt%) and similarly

for a (t-d)-sequence D} (S) = O (btW). Famous (¢-d)-sequences are those of Sobol,

Niederreiter and Faure. For a description of their construcion we refer to [2].

7.2 Randomized QMC formulas

Let us consider a point set Py = {X(l), e ,X(N)} and the QMC quadrature formula

N
QMC—NZ

The question is how to estimate the error | —fiqumc|. Since the points X (@) are not random
iid, we can not use a variance estimator or a CLT as in the Monte Carlo estimator. On
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Figure 7.4: Example of a (0,3,2) net in base 2. Each elementary rectangle of volume 272 contains
exactly 20 = 1 points.
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[ ]

Figure 7.5: Randomized QMC.

the other hand, the error estimates in ([7.4)) can not be really used in practice to provide
a bound on the quadrature error as they involve quantities such as the discrepancy or
TV-norm of the integrad that are not known and can not be easily estimated.

An easy idea to obtain error bounds is to randomize the QMC formula. Let U ~
U0, 1]%). If Py = {XD, ..., XM is a low discrepancy point set, so is

PY={{xXW+U} {X®+U},... (XM +U}

where the same shift is applied to all points and again {-} denotes the fractional part. Py
is called a randomly shifted point set. We could then compute /‘81)\407 j=1,...k, for
few randomly shifted point sets and average the obtained results. The resulting randomly
shlftgd QMC estimator is then fignc = 1 Z] LA Ql)\/IC Since UW) ~ 1([0,1]%), so is
{(XO + UL} for any i = 1,...,N. Tt follows that jiquc is an unbiased estimator

of p = E[¢]. Moreover, since Mgl)v{c are independent, the variance of the estimator is

2 —
Var (figmc) = UQ € with O'QMC =E [(/‘81)\/10 u)z} =0 ((log]\]f\,#) hence, very small,

in general, and can be estimated by the standard sample variance estimator 6%MC =

123 1(NQMC /:LQMC)Q-
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Algorithm 7.1: Randomly shifted QMC.

1 Generate point set Py = (X1 ..., X(NV)

2 Generate UV, ... U® X Uu([o, 1]9);

3 For j =1,...,k, compute ﬂgl)\/lc =+ SN ({ XD + U,

4 Compute fiqumc = % Z§:1 ﬂgl)wc as well as 622MC = ﬁ Z?:l(ﬂgz)wc — figme)?;
5 Output figmc as well as a 1 — a confidence interval

N oQMC - oQMC
I, = mQMC — lea/ZQi\/E7 Homc + lea/QQi\/E




Chapter 8

Markov Chain Monte Carlo

Let 7w be a given probability density function on a state space X C R” and ¢ : X — R an
integrable function with respect to 7. We consider the goal of computing p = E,[¢)] =
[, () 7()da.

If we can generate independent replicas of Z ~ 7, then p can be computed by Monte
Carlo or any improved version using variance reduction techniques. Assume, however, that
sampling directly from 7 is not viable either because the expression of 7 is too complicated
and possibly high dimensional, or because 7 is known only up to a multiplicative constant
and computing the normalization constant might be too expensive, if not impossible.

Example 8.1 (Bayesian statistics). Let X = (X1,...,X,) be an iid sample from a para-
metric density g(x | 0). Then the joint density of X given 0 is g(X | 0) =], 9(X; | 0)
and we want to estimate 0 from the sample X. In the Bayesian paradigm, 0 is thought
as a random variable itself, with prior density mo(0), which summarizes any prior in-
formation on 0 in the absence of data. Then, the posterior density of 0 given the data

18
1

Z(X)
with Z(X) = [ g(X | 0)m0(0) dO which is often unknown and difficult to compute.

m(0) = 9(X [ 0)mo(0)

Example 8.2 (Statistical physics). Let x € X' be a configuration of a physical system and
X the configuration space. Let H : X — R be an energy function and T the temperature.
Then the probabilily density function of finding the system in a given state x is

(z) = %exp {—i(g) }

where k is the Boltzmann constant and Z = [ e H@)/KT g s the partition function, often
difficult to compute.

The idea of Markov chain Monte Carlo (MCMC) is to construct an ergodic Markov
Chain {X,, }, ~ Markov (A, P) on X that has 7 as its invariant distribution. Then we can
approximate p = Ex[1] by the ergodic estimator

1 N
ANNC = 5 D w(X) (8.1)
i=1

89
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or
1
~MCMC
KN, Ny :N§ Y(Xitn)
i=1

if we want to “cut” out the first part of the chain, which might be too sensitive to the
initial state Xy ~ A of the chain (this operation is usually called “burn-in”). We will see
that constructing a Markov Chain with a given invariant distribution is not so difficult
and can be achieved by the well known and celebrated Metropolis-Hastings algorithm.
Before discussing such algorithm, however, it is worth recalling some basic concepts in the
theory of Markov Chains. We will do so in the finite state space case in the next section
and briefly mention generalizations to general state spaces in Section [8.2

8.1 Markov Chains on discrete state spaces (review)

Let X = {x1,22,...,24} be a finite (d < c0) or countably infinite (d = co) state space,
A = {A1,Ae,...,A\q} a probability mass function on X, with \; > 0 for all i = 1,...,d,
Y, Ai=1,and P= {Pij}gj:l a stochastic matrix, such that Pj; > 0forall¢,j =1,...,d
and } 3, Py =1foralli=1,...,d.

We consider hereafter a homogeneous Markov chain {X,,, n € No} ~ Markov (X, P)
having initial state Xy ~ A and transition matrix P independent of n (See Chapter
for the definition of a Markov Chain). To highlight the dependence of the chain on the
initial distribution A, we denote by Py(A) the probability of an event A under Xy ~ A.
If A =9,,, i.e. P(Xp=a;) =1, we use the notation P, or simply P;. We introduce also
the following notion

Definition 8.1 (Stopping time). A random variable T is called a stopping time if the
event {T < n} depends only on Xo,..., Xy, i.e. the event {T < n} is measurable with
respect to the o-algebra o(Xo, ..., X,) generated by Xo, ..., X,.

Typical examples of stopping times are the following: given a subset A C X
e hitting time of A: 74 =inf{n >0: X,, € A4},

e return time to A: o4 =inf{n >0: X, € A},

e successive return times to A: O'I(f) = inf{n > O'I(f_l) : X, € A}, for k > 1,
with the conventions that ag]) =0, 74 =+ if X,, ¢ A for any n, and aj(f) = 400 if
X, ¢ A for any n > O'Xc_l). From the definition of a homogeneous Markov chain, the

following Markov proprety follows.
Lemma 8.1. Let {X,, n € Ng} ~ Markov (A, P).

e (Weak Markov Property). Conditional on Xy, = xi, { Xmin, n € No} is Markov (dg,, P)

and independent of {Xo, ..., Xm}.

e (Strong Markov property). Let T be a stopping time of {X,}. Conditional on T <
+oo and Xr = x;, {Xr4n, n € No} is Markov (0, P) independent of Xy, ..., X,.
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Given {X,,n € Ng} ~ Markov (X, P), let P("™) denote the n-step transition matriz,
ie. P
e. Py
Pi(f) does not depend on m. Clearly P() = P and for n > 1,

=P (Xpm4n =25 | Xin = ;). Thanks to the homogeneity of the Markov chain,

Pz(]n) = ZP(Xern = Ty | Xign-1 =24, Xon = '1"7,) P (Xernfl = Ty ’ Xm = 331)
4
=Y PPy,
4

Introducing the matrix multiplication (P?);; = > ¢ PiePrj, we see that P = P More
generally, P("*™) = P"P™ which is often referred to as the Chapman Kolmogorov equa-
tion.

