Stochastic Simulation

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 10 – 21 November 2024

Markov Chains Monte Carlo

Exercise 0

Recall the Metropolis-Hastings algorithm 1.

```
Algorithm 1 Metropolis-Hastings Algorithm
```

```
Require: \lambda (initial distribution), Q (proposal distribution), \pi (target distribution)
 1: Generate X_0 \sim \lambda
 2: for n = 0, 1, \dots do
       Generate candidate new state \tilde{X}_{n+1} \sim Q(X_n, \cdot)
 3:
       Generate U \sim \mathcal{U}([0,1])
 4:
       if U \leq \alpha(X_n, \tilde{X}_{n+1}) then
          Set X_{n+1} = \tilde{X}_{n+1} {