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Markov Chain Monte Carlo

Exercise 1

Consider the Random Walk Metropolis—Hastings (RWMH) algorithm with proposal density
q(x,y) = go(y — ) and target density f: R — RT. Let g, denote the density of the (0, 0?)
distribution and suppose that

fly) = %eXp {—Cly“ — %?f + i)] ,

where Z is such that f is a PDF on X = R. Suppose we wish to estimate y = E¢(¢) for a
suitable function ¢: R — R. Let M be the estimator for y based on the Markov chain of
length n generated by the RWMH algorithm. Derive asymptotic confidence intervals for p
at probability level a using the CLT for Metropolis—Hastings Markov Chains. Within your
simulations, estimate! this confidence interval and stop the Markov chain once the half-length
of the interval is smaller than a given tolerance 7 > 0. Implement the following heuristics
to estimate the required time average variance constant and compare their performance for
different functions ¢; namely ¢(z) = 2P, p € N. The time average variance constant is the
asymptotic variance introduced in Theorem 8.10 of the lecture notes.

1. Initial positive sequence estimator:

K
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where K is the largest integer such that é,(2k) + ¢,(2k+1) >0 forall k =1,..., K.
Here,
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is an appropriate covariance estimator in this context.

2. Initial monotone sequence estimator:
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where K and ¢, are as for the initial positive sequence estimator above.

!The estimation has to be carried out on-the-fly, that is while the Markov chain evolves.



3. Batch means estimator: Suppose the Markov chain is X7, ..., X, at iteration n. Divide
these n values into N, € N batches, each of length Ny = n/Ny. A typical decomposition
is Ny =n'~® and N, = n® for a € [0, 1], for example a = 0.5, modulo integer rounding.

Let
. iNg
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be the sample mean of the i-th batch. For N, sufficiently large, one can consider the
batch means fi1, fl2, . .., fin, to be approximately mutually independent. Consequently,
one can estimate the time average variance constant o2 by the sample variance estimator
for independent realizations:
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In addition, instead of using all of the points in the Markov chain, one can as well discard a
burn-in time B and replace >, _, with >, 5 in the above estimators. Experiment with the
effects of burn-in time on the above asymptotic variance estimators.

Exercise 2

Consider the following probability density function in R?
1
= o {~(1 =21 = (@2 = P} +ep {1+ 1P~ (e 4+ 3+ 2D}], @ = (o1, 2)7 € R,

where Z is the (unknown) normalization constant. To generate samples from f, we consider
Metropolis-Hastings (MH) type MCMC algorithms. Let us denote with p(-; u, ) 2 the pdf
of a N'(p, ) multivariate Gaussian random variable and by

(@)

e Kj the Markov kernel associated to an Independent Sampler MH algorithm with pro-
posal density ¢ (x,y) = 3p(y; (1,1)7,0.5 Iox2) + 3p(y; (—1,-3)7, 0.5 Izx2)

o K5 the Markov kernel associated to a Random Walk MH algorithm with proposal density
¢@(z,y) = p(y;x, 0% Irxs) , where o = 0.15.

1. Write the explicit expression of the densities corresponding to the Markov kernels K
and K.

2. Consider now the kernel K(w) = wKj + (1 — w) Ky, with w € [0,1]. Show that K(w) is
a reversible Markov kernel that has f as invariant distribution.

3. Implement a MCMC algorithm that uses the Markov kernel K (w) to estimate E ¢[||X]|?],
with X = (X1, X2)” ~ f(-). Include the usual MCMC diagnostic plots in your experi-
ment and describe how you would chose the sample size (length of the chain) to guaran-
tee an error on the computation of E;[||X]|?] smaller than £ = 1 with confidence at least
.95. Estimate also the expected acceptance rate x(w) of the implemented algorithm.
Try at least two different values for w.
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4. Write a closed-form formula for the expected acceptance rate x(w) from the expression
of the kernel K(w). How could one use the results in the previous point to find the
value of w that leads to a target acceptance rate, say x(w) = 0.47

Hint: You can use the following python commands to plot your results:

import statsmodels.graphics.tsaplots as sm
import seaborn as sbn

sbn.kdeplot(x) # To plot emperical density of samples x
sm.plot_acf(QoI) # To plot autocorrelation plot of a quantity of interest Qol