We may also ask what is the probability distribution of X, at any given n > 0, i.e.

the probability mass function 7" = (77?”\, e ,ﬂ'g’)\), taken as a row vector in RY, with
7'('?’)\ =P\(X,, = ;). It is easy to see that

TI';L’)\ = ZP(Xn = T; | Xn—l = xf)P(anl = l‘g) = ZPgiﬂ'gil’/\.
l L

In matrix notation,
g = g bAp — \p7,

If we denote by M (X) = {(p1,...,pa) € RT: p; >0, 3. p; = 1} the set of probability
mass functions on X, then the transition matrix P can be interpreted as an operator
P : M;(X) — M;(X) acting (to the left) on probability measures. We may ask if such an
operator has a fixed point.

Definition 8.2. A probability mass function m € M;(X) is called invariant distribution
for P if tP =m.

Hence, for a Markov chain {X,} ~ Markov (A, P) whose initial state Xo ~ m is
distributed as the invariant distribution 7, it follows that X,, ~ « for any n and the
chain is said to be “at equilibrium” or “at stationarity”. Observe that, if an invariant
distribution 7 exists, then it is a left eigenvector of the transition matrix P, associated
to the eigenvalue \; = 1.

Consider now the set F(X) = {¢ : X — R} of measurable functions on X, which
can be identified with R?. We represent any function ¢ € F(X) as a column vector
©=(p1,...,04)" € RL Given ¢ € F(X), we can define the following function g € F(X):

gi=E [SO(XN-H) ‘ Xn = ‘TZ] = ]Eﬂfz' [SD(Xl)]v i=1,...,d,

the last equality being justified thanks to the Markov property. Clearly we have g; =
Z;-lzl ()P (Xpp1 =2, | Xpy=25) = Zj ¢; P;; which, in matrix notation gives

g = Pop.



92 CHAPTER 8. MARKOV CHAIN MONTE CARLO

Hence, the transition matrix P can also be interpreted as an operator P : F(X) — F(X)
acting (to the right) on functions. Observe, in particular, that the constant unit function
¢ =(1,...,1) € F(X) satisfies

(Ppli=) 1 Pj=1=¢;
j

since P is a stochastic matrix, and is therefore a right eigenvector of P corresponding to
the eigenvalue A\; = 1. This argument shows that \; = 1 is always an eigenvalue of P.
The eigenvalue A\; = 1 turns out to be the largest in absolute value.

Lemma 8.2. Given a stochastic matriz P € R>?, let (\,v) be a left eigenpair of P, i.e.
vP = v, with [[v][p =37 lvj| < oo. Then |A] < 1.

Proof. We have

Aoil =)o Pl < )| Pji.
i i

Hence

A il <D0 ol Pi = i1 > P = vl
i i J i j

——
=1

which implies [A| < 1. O

It follows that an invariant distribution 7 is a left eigenvector of P corresponding
to the largest (in absolute value) eigenvalue. The iterates 7™* = AP™ correspond to
power iterations so we should expect 7 to converge to 7 as long as A\; = 1 is a simple
eigenvalue and there are no other eigenvalues with absolute value 1.

In practice, in MCMC algorithms, we construct a Markov Chain so that the tar-
get distribution we want to sample from corresponds to an invariant distribution of
the Markov Chain. (This also guarantees existence of an invariant distribution in the
infinite dimensional case). However, it remains the question whether such invariant
distribution is unique (A\; = 1 is simple) and whether the second largest eigenvalue
B = max;—z . q|\i(P)| in absolute value is strictly smaller than one as the spectral gap
1 — 8 will dictate the speed of convergence of 7™ to 7. We postpone this discussion to
Section [R1.2

We now address the important case in which the transition matrix P features some
symmetry properties. This will be indeed the case for the most popular MCMC algo-
rithms, namely the Metropolis-Hastings ones. Let P be a transition matrix with invariant
distribution 7, and {X,}_, ~ Markov (7, P) a Markov chain at equilibrium. Let us look
at the chain {Y,, = Xy_,, n=0,..., N}, called the time-reversal of {X,,n=0,...,N}.
It is not difficult to see that {Y,,}2  is also a Markov chain. Indeed, assuming that
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IF’(XN_n+1 =T, 4y, XN = xg) > 0, we have forany n=1,..., N
P (Y=g, | Yo=2gig, -, Yn1=Ti,_,)
=P (XN-n=2i, | XN =Tig, -, XNnt1 = Ti,_,)
 PXNn =T, XN = T4)
P(XNont1 =Tin_yy-- XN = Tj)
PiyioPigiy - - - Piin P (XN—n = Ti,,)

]Diliof)izh s Pin—lin—Q]P) (XN*n+1 = xin—l)
7Tin ~
= in’in_l . = Pin—lain'

In—1

Hence, the probability P (Yn =z, | Yo=Tip,...,Yp1 = 95in_1) of Y,, given the past de-
pends only on i, and {Y;,}_, is a Markov chain {¥;,}"_, ~ Markov(r, P) with tran-
sition matrix -

5 J

P = sz;@

Definition 8.3. Let P be a stochastic matrix, m an invariant distribution of P and
{X,} ~ Markov (7, P) a Markov chain at equilibrium. We say that { X, }n>0 is reversible
if for all N > 1, {Xn_,}N_ ~ Markov (, P).

Definition 8.4. A stochastic matriz P and a probability distribution A are said to be in
detailed balance if \;P;; = X\;jPj; for alli,j.

The following Lemma establishes the relation between the detailed balance condition
and the reversibility of the chain.

Lemma 8.3. Let P be a stochastic matriz and w a distribution on X. (P, ) are in detailed
balance if and only if w is invariant for P and {X,} ~ Markov (m, P) is reversible.

Proof. Suppose first that (P, m) are in detailed balance. Then, from direct calculation
()‘P)i = ZWiji = Zmpz‘j = Wizpz‘j = ;.
J J J

Hence 7 is an invariant distribution. Moreover, the detailed balance condition directly
implies P = P, hence the chain {X,,} ~ Markov (7, P) is reversible.

The opposite implication is immediate: if 7 is invariant for P and {X,,} ~ Markov (7, P)
is reversible, by definition P = P which is equivalent to the detailed balance condition. [J

The detailed balance is a useful condition to verify that a certain distribution w is
invariant (often easier than verifying 7P = 7). Intuitively, it says that under m, the
probability of going from ¢ to j is the same as the probability of going from j to ¢. Another
way to interpret the detailed balance equation is the following. Let us define the Hilbert
space 2 = {p : X - R: > .¢m < +oo} with inner product (¢,v), = >, pitimi,
where 7 is in detailed balance with P. Then, the matrix P is symmetric with respect to
such an inner product (the corresponding operator P : £2 — (2 is self adjoint). Indeed,

(Po, ) =Y _mi(Po)ithi = Y miPijpjhi = Y mi Piitbieps = (o, P
i 0 0
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Hence, if (P,m) are in detailed balance, all eigenvalues of P are real and, at least in
the finite dimensional case, the matrix is diagonalizable by an ¢2-orthonormal set of
eigenvectors.

8.1.1 Metropolis-Hastings algorithm in discrete state spaces

We come back to the original goal of constructing a Markov chain {X,,} ~ Markov (), P)
on X which has a given invariant distribution 7. We assume m; > 0 for all i. (If 7; =0
for some j, we can just remove the corresponding state x; from the state space.) The
Metropolis-Hastings is probably the most popular algorithm used for this purpose. It
constructs a transition matrix P which is in detailed balance with the target distribution
7. The idea is the following;:

e Take a stochastic matrix () with the condition that Q;; = 0 <= Qj;; = 0. Q is
called the proposal. In general, ) will not have 7 as invariant distribution so we
have to “correct” it.

e For any i,j5 € {1,...,d}, define the acceptance probability

T Qji

a(t,j) =min< 1,
(i,9) { miQij

The Metropolis-Hastings algorithm then reads:

Algorithm 8.1: Metropolis-Hastings

Given: \ (initial distribution), @ (proposal), 7 (target distribution)

1 Generate Xo ~ XA for n =0,1,..., do

2 Generate candidate new state Xn+1 ~Qx,

3 Generate U ~ U([0, 1])

4 | if U<a(X,,X,1) then

5 ‘ set Xpi1 = Xpng1 // X, accepted with prob. a(X,,Xni1)
6 else

7 ‘ set X1 = Xn me rejected with prob. 1 —oz(Xn,Xn_H)
8 end

9 end

. . o1 . . . . . T4
If @ is symmetric, then the acceptance probability simplifies to (i, j) = min {1, ?Jz}

In this case, step || of the algorithm will always accept Xn+1 if the probability mass of
the new state T sy 18 higher than the probability mass of the old state 7x,. In case
where T < TXns the new state is accepted only with probability 7 K /7x, . Hence,
if TRt K TXos the new state has a high probability of being rejected. Notice that in
Algorithm only the ratio T % /7x, appears. Therefore, the algorithm is applicable
also in the case of a un-normalized target distribution.

