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Markov Chain Monte Carlo

Exercise 1

In many applications of interest, it is not uncommon to encounter the need for sampling from
a multi-modal distribution f. The theory developed so far can be directly applicable to these
types of distributions. However, in practice, sampling from these distributions using MCMC
can be computationally challenging, as we will investigate in this problem. Throughout this
exercise, we will consider the bi-modal distribution
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f(x;’YaxO):Ta v >0, (1)

where Z is some normalizing constant. Depending on the values of v and z(, designing a
sampling strategy to properly sample from (1) can become challenging. Intuitively, if both
peaks are too far apart, using a random walk Metropolis (RWM) might not work, as it
is possible for the sampler to get stuck on one of the peaks if the step-size is too small.
Conversely, a RWM with very large steps might tend to reject quite often, thus rendering
the whole sampling procedure inefficient. We begin by verifying this. Implement the RWM
algorithm using as proposal distribution ¢(z,y) = N(x,0?) and target distribution f(z;~, )
for v = 1, zg = 1,4,9,25 and different choices of o. Discuss the quality of your samples
by analyzing the trace-plots (one realization of the chain), autocorrelation functions and
histograms of the chains obtained.

Exercise 2

Ideally, we would like to obtain (approximately) i.i.d samples from a target distribution f
using Markov Chain Monte Carlo (MCMC) algorithms. One practical way of doing so is
via sub-sampling (also called batch sampling), which is implemented to reduce or eliminate
correlation between the successive values in the Markov chain. That is, instead of considering
the entire chain {X,,: n > 0}, say, this technique sub-samples the chain with a batch size
k > 1, so that only the values {X,: n > 0} are considered. If the covariance Covy(Xo, Xy,)
vanishes as n — oo, then the idea of sub-sampling is quite natural since X, and Xy ,11)
can be considered to be approximately independent for k sufficiently big; estimating such
a k may be difficult in practice though. While sub-sampling provides a way of generating
(approx.) i.i.d. samples from f and may thus be useful assessing the convergence of a MCMC
method, it necessarily leads to an efficiency loss. Let {X,, € R%: n > 0} be a Markov chain
with a unique stationary distribution f, and Xy ~ f (i.e., the chain is at equilibrium). Take



¢: RY — R such that E f(|¢]2) < oo and consider two estimators for ;1 = Ef(¢), namely one
that uses the entire Markov chain (f1) and one based on sub-sampling (fix) using only every
k-th value:
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Show that the variance of /i satisfies Vary (1) < Vary(fi) for every k > 1.

Exercise 3

Let X C RYand P, : X x B(X) — [0,1], i = 1...,m be a Markov transition kernels on X
with B(X) the associated o—algebra.

(a)

(b)

()

Given ay,...,am € RT, such that >, a; = 1, show that P(z,A) = >, a;P;(z, A) is
a Markov kernel.

Suppose that a measure 7 : B — [0,1] is invariant for each kernel P;. Show that it is
also invariant for P = >, a;P;, where ai,...,an, € R, such that >, a; = 1. If
each P; is reversible, is P reversible?

Under the same assumptions for point (b), define the Markov operator P; associated to
P; (ie., mP; = [ P(z,-)dm(z)). Then, show that 7 is also invariant for P = P;, 0---0P;,,
for any choice of 1,...,i;. If each P; is reversible, for which choice of i1,...,i is P
reversible?

Exercise 4

At every iteration of the general Metropolis—Hastings algorithm, a new candidate state Y, 11
is proposed by sampling Y,+1 ~ ¢(X,,-), given the current state X,,. Here, ¢(x,y) is
the so-called proposal density. Consider now the case where the proposal does not depend
on the current state, that is ¢(x,y) = ¢(y), so that the proposed candidate is Y, 11 ~ g.
This particular Markov Chain Monte Carlo (MCMC) variant is sometimes called independent
Metropolis—Hastings algorithm with fixed proposal (or simply independence sampler). Let’s
denote the target density by f. As such, this MCMC variant appears very similar to the
Accept—Reject method for sampling from f (cf. Lab 02).

1.

Suppose there exists a positive constant C' such that f(x) < Cq(x) for any = €
supp(f) = {x € R?: f(x) > 0}. Show that the expected acceptance probability of the
independent Metropolis—Hastings algorithm is at least % whenever the chain is station-
ary. How does this compare to the expected acceptance probability of an Accept—Reject
method?

. Let us compare the independent Metropolis—Hastings algorithm and the Accept—Reject

method in some more detail by an example. Specifically, the goal is to sample from
a Gamma distribution with shape parameter « and scale parameter (3, denoted by
Gamma(a, ), so that the target PDF reads f(z) = f(z;a, ) = Bo‘x‘*_le—ﬁf”/F(a)]I{zzo},
where I'(+) denotes the Gamma function.



(a) Implement the Accept—Reject method to sample from Gamma(a,1) for a > 1,
using the PDF of the Gamma(a, b) distribution with a = [a] as auxiliary density
(here [a] denotes the integer part of a).! Show that b = [a]/«a is the optimal choice

for b.
(b) Use your Accept—Reject method to generate m random numbers X, ..., X,, with
each X; ~ Gamma(a, 1), when using n = 5000 random variables Y7,...,Y,, from

the auxiliary Gamma([«a], [o]/«) distribution. Notice that m is a random variable,
which is smaller than n due to rejections. Perform the simulations for a = 4.85.

(c) Implement the independent Metropolis—Hastings algorithm using as proposal ¢ the
PDF of the Gamma([a], [o]/a) distribution.

(d) Use the same sample Y7,...,Y,, used within the Accept—Reject method, now in the
corresponding Metropolis—Hastings algorithm to generate n = 5000 realizations of
the target distribution Gamma(c, 1) with a = 4.85.

(e) Compare both methods with respect to:

i. their acceptance rates,
ii. their estimates for the mean of the Gamma(4.85, 1) distribution, which is 4.85,

iii. the correctness of the target distribution,

Discuss your results.

Exercise 5 (Optional)

Consider a Markov chain {X,,} ~ Markov(w, P) on a discrete state space X at equilibrium,
with P irreducible, and 7 the unique invariant probability measure of P. Let [2 be the Hilbert
space 12 = {f: X - R: Y,y f(i)*m < oo} with inner product (fs 9z = Diex f()g(i)mi,
and 12 = {f € 12 : Er[f] = 0}.

1.

2.

™

Show that if (P, ) are in detailed balance, then (Pf, g);2z = (f, Pg);2 for any f,g € 12
Show that E[f(X,,)f(Xm)] = (P "f, f);2 for any f € 12 and m > n.

Consider now the estimator

of u = E;[f] under the assumption that
1 & -
Varlin) = 5 >_a(P'f, P,

with f = f — E.[f] € 2 and

1, 1=0
aN=4.. (2)
21— %), 1>0

! Hint: Recall that 25:1 &x ~ Gamma(K, 3) for K € N, if & e Gamma(1, 8) = Exp(f).



4. Conclude that the asymptotic variance V(f, p) == limy 0o NVarz(fin) satisfies V(f,p) =
(2= P) = Df, fle if

(Pg,9):2
sup ———=

i S P

=p<1 (3)
5. Consider now the two irreducible transition matrices P; and P, both in detailed balance
with 7 and satisfying (3) for some /1, f2. Show that if (P;);; > (P2);;Vi # j, then
V(f,Pl)SV(f,PQ), (4)
for any f € [2.

Hint: Take P(\) = (1 — A)Py + AP, A € [0,1] and show that -LV(f, P(X)) > 0.



