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Markov Chain Monte Carlo

Exercise 1
Consider the Random Walk Metropolis–Hastings (RWMH) algorithm with proposal density
q(x, y) = gσ(y− x) and target density f : R → R+. Let gσ denote the density of the N (0, σ2)
distribution and suppose that
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,

where Z is such that f is a PDF on X = R. Suppose we wish to estimate µ = Ef (φ) for a
suitable function φ : R → R. Let µ̂MH

n be the estimator for µ based on the Markov chain of
length n generated by the RWMH algorithm. Derive asymptotic confidence intervals for µ
at probability level α using the CLT for Metropolis–Hastings Markov Chains. Within your
simulations, estimate1 this confidence interval and stop the Markov chain once the half-length
of the interval is smaller than a given tolerance τ > 0. Implement the following heuristics
to estimate the required time average variance constant and compare their performance for
different functions φ; namely φ(x) = xp, p ∈ N. The time average variance constant is the
asymptotic variance introduced in Theorem 8.10 of the lecture notes.

1. Initial positive sequence estimator:

σ̃2 ≈ σ̂2
pos,n := −ĉn(0) + 2

K∑
k=1

(
ĉn(2k) + ĉn(2k + 1)

)
,

where K is the largest integer such that ĉn(2k) + ĉn(2k + 1) > 0 for all k = 1, . . . ,K.
Here,

ĉn(j) :=
1

n

n−j∑
i=1

(
φ(Xi)− µ̂MH

n

)(
φ(Xi+j)− µ̂MH

n

)
is an appropriate covariance estimator in this context.

2. Initial monotone sequence estimator:

σ̃2 ≈ σ̂2
mon,n := −ĉn(0) + 2

K∑
k=1

min
1≤j≤k

{
ĉn(2j) + ĉn(2j + 1)

}
,

where K and ĉn are as for the initial positive sequence estimator above.
1The estimation has to be carried out on-the-fly, that is while the Markov chain evolves.
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3. Batch means estimator: Suppose the Markov chain is X1, . . . , Xn at iteration n. Divide
these n values into Nb ∈ N batches, each of length N` = n/Nb. A typical decomposition
is N` = n1−a and Nb = na for a ∈ [0, 1], for example a = 0.5, modulo integer rounding.
Let

µ̂i =
1

N`

iN∑̀
j=(i−1)N`+1

φ(Xj) , i = 1, . . . , Nb ,

be the sample mean of the i-th batch. For N` sufficiently large, one can consider the
batch means µ̂1, µ̂2, . . . , µ̂Nb

to be approximately mutually independent. Consequently,
one can estimate the time average variance constant σ2 by the sample variance estimator
for independent realizations:

σ̃2 ≈ σ̂2
BM,n :=

n

Nb

1

Nb − 1

Nb∑
i=1

(
µ̂i − µ̂MH

n

)2
.

In addition, instead of using all of the points in the Markov chain, one can as well discard a
burn-in time B and replace

∑
k=1 with

∑
k=B in the above estimators. Experiment with the

effects of burn-in time on the above asymptotic variance estimators.

Exercise 2
Consider the following probability density function in R2

f(x) =
1

Z

[
exp

{
−(1− x1)

2 − (x2 − x21)
2
}
+ exp

{
−(x1 + 1)2 − (x2 + 3 + x21)

2
}]

, x = (x1, x2)
T ∈ R2,

where Z is the (unknown) normalization constant. To generate samples from f , we consider
Metropolis-Hastings (MH) type MCMC algorithms. Let us denote with p(·;µ,Σ) 2 the pdf
of a N (µ,Σ) multivariate Gaussian random variable and by

• K1 the Markov kernel associated to an Independent Sampler MH algorithm with pro-
posal density q1(x,y) =

1
2p(y; (1, 1)

T , 0.5 I2×2) +
1
2p(y; (−1,−3)T , 0.5 I2×2)

• K2 the Markov kernel associated to a Random Walk MH algorithm with proposal density
q2(x,y) = p(y;x, σ2 I2×2) , where σ = 0.15.

1. Write the explicit expression of the densities corresponding to the Markov kernels K1

and K2.

2. Consider now the kernel K(ω) = ωK1 + (1− ω)K2, with ω ∈ [0, 1]. Show that K(ω) is
a reversible Markov kernel that has f as invariant distribution.

3. Implement a MCMC algorithm that uses the Markov kernel K(ω) to estimate Ef [‖X‖2],
with X = (X1, X2)

T ∼ f(·). Include the usual MCMC diagnostic plots in your experi-
ment and describe how you would chose the sample size (length of the chain) to guaran-
tee an error on the computation of Ef [‖X‖2] smaller than ε = 1 with confidence at least
.95. Estimate also the expected acceptance rate χ(ω) of the implemented algorithm.
Try at least two different values for ω.

2p(x;µ,Σ) = 1√
det(2πΣ)

e−
1
2
(x−µ)TΣ−1(x−µ)
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4. Write a closed-form formula for the expected acceptance rate χ(ω) from the expression
of the kernel K(ω). How could one use the results in the previous point to find the
value of ω that leads to a target acceptance rate, say χ(ω) = 0.4?

Hint: You can use the following python commands to plot your results:

import statsmodels.graphics.tsaplots as sm
import seaborn as sbn
.
.
.
sbn.kdeplot(x) # To plot emperical density of samples x
sm.plot_acf(QoI) # To plot autocorrelation plot of a quantity of interest QoI
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