We may ask what is the transition matrix associated to the Markov chain {X,},
generated by The following Lemma answers the question.
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Lemma 8.4. Let o =3 a(i, j)Qij. Then, the transition matriz of the chain produced

by the Metropolis-Hastings algorithm is given by
Pij = (i, j)Qij + (1 — ) dy;. (8.2)
Proof. For j # i, we have
Pj=P(Xpnt1=7 | Xn=1) :P<Xn+1 =, Xns1 = Xnp1 | Xn = l)

:]P’<Xn+1 = Xop1 | X1 = 5, Xn = 2) P(Xnﬂ — | X = z>

On the other hand, if j = i,

:P(Xnﬂ =i, X1 = X1 | X :i) +P(Xn+1 4 X1 | Xon :i)

=a(i,i)Qii + » P (Xn—i—l = s Xpmt # Xng1 | X = Z)
J

= a(i,)Qu + »_(1—a(i,5)Qsj
J

O((i, Z)Q” + (1 — 04:)

O]

The quantity o) = Zj a(i,j)Qi; represents the overall probability of accepting a
new state when being in state i. If such acceptance probability is very close to 0, with
high probability the chain will not move, hence the random variables { X}, },, will be highly
correlated, which is not desirable for constructing the ergodic estimator . A very high
acceptance probability might not be desirable either. Consider the two possible strategies:
a) jump only to neighboring states with high acceptance rate; b) jump to far away states
but with lower acceptance rate. It is not obvious which strategy is more effective in
decorrelating (mixing) the chain. Rule of thumb says that the average acceptance rate
should be around 0.2.

That Algorithm produces the right chain, i.e. a chain that has invariant distri-
bution 7, is shown in the following Lemma and is a consequence of the fact that the
transition matrix P in is in detailed balance with 7.

Lemma 8.5. The transition matriz P in (8.2) is in detailed balance with 7. Hence, the
chain produced by Algorithm is reversible and has m as invariant distribution.

Proof. We have to show that m; P;; = m;Pj; for all ¢,j. This is obviously true for i = j.
Consider then i # j. If m;P;; = 0, then P;; = 0 which implies @;; = @5 = 0so Pj; =0
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and 7Tz'Pij = 7Tj1Dji. If 7TZ'Pij 7& 0, then Pij ?é 0 so Qz'j, le' 7& 0 and
o ) 7:0 i
miPij = mia(i, j)Qij = miQij min {17 JQﬂ}
i Qij
= min {m;Qij, 7;Qji }
. UEASAY ..
= mln{ le‘J‘ y 1} Wiji = 7Tj0((], Z)jS = 7I‘ijZ'.

8.1.2 Convergence results

Let {X,} ~ Markov (A, P) be a Markov chain with invariant distribution 7. We want
to understand under which conditions on (A, P), m is the unique invariant distribution
and the sequence 7™ converges to 7 as n — co. Three concepts are key to answer this
question: irreducibility, reversibility and aperiodicity.

Definition 8.5 (Irreducible chain). Let P be a transition matriz on X.

o We say that a state x; € X' communicates with another state x; € X if P;y(X,, =
xj for some n) > 0. Equivalently, there exists n > 0: Pi(f) > 0.

o The transition matriz P is said to be irreducible if every state communicates with
every other state, i.e. for all i, j, there exists n > 0 such that Pi(]ﬁ) > 0. A Markov
chain Markov (X, P) is irreducible if P is so.

An equivalent definition of irreducibility is the following;:

Definition 8.6 (Irreducible chain). Let P be a transition matriz on X .
o A state x; is said to be accessible if Pi(o; < 00) > 0 for any x; € X.
o P is irreducible if every state is accessible.

In the definition of accessible state, o is the return time to the state x;. It is easy to
see that the two definitions are equivalent. Figure shows an example of an irreducible
chain (left) and a reducible one (right).

2 2 4
o ° °
2
T LN i
° 3 ° °\_/'—>'
2

Figure 8.1: Left: irreducible chain — every state communicates with every other state. Right:
reducible chain — {4, 5} is an absorbing class and does not communicate with {1, 2, 3}.
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We now turn to the notion of recurrence. Given a state x; € X we denote by V; =
> neo I{x, =z, the number of visits to x;. Notice that

CE S ey = DB =) = S0P
n=0 n=0 n=0

Definition 8.7 (Recurrent state). A state x; € X is sait to be recurrent if P;(X,, =
x; infinitely often ) = 1, or equivalently P;(V; = 0o) = 1. It is transient if P;(V; = oc0) = 0.

An interesting fact is that a state x; is either recurrent or transient, i.e. it can never
happen that P;(V; = o) € (0, 1).

Lemma 8.6. A given state x; is either recurrent or transient. Moreover,
e 1, is recurrent < Pi(O'Z‘ < oo) =1 <= Ez[Vz] = o0y
e x; is transient <= Pi(o; <o0) <1 <= E;[Vi] < oc.

Proof. Let O'Z-( ") be the r-return time to the state x;, l.e. O'Z( ) = inf{n > az(rfl) : X = wi},
(1)

with o,” = 0. Then

Pi(V; >r+1) =Pi(o!

Pi(o" (D) _ 50 < 4 o)

=Pi(o" - <’”><ooy ) < 00)Pi(0") < o0)
Pi(o

Pi(

o0) (by the strong Markov property)

Hence

Pi(V; = 00) = lim P3(V; > r) =

r—00

0, <= Pi(o; <o0)<1,
1, <= Pi(oi<o0)=1.

Moreover

C <— Pi(o; 1,
:Z]P)i(vi>7"): < 00, (0i < @) <
o0, < Pi(O'i < OO) =1.

O]

If all the states communicate with each other, i.e. the chain is irreducible, it is easy
to see that if a chain has a recurrent state, all the states are recurrent.

Lemma 8.7. Let {X,} ~ Markov (A, P) with an irreducible transition matriz P. Then
either all states are transient or recurrent.

Proof. Suppose z; is transient and take z; # x;. Since P is irreducible, there exist
n,m > 0: Pi(jn) > 0 and P](Zm) > 0. Then for all » > 0,

n+m+r r r n
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On the other hand, being z; transient, we have E;[V;] < co and

o0 o0

1 (m+n+r) 1
BV =3 PP < — L S Pt < LRV < o0
) ) w (m) pl ’
r=0 Pj(zm Pz(Jm r=0 szm F)z]m)
hence, from the previous lemma, x; is also transient. O

The previous result justifies the following

Definition 8.8. An irreducible Markov chain {X,} ~ Markov (X, P) is said to be recur-
rent if it has at least one recurrent state (equivalently if every state is recurrent).

Example 8.3. Consider a random walk on Z:
PXpt1=i+1| X,,=i)=p, P(Xpr1=i—-1]| X,,=i)=qg=1—p.

If we start at Xog = 0, we can return to zero only after an even number of steps, say 2n,
with n moves to the right and n to the left. Hence

(2n) _ 2n n.n __ (277,)' n (4PQ)n
Py = <n>p = 2 (pg)"™ ~ 5

where we have used Sitrling’s formula n! ~ /2mn(n/e)". Hence

N ) | =00, forp=gq=3,
EMQiP&J{ 2
— < oo, forp#q.

We conclude that {X,} is recurrent if p = % and transient otherwise. By similar calcula-
tions, on can show that a symmetric random walk on Z? with

P(Xn1=(@+1,5) | Xo=(0,)) =P (Xn1= (0,5 £1) | Xn=(i,))) = i

is also recurrent, whereas a symmetric random walk on Z3 is transient.

For an irreducible recurrent Markov chain {X,,n > 0} on an infinite countable state
space X, we can further distinguish two cases:

Definition 8.9. An irreducible Markov chain {X,,} ~ Markov (X, P) is said to be positive
recurrent (or simply positive) if E;[o;] < oo for at least one state x; € X and null
recurrent otherwise.

Again one can show that if there exists a state x; € X for which E;[0;] < oo and the
chain is irreducible, then E;[o;] < oo for every state z; € X'. The property of recurrence /
positive recurrence is key to obtain existence of an invariant measure as the next theorem
shows.

Theorem 8.8. Let P be irreducible and recurrent. Then P has a unique invariant mea-
sure (not necessarily finite) up to a multiplicative constant.
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Ok

Figure 8.2: The invariant measure corresponds to the expected time spent by the chain in each
state, between two consecutive visits of a fixed (recurrent) state xj.

The invariant measure can be constructed in the following way. Let us fix a (recurrent)
state z; € X and consider ﬁf = Eg Z’“:Bl 1{x,=z;}| which corresponds to the expected

number of visits to x; between two consecutive visits to zx. Then #* is an invariant
measure and is unique up to a multiplicative factor. Notice that ﬁllj =1.

Proof of existence. Observe first that for all i # k,

7k =Ky

o—1
Z ]I{Xn-p-r:xi}]
n=0

Ok
Zn{xn:xi}] “E,
n=1

or—1

n=0

co 2k
l.e. s

invariant measure. More precisely, ﬁf can be equivalently written as

is invariant by a +1 right shift of the chain, which basically shows that ¥ is an

0 o
s n{xnw,w}] S (Xt — o > )
n=0 n=0
o0
= Z ZPk (Xnt1 =z, 01 > n, X, = x5)
7 n=0

= ZZ Pk(Xn—i—l =x; ‘ Xn = Zj,0k > TL) ]P)k(Xn = X;,0k > n)
7 n=0 e

=Pj; since {0 >n} depends only on Xp,...,Xn

[o.¢]
= ZPjiZPk(Xn =x;,0f > n) = Zﬁfpjz
j J

n=0

@
(S
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Proof of uniqueness. Let A be another invariant measure. Then for j # k,
Aj = Z iy Piyj
i1

17k
=\ D, M D> Pei Py + D NiyPiiy Poyj =
Py (X1=;,0%>0) azk i1,527k

Pr(Xo=xj,01,>2)
o0
> A Y Pr(Xn = 5,00 > n) = M)
n=0
Moreover, since P is irreducible, there exists n > 0 such that Pj(g) > 0. Hence

AN g Ai k) p) Ai k) p) ~k
0="2-ab =N (S -ak) P > (-8 ) P = N < Nk,
TS (Ak 7“) =) o

It follows that \; = )\kﬁf for all j, therefore A\ oc 7*. ]

k

The measure 7" is not necessarily finite. Indeed

D oar =) Pu(Xn=xi05>n) = Pip(ox > n) = Eifoy]
i n=0

i n=0
hence we see that ¥ is finite if and only if P is positive recurrent.

Theorem 8.9. Let P be irreducible, then P has an invariant distribution (invariant
probability measure) 7 if and only if P is positive recurrent. Moreover, in this case, m is
unique and s given by

ik 1

T

" Eilow]  Eilod]
(The last equality follows by simply taking k =1.)

Consider now an irreducible and positive recurrent Markov chain { X}, },, with invariant
distribution 7 and an integrable function ¢ : X — R with respect to 7, i.e. E;[¢)] < oo.

We ask whether i = E.[¢)] (ensemble average of 1)) can be computed as a temporal average
over only one realization of the chain. The following result holds.

Theorem 8.10 (Ergodic theorem). Let {X,} ~ Markov (A, P) with P irreducible and
positive recurrent, with invariant distribution w. Then, for any function ¢ : X — R, such
that B[] < oo, it holds

for any A € My (X).
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Tif

Figure 8.3: Renewal cycles for an irreducible and positive recurrent Markov chain.

Idea of the proof. Let O"(:) be the r-return time to the state x, with 0,(60) =0and Vi(n) =
(X;),

r=1,...,Vk(n). By the strong Markov property, Y, by Y, for all » > 2. Hence by the
strong law of large numbers (SLLN)

(
n—1 .. . o
> j—1 L{x,=q,) De the number of visits to z) before time n. Set Y, = Zjia,i”lﬁrl

1 Vi(n)
Y, S E[Y,
Ve(n) =1 = ]
and
n Vi (n) n
1 Y1 Vk(n) —1 1
- X.)= = Y, +— X E Y,
j=1 ~N —— r=2 J_UVk(")_H
—0 — Tk k
—E[Yr] ~
—0
Moreover, E [Ya] = Y, i(z;) 7k = ?I,CEW [¢)] hence the result. O

The interval [a,(;_l) + 1, U](:)] is called a renewal cycle. The fact that the chain re-
generates itself every time it visits a given state k is what allowed us to use the SLLN.
Thanks to the renewal structure highlighted in the proof of the previous theorem, one
can obtain also a Central Limit Theorem (CLT).

Theorem 8.11 (CLT for Markov Chains). Let {X,,} ~ Markov (\, P) with P irreducible,
positive recurrent and with invariant distribution w. Let ¥ : X — R be such that E,[|¢]] <
o0 and C() = - Ex[(375, ¥(X;) — oxEx[¢])?] < 0o. Then

i %Zw(xj)—mw] ~4 N(0,C()).
j=1

We turn now to the stronger question whether the sequence of distributions 7™* of
the steps {z,, n € N} of a Markov chain Markov (A, P) converges, in a suitable sense, to
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the invariant distribution 7 as n — oo for any choice of initial distribution A € M;(X).
The fact that this property is not always true is shown in the next example.

(1) é) which s clearly irreducible

and has an invariant distribution m = (1, 1) (hence it is positive recurrent). However, if
we take the initial distribution A\ = (1,0), we have 79" = AP = (0,1), A2} = AMAP =
(1,0) and clearly 7™ does not converge to m. The problem in this example is that the
chain visits periodically (with period 2) the two states.

Example 8.4. Consider the transition matriz P = <

We need therefore to exclude such cases.

Definition 8.10. Given a transition matriz P, we say that a state x; is aperiodic if
Pz-(in) > 0 for all sufficiently large n, or equivalently if the set {n > 0 : P! > 0} has no
common divisor other than 1.

Using the Chapman-Kolmogorov equation, it is easy to see that if P is irreducible and
has an aperiodic state x;, then all states x; € X" are aperiodic. We will then say that P is
aperiodic. The next theorem states that for an irreducible, positive recurrent, aperiodic
Markov chain {X,}, ~ Markov (A, P), 7™ — 7 in total variation as n — oo for any
initial distribution A.

Before stating the theorem, we recall the definition of total variation of a measure:
given a measurable space (X,B), with B a c-algebra on X, and a (signed) measure
w1 B — R the total variation of u is defined as

lullrv = sup u(A) — inf u(A)=  sup / £(x) p(de).
AeB AeB f:/IY"f—‘)‘]R rgelas. X

In the case of a discrete set X the above definition reduces to the ¢!-norm of the row

vector p = (p1, p2; - - )

ey = > Iz = e

T, EX
Theorem 8.12. Let P be irreducible, aperiodic and positive recurrent with invariant

distribution w. Let \ be any distribution on X and {X,} ~ Markov (A, P). Then, for
71'?’)‘ = P\(X,, =1) it holds

lim H7r"’>‘ — 7|7y = lim g \77?’)‘ —mi| =0.
n—00 n—00 4=
(A

Idea of the proof. Consider a chain {Y;,} ~ Markov (7, P) at equilibrium and independent
of {X,}. The joint process {W,, = (X,,,Yn)}n is also a Markov chain with transition
matrix

Pije =P (Xpy1 =25, Y1 =0 | Xp =24, Yy = x3) = Pij Py
(n)

and invariant distribution 7;, = mm,. Since P is aperiodic, for all 4,j,k, ¢, Py ) =

Pz.(gn)Plg?) > 0 for sufficiently large n. Hence P is irreducible and positive recurrent (since
it has an invariant distribution).
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Xo

Yo

Figure 8.4: Paths to follow to equilibrium.

Consider now the return time oy, = inf{n > 0: X,, =Y, = k} for which P (0}, < +00) =
1 since P is irreducible and recurrent. At time oy, the two chains meet. Hence for n > oy,
we can follow the path {Y},} which is at equilibrium. More precisely, the process

X n<ao
Zn: ny k
Y., n>o

is also Markov (A, P), i.e. has the same distribution as {X,,}. Moreover
P (Zn = xj) = mj| = [P (Zn = 25) = P (Yn = 25) |
=|P(Zy=zj,n<o0p)+P(Zp=2xj,n2>0k) =P (Y, =xj)|
=|P(X,=zj,n<o0;) —P(Y,=xj,n<oy)|
<P(X,=zj,n<o0r)+P Y, =25,n<o0y).
Henc. e
NP (Zn =) —m| <Y P(Xp=aj,n <o)+ Y P(Y,=u,n<op)
J J j

j
<2P(n <o) =0 asn— .

Therefore,

>\,
St = mil =Y P (Zy = x5) — w5 = 0,
i J

Concerning the rate of convergence, we introduce the following definitions

Definition 8.11. An irreducible, positive recurrent, aperiodic Markov chain {X,,}, with
transition matriz P and invariant distribution w is
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e geometrically ergodic if there exists a function h : X — R, with E;[h] < +o00 and
r € (0,1) such that

Hﬂ_n,(;zi _ 7T||TV < h(xz)rn f07’ all x; € X,

e uniformly ergodic if there exists C > 0 and r € (0,1) such that

7755 w7y < Co for all € X.

Establishing geometric/uniform ergodicity is in general not easy, but can be done in
special cases, exploiting the structure of the transition matrix P. One such special case
is that of a finite state space X. We recall here some properties. Let X be a finite set of
caridnality dimension d and P an irreducible, aperiodic transition matrix. Then

e P is recurrent and positive recurrent (exercise)

e P has an eigenvalue A\; = 1 simple (Perrou-Frobenius theorem) and all other eigen-
values satisfy |\;| < 1,i=2,...,d.

e A Markov chain {X,},, with transition matrix P is always uniformly ergodic and
|02 — 7|l py < C|Ag|™ with [\o| = max|y,|<1 |Ai| if P is diagonalizable. If P is not
diagonalizable, the estimate has to be modified as ||7™%:i — 7||py < C(€)(|A2| + €)™
for € > 0 arbitrary.

8.2 Markov chains on general state space

We give here a brief overview of how the theory of Markov chains generalizes to a contin-
uous state space X, typically a subset of R? with non zero Lebesgue measure.

Definition 8.12. A Markov transition kernel on (X,B(X)), where B(X) is the Borel
o-algebra on X, is a function P : X x B(X) — [0,1] s.t.

1. for all x € X, P(x,-) is a probability measure on X,
2. for all A € B(X), P(-,A) is measurable.

Whenever P(z,-) admits a density with respect to the Lebesgue measure, we denote it by
p: XXX =Ry de forallz e X, Ae B(X),

P(x,A) = /Ap(w,y) dy.

Definition 8.13. Given a Markov transition kernel P and a measure X\ on (X,B(X)),
a sequence of random variables {X,, € X,n > 0} is a homogeneous Markov chain with
transition Kernel P and initial distribution X, in short {X,} ~ Markov (X, P) if

.XQN)\

e P( X1 €A| Xp=zp,....Xo0=20) =P(Xpt1 € A| X, =2,) = P(zp, A)
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A Markov chain {X,} ~ Markov (A, P) satisfies the strong Markov property. Let 7
be a stopping time; conditional on 7 < 400, it holds

By [A(Xrs1, Xrao,...)] = Ex, [A(X1, Xa,...)]

for any bounded function h : XN — R.
The n-step transition kernel P (z, A) = P (X, € A | Xy = x) is given by the recur-
sion

PM(z, A) = / POy AVP(z,dy), PV (z, A) = P(z,A).
X

Similarly, if p(™ : X x X — R, denotes the density of P (provided it exists), then

P (2, y) = /X Pz (e, 2) dzs pD () = pla,y).

To each Markov transition kernel P we can associate the Markov operator P acting to
the left on measures, P : M (X) — M;(X), with M1(&X) the set of probability measures
n (X,B(X)) as

uw=\r = / Py, A)\(dy), VA€ B(X).
Notice that

(\P)P = // y,d:c))\(dy)z/XP@)(ya‘))\(dy)

so P? is the operator associated to P(?) and more generally P™ is the operator associated
to P, If 7" denotes the measure of X, i.e. 7" (A) = Py(X,, € A), it follows that
A = AP = [, P (y, )A\(dy).

Definition 8.14. A measure w on (X,B(X)) is called invariant (or stationary) if = =
TP = fX )m(dy). If the measure m has a density f : X H Ry (ie. w(A) =
Ju fy)dy, VA € B(X)), and the kernel P has a density p, then f(z) = [, p(y,z)f(y) dy.

Similarly, a Markov transition kernel P defines an operator acting on functions to the
right, P : F(X) — F(X), where F(X) is the set of measurable functions on (X, B(X)),
as

g=Pp = glo)= /X Pl dy)o(y) = Ealp(X1).

Definition 8.15. A chain {X,}Y_, ~ Markov (\, P) is reversible if the chain {Y, =
Xn_n}N_y ~ Markov (A, P).

As for discrete state spaces, { X, },, is reversible if and only if (A, P) satisfy the detailed
balance condition, which in this case reads

/ P, B)\(dz) — / Ply, ANdy), VA, B € B(X), \A)A\(B) > 0.
A B
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If (P, ) are in detailed balance, then 7 is an invariant distribution for P. Indeed,

/ P, B)r(dz) / Ply, X) r(dy) = n(B).
X B “:1

We now extend the concepts of irreducibility, recurrence and aperiodicity. In the
discrete setting, we have said that z; communicates with x; if there exists n > 0: P; >0
and a chain is irreducible if any state communicates with every other state. In the
general state space case, the definition is slightly more cumbersome. Indeed, if we work
with continuous random variables and assume that the transition kernel P has a density,
then P (z, {y}) = Po(X,, = y) = 0 for all n since the set {y} is of zero measure.

Definition 8.16 (irreducibility). We say that {X,}, ~ Markov (A, P) is irreducible if
there exists a (o-finite) measure ¢ on (X,B(X)) such that for any x € X and A € B(X),
with p(A) > 0, there exists n > 0 for which P (xz, A) > 0. In this case, ¢ is called an
irreducibility measure.

Recall that a set A € B(X) is accessible if P,(04 < o0) > 0 for all z € X, where
o4 = inf{n > 0: X, € A} is the return time to the set A. The above definition of
irreducibility, with irreducibility measure ¢, implies that all sets A € B(X) with non-
zero p-measure are accessible. The notion of irreducibility does not really depend on the
irreducibility measure ¢ as shown by the next result.

Theorem 8.13 ([5, Proposition 4.2.2]). If {X,,}», ~ Markov (\, P) is irreducible for some
irreducibility measure ¢ on (X,B(X)), then there exists a probability measure 1 on B(X),
called maximal irreducibility measure such that

o {X,}n is ¢-irreducible

e For any other measure ¢’ on B(X) for which {X,} is ¢ -irreducible, one has ¢’
is absolutely continuous with respect to ¢ (i.e. for all A € B(X), ¥(A) >0 =

¥'(A4) >0)

The maximal irreducibility measure is in general not unique, but all maximal irre-
ducibility measures have the same null sets (i.e. they are equivalent). If {X,}, has an
invariant distribution 7, then 7 is a maximal irreducibility measure. This, in particular,
implies that an irreducible chain has at most one invariant probability measure. In the
context of Markov Chain Monte Carlo, where the target distribution = is given, we have
to check that the chain 7 is an irreducibility measure.

The notions of aperiodicity and recurrence generalize quite straighforwardly to acces-
sible sets.

Definition 8.17 (aperiodicity). A Markov chain {X,}» ~ Markov (A, P) is aperiodic if
for any x € X and any accessible set A € B(X)

dng >0: P™(z,A) >0 VYn>ng.
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For a set A € B(X) let V4 = > ~1(x,eca; be the number of visits to A. In the
discrete state space case, a state z; is recurrent if P;(V; = oo) = 1 which happens if
and only if E;[V;] = oo. This “if and only if” result is not true anymore for general
state spaces, so we can give two notions of recurrence depending on whether we take the
definition P;(V; = o0) = 1 or E;[V;] = oc.

Definition 8.18 (recurrence). A set A € B(X) is said to be
o recurrent if E;[Va] = oo, for all z € A;
e Harris recurrent if P, (V4 = 00) =1, for all z € A.

A Markov chain { X, },, ~ Markov (A, P) is recurrent / Harris recurrent if it is irreducible
and every accessible set is recurrent / Harris recurrent.

The first notion of recurrence is weaker than the second one as it requires only that
the expected number of visits to A is infinite as opposed to the the Harris recurrence
condition that requires that almost surely the number of visits is infinite.

As in the discrete case, we have that if {X,}, ~ Markov (A, P) is irreducible and
recurrent, then it has a unique non-zero invariant measure 7 (non necessarily finite) up to
a multiplicative constant. If 7 is finite, it can be normalized into a probability distribution
and we say that {X,,} is positive.

If { X, } is irreducible, positive and aperiodic, hence has a unique invariant probability
distribution 7, then

YA € My (X), IAP™ — 7|7y = 0.

lim
n—oo
We mension also the ergodic theorem

Theorem 8.14. Let {X,},, ~ Markov (X, P) be an irreducible positive chain with invari-
ant probability distribution m and ¥ € F(X) a mw-integrable function with Er[] < oo.
Then, for any A € M1(X)
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8.3 Metropolis-Hastings algorithm in general state space

We generalize here the Metropolis-Hastings algorithm, already introduced in Section[8.1.1]
to the case of a general state space, as a tool to construct a Markov Chain {X,} ~
Markov (A, P) on X C R? which has a given invariant measure m with density f : X — R,
with respect to the Lebesgue measure. In the following discussion, we accept that the
density f may be know only up to a multiplicative constant, i.e. it does not necessarily
integrates to one (in which case, the invariant density is f(x) = f(z)/ Sy f(y)dy).

Let Q : X x B(X) — [0,1] be a Markov transition kernel Q(z, A) = [, q(x,y)dy for
all z € X, A € B(X) with density ¢ : X x X — R, satisfying ¢(z,y) =0 < ¢(y,x) =0,
also called the proposal or instrumental density, and define the following acceptance rate
a: X x X —[0,1],

— i W) aly: @)
oy) = {f(x) d(y)’

1}, fq(r.y) 20, aly) =0, if g(x,y) = 0.

The Metropolis-Hasting algorithm then reads

Algorithm 8.2: Metropolis-Hastings.

Given: \ (initial measure), ¢ (proposal transition density), f (target density)

1 Generate Xg ~ A

2 forn=0,1,...,do

3 Generate Y, 11 ~ q(Xp, ") // proposal state
4 Generate U ~ U(0,1)

5 if U < a(X,,Y,+1) then

6 ‘ set Xpy1 =Y // accept proposal
7 else

8 ‘ set Xpp1 = X, // reject proposal
9 end

10 end

For the algorithm to work, the chain has to be able to explore the whole density f. Let
us denote Dy = supp(f) = {z € X' : f(x) > 0} the support of f. Minimum requirements
are:

e Xo € Dy, otherwise a(Xo,) is not defined. This guarantees, in particular, that
X, € Dy, Vn;

. UmeDf supp(q(x,-)) D Dy, otherwise the chain fails to visit some parts of Dy.

We derive now the transition kernel P, resp. transition density p, of the Markov
chain generated by the Metropolis-Hastings algorithm. There is, in general, a non-zero
probability that X, 11 = X,,, so P(X,, ) has a point mass in X,,:

]P’(XnH:x]Xn:g;):/

4z, y)(1 — a(z,y)) dy = 1 - / a(z,y)g(z, ) dy
X

X



8.3. METROPOLIS-HASTINGS ALGORITHM IN GENERAL STATE SPACE 109

so the transition density p is

p(z,y) = alz,y)q(z,y) + (1 — a*(2))d(y), a*(x)"'/ﬁfa($,y)Q(w,y)dy

where 0,(y) is a Dirac mass in z. Equivalently, the transition kernel P is given by

Pz, A) = /A a(@,y)a(ey)dy + (1 — o (2))1a(z).

As in the discrete state space case, we can verify that P and f are in detailed balance.

Lemma 8.15. The transition kernel P of the Metropolis-Hastings algorithm with
density p(x,y) = a(x,y)q(z,y)+ (1 —a*(2))d,(y) is in detailed balance with the probability
density f. Hence f is an invariant probability density for P.

Proof. Observe first that

Hence
| PaBi@i- | ( /| <a<x,y>q<x,y>+<1—a*<x>>5m<y>>dy) f(z) do
= [ [ twataatva)dyds+ [ (1-a*@)fa)da

ANB

-/ ( / <a<y,x>q<y,x>+<1—a*<y>>6y<x>>dx> F(w) dy
zéPmMﬂw@

O]

To assess the convergence to equilibrium of the chain, we should further check irre-
ducibility and aperiodicity. In particular, irreducibility should be checked with respect to
the invariant density f.

e f-irreducibility is something that should be checked every time depending on the
choice of the proposal density. If it holds, then for all ¢ : X = R, Ef[|¢|] < 400,

1n
lim — (X;) =E¢[p] = () f(z) dx.

e Concerning aperiodicity, observe that in general P (X, 41 =z | X,, = x) > 0 as long
as a*(zr) < 1, since the transition kernel P(z,-) has an atom at 2. Consider the set
C ={x:az) <1}. Thisis a f-zero measure set, i.e. [, f(z)dz =0, if and only if
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(exercise) f(x)q(x,y) = f(y)q(y,x) for f-almost every x,y € Dy which corresponds
to the case in which the proposal ¢ is in detailed balance with f. In this case, the
acceptance-rejection step is useless and one should check the aperiodicity of ¢. If,
on the other hand, (g, f) are not in detailed balance, then the chain is aperiodic.
If, moreover, the chain is f-irreducible, then for any initial distribution A < f we
have (denoting 7 the measure associated to f)

lim Hﬂ'n’)‘ — 7THTV = 0.
—00
We describe in the next subsections few methods to choose proposal densities q.

8.3.1 Independence sampler

Let g : X — R4 be a probability density function such that g(z) > 0 whenever f(z) >0
(i.e. f < g). We choose simply ¢(z,y) = ¢g(y) independently of the current state = (hence
the name of independence sampler).

Algorithm 8.3: Independence sampler Metropolis-Hastings
Given: XO ~ )\7 Supp()\) C Df

1 forn=0,1,...,do

2 Generate Y, 11 ~ g

3 Compute a(X,, Y, 41) = min {M 9(Xn) 1}

f(Xn) g(Ynt1)’?
4 Generate U ~ U(0,1) and set

X _ Y7L+17 it U § Od(Xn, Yn+1)
i Xn, otherwise

5 end

Concerning the convergence to equilibrium, we recall first a useful result for general
state space Markov chains.

Lemma 8.16. Let P : X x B(X) — [0,1] be a Markov transition kernel with invariant
measure . If there exists € € (0,1) and a probability measure v on (X,B(X)) such that

P(z,A) > ev(A), VexeX, AcB(X) (8.3)
then
H7rn’)‘ — 7|y < 2(1 —€e)™.

More generally, if there exists kg € N such that P%*0)(z, A) > ev(A) for all z € X,
A € B(X), then |7 — || py < 2(1 — e)l"/kol. The condition (8.3) is called uniform

minorizing condition.

Idea of the proof. (For kg = 1): We build two coupled chains {X,,} ~ Markov (A, P) and
{Y,,} ~ Markov (m, P) using the following algorithm. Notice, in particular, that the chain
{Y,,} is at stationarity.
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Algorithm 8.4: Coupled chains.

1 Let Xo~ X\, Yy~

2 forn=0,1,...,do

3 Draw Z, ~ Be(e), P(Z, =1)=¢,P(Z,=0)=1—¢

4 if Z, =1 then

5 ‘ draw W ~ v and set X1 =Y =W

6 else

7 ‘ draw X, 411 ~ w and Y11 ~ w independently
8 end

9 end

It is easy to verify that indeed {X,} ~ Markov (A, P) and {Y,} ~ Markov (7, P).
Let T = inf{n > 0 : Z,, = 1}. It is clear that after T, the two chains have the same
distribution X,, ~ Y, n > T. Moreover, P (T > n) = (1 —€)". Now

7" — 7oy =2 sup [P (X, € A) —P (Y, € A)]
AeB(X)

=2sup|P (X, € A, T <n)+P(X,€AT>n)
A

—-PY,eAT<n)—PY,€cAT>n)|
=2sup|P(X, € A, T>n)—P(Y,€ AT >n)|
A

=2sup|P(X, €AY, ¢ AT>n)—P(X,¢ AY,€AT>n)|
A

<2P(T >n) <2(1—¢)".

In the case of the independence sampler, the following result holds.

Theorem 8.17. If there exists M < +o0o such that f(x) < Mg(x) for all x € X, then
the chain generated by the independence sampler algorithm [8.5 is uniformly ergodic and

d n
|7 — x| py < (1 - ff(]\? a:> ,  for any \.

Proof. If f is not normalized, let f = f/C, C = [ + f- Notice that

— o min S W 9@) g(x) 1
olavite) = sty min {051 W gy & (=W
;71\'; >fy)/M

It follows that for any A € B(X),

mam:Ammwmeu—wmw @>/f ()

and the result follows from Lemma [8.16] O
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Under the same condition as in Theorem [8.17] it can be shown that the expected
acceptance probability satisfies E [a( Xy, Yit1)] > % (exercise). This result has to be
compared with a pure acceptance-rejection sampling strategy, for which the expected

C

acceptance probability is 17. Hence, independence MH sampler accepts more often than

a pure acceptance-rejection sampler.

8.3.2 Random walk Metropolis

Let g» : X — Ry be a probability density function with zero mean, o being a scaling
parameter; a typical choice is g, = N(0,0%). In the random walk Metropolis we choose
q(z,y) = g,(y — x), i.e. the proposal density is g, centred in the current state z. If we
further assume g¢,(-) symmetric around the origin, the acceptance probability takes the
simplified form
)
a(z,y) mm{f(x),l}.

The choice of ¢ is rather delicate. Small ¢ imply small steps from the current state,
hence high correlation in the chain. Large steps might lead to high rejection rate, hence
the chain will stay for a long time in the given state, which also leads to high correlation
in the chain. One should then expect that some “optimal” choice of o exists.

Concerning convergence of this algorithm, one could try to verify a uniform minorizing
condition

9o(y — ) > ef(y)

for all z,y € Dy. By the same arguments as for independence sampler, this would imply
P(x,A) > en(A) hence uniform ergodicity ||7™* — 7|v < 2(1 — €)™ for all initial distri-
butions A. However, such minorizing condition does not hold, in general for unbounded
or non-compact Dy C X. We mention a result by Mengersen and Tweedie ('96) showing
geometric ergodicity for tail-log-concave f and X = R.

Definition 8.19. A probability density function f on R is log-concave in the tails if there
exists o, M > 0 such that log f(x) — log f(y) > a(|ly| — |z|) for all |y| > |x| > M.

Theorem 8.18. If the invariant density f on R is log concave in tails for some o, M > 0
and inf|, < f(x) > 0 for all R > 0, then the Markov chain generated by the random walk
Metropolis-Hastings algorithm with symmetric proposal g,(+) is geometrically ergodic.

8.3.3 One Variable at a time Metropolis-Hastings

Suppose that a state z € X has several components, = (z(), ... z@®), with () € X®,
One can thus construct a Metropolis-Hastings algorithm by updating one component at a
time, either chosen randomly or by performing a systematic sweep over the components.
Say that the i-th component has been chosen. We use the notation z = (2, 2(=9) with
20 = (M 20D ) @) Let ¢ 0 & x XY — R be a family of proposal
density functions on X, ie. ¢;(z,-) is a density function on X for any x € X. Then
the one variable at a time MH algorithm with random coordinate selection reads:



8.3. METROPOLIS-HASTINGS ALGORITHM IN GENERAL STATE SPACE 113

Algorithm 8.5: One variable at a time MH with random selection.

1 Generate Xy ~ A
2 forn=0,1,... do
3 Draw index i, ~ 8 (p.m.fon {1,...,d})
(—in)
4

Draw y ~ ¢;, (Xp,) and set Y41 = (y, Xn ™)

. e S ) @iy (Vs XE™)
5 | Compute a;, (Xp, Ynt1) = mln{ FE) g oy C0) .1

Y,+1  with prob. a;, (Xp, Yot1)

Xn otherwise

6 Set Xn+1 = {

7 end

whereas the one variable at a time MH algorithm with systematic sweep over the coordi-
nates reads:

Algorithm 8.6: One variable at a time MH with systematic sweep.
1 Generate Xg ~ A

2 forn=0,1,... do
3 Set Yn+170 =X,
4
5

fori=1,...,d do

Draw y ~ ¢;(X,,-) and set ¥ = (y, Yn(ﬁ)l_l)

Y, with prob. «;(Yy41,i-1,Y)

Yit1i-1, otherwise

6 Set Yn-f—l,i = {

end

Xn—i—l = Yn+1,d
9 end

8.3.4 Gibbs sampler

The Gibbs sampler is a one variable at a time MH algorithm in which the component-wise
proposal density is the conditional density ¢;(x,-) = fxa) | x(-o (" | z(=)). Observe that,
in this case, the Hasting ratio for X = (X@ X)) and Y = (Y®, X(9) is

@;(X,Y) = min { fY) FXO | X(i)),l} =1

FX) fY@ [ XC0)

i.e. the move is always accepted, or, in other words, the transition kernel ¢); which
samples independently the i-th component from the conditional density f(- | X (*i)) pre-
serves the density f. The next algorithm presents the Gibbs sampler with random sweep.
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Algorithm 8.7: Gibbs with random sweep.
1 Generate Xy ~ A

2 forn=0,1,... do

3 Draw iy, from a pmf § on {1,...,d}

4 Generate y(n) ~ f(- | X}L_i"))

5 | Set Xpp1 = (y), X))

6 end

8.3.5 Metropolis Adjusted Langevin Algorithm (MALA)

The MALA algorithm relies on the following observation: consider the stochastic differ-
ential equation (Langevin dynamics)

dX, = Vg f(Xy) +V2dW;, t>0, Xg~ A (8.4)

with X; € R?, where f is the target density, W; is a standard Wiener process and \ is a
probability density function on R?. At any ¢, let us denote by p(z,t) : X x Ry — R, the
probability density function of X, i.e.

/ plx,t)de =Py(X; € A).

A

It is well known that p satisfies the so-called Fokker-Planck equation
Oip +div(pViog f) — Ap =0, inRY >0,

with p(z,0) = A(x), from which we see that p(z,t) = f(x) is a stationary solution. Indeed,

O, f
f

d
op + div(pViog f) — Ap = Z O, <ﬁ > —Ap=0.
i=1

Under mild assumptions on f, such stationary solution is unique and lim;_, p(,t) = f
(in a suitable sense) for any initial density A. Hence, the time continuous process
has f as unique invariant distribution. The problem is that we are not able to find exact
solutions of , in general, and we have to use some numerical scheme for example the
Euler-Maruyama:s:

Xnt1 = Xy, + AtViog f(Xy) + V2ALE,, &, ~ N(0,1) (8.5)
1.e.
Xpt1 ~ N(X,, + AtViog f(X,), 2At1). (8.6)

However, after discretization, (8.5)) does not have anymore f as invariant distribution.
Yet can be used as a proposal in a Metropolis-Hastings algorithm. This leads to the
following
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Algorithm 8.8: Metropolis Adjusted Langevin Algorithm (MALA).

1 Generate Xy ~ A
2 forn=0,1,... do
3 Generate Y ~ N(X,, + AtV log f(X,), 2AtI)

. F(Y) exp(—||Xn—Y—AtVlog f(Y)||?/2At
4 Compute a(X,,Y) = min {1’ FOX) exp(—|[Y —Xn—AiV Iog f(Xn)H?/zAt}

Y with prob. a(X,,Y)

X, otherwise

5 Set Xn+1 = {

6 end

8.4 Convergence diagnostics

Let us consider an f-irreducible Metropolis-Hastings Markov chain, which is in particular
Harris recurrent and ergodic. Given any function ¢ : Ef[p] < 400, by the ergodic theorem

lim © 3 (X)) = Eyly).
7j=1

n—00 N 4

Hence, to compute o = Ef[¢], we can consider the estimator

N
. 1
M%cmc = N Z (p(X])
j=1

The question is how to monitor properly the convergence of ™™ to u and how to choose
N.

We start by analyzing the Bias. The estimator "¢ is biased, in general, since
X, ~ f only asymptotically as n — oo. The bias is generally of order % as shown in the
next lemma.

Lemma 8.19. Let {X,,} ~ Markov (0, P) with P a Metropolis-Hastings transition kernel
with invariant distribution m and density f. If {X,} is geometrically ergodic, that is, there
exists v > 0 and h : X — R, such that ||7™% — 7|7y < h(z)e™ ™ then for any bounded
p: X =R, there exists C, > 0 such that

=k

[E[ax" — pl | <
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Proof.

Dgz

ER™ — 4l = | v S Elp(X;) —

—

M= 5

1
<3 0| [ et ()~ ()
j=1 1/
1 o .
< = sup [ (@)|||77% — 7|l
Nj;xeé\?| ()]l I
1 1
< s lo(@)Ih(2) T —=-

O]

Such bias can be further reduced by considering the estimator ENB =W ZjVJSBBJrl (X
i.e. by disregarding the first B terms of the chain. The lag B is often called the burn-in or
warm-up period. Under the assumptions of the previous lemma, the bias of the estimator
PNE is bounded by

e 7B h(z)
E [[meme] <
B [ANE] — ul < = sup le(@)l— =

Qymceme ﬂl]l\}CmC
The quantity ; is often called the relazation time and choosing B = % with moderate
m makes the bias negligible. Estimating the relaxation time is not easy. However, a
graphical inspection of the trace plot of the chain {¢(X,)} is often sufficient to have a
reasonable estimation of the time at which the chain reaches stationarity.

We focus now on the variance of the estimator g™ (or ﬂmcglc) Assuming that a suf-
ficient burn-in period has been considered, we can reasonably assume in the analysis that
follows that the chain is at stationarity when computing the estimator g™, i.e. {X,} ~
Markov (7, P). Let us denote c(k) = Covr(¢o(Xo), p(Xk)) = Cova(p(X;), o(Xj4x)) for

all j thanks to the stationarity of the the chain.

and is thus reduced by a factor e~ 75 with respect to the base estimator N

Lemma 8.20. Let {X,,} ~ Markov (w, P) Then

(2

2 N-1
Var, [an "] = %C’N, with O'mcmCN )+ 2 (1 — > 0).
=1

Moreover, if Y p2 |c(k)| < 400, then

hm NVar (i) = 02 me

with 02,.me = ¢(0) + 2372 c(k).

i)
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Proof.
1 & :
Varﬂ[AmcmC = NZSQ — U
7=1
1 X
=33 En [(p(X;) = 1) (p(Xk) — p)]

Under the assumption > 5o |[e(£)] < +o0, it follows that limn e NVar, [fm¢] = o2

mcme*

O]

The quantity amcmc is called time-average variance constant (TAVC) or asymptotic
variance. If {X,}N_, were mdependent and all distributed as 7, then the variance of the
Crude Monte Carlo estimator )¢ = N ijl ¢(X;) would be Var (4} ) = Cg\?). From
this we see that

]\}gnoo Var (AMC)

Var( mcmc) _ mcmc 1+22 k
c(0)

Hence fiy“™¢ is generally less effective than a pure iid samphng from m, due to the corre-
lation in the chain. The quantity
c(0
ESS=N 2( )
Gmcmc

is called the effective sample size and represents the size of an equivalent independent
sample that would lead to the same variance of the estimator.
For the estimator gy“"¢ a CLT is also available (and more generally for aperiodic,

irreducible and reversible chains with invariant distribution 7.).

Theorem 8.21 (CLT for Metropolis-Hastings Markov Chains). Let {X,} be an f-
irreducible, aperiodic Metropolis-Hastings chain, with invariant distribution w (resp. den-
sity f) and ¢ : X — R such that

Omeme = Varz(p(Xo)) +2) - Covr(p(Xo), p(Xe)) < +o0,
=1
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then,

as N — oo.

From the CLT, asymptotic confidence intervals can be derived. The practical question,
however, is how to estimate o2, ...

8.4.1 Estimating the asymptotic variance by covariance methods

We recall the formula o2, = ¢(0)+2>72, ¢(k). Given a path {X,,}_, if we discard a
sufficient burn-in lag B, we can reasonably assume that {X, ing 4118 (nearly) stationary,

so that a sample estimator for c(k) is

1 N+B—k
o) = 77 2 (000) — ARE) ((Xpn) — RE)
j=B+1
and an estimator for a?ncmc is
N—2
Fheme = ¢(0) +2 > é(k)
k=1

However, the last terms in the sum are very unstable since these are sample averages of
very few terms. It is often wiser to truncate the sum much earlier

M
Gir = ¢(0) +2) é(k).
k=1

where M < N —2. It has been shown [Geyer '92’] that the sequence I'y, = ¢(2k) +c(2k+1)
is strictly positive, decreasing and convex for a reversible Markov Chain. Hence a good

choice is
M = 2min{k : ¢(2k) + ¢(2k + 1) < 0}.

8.4.2 Estimating the asymptotic variance by the batch means method

= eme 18 to split the sequence {X,, ivj]f 1 into M blocks
of size T'= N/M (assumed to be an integer). Then we can build M different sample
averages

An alternative idea to estimate o2

. 1 iT+B Mo
i0=1 S e, and RS = >0 A0,
Jj=(—-1)T+B+1 i=1

If T is sufficiently large (larger than the relaxation time), the M blocks are nearly inde-

. 2 Var (o . .
pendent so Var <uﬁc§m) A Tmgne oy ar(M“ ) and Var (M(l)) can be estimated by a sample

variance estimator

1 &, . 2
Var (ﬂ(l)) ~ &Zu) VA Z (ﬂ(l) - ﬂ%,cglc)
=1
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. . 2 .
Finally, an estimator for o7 .. is
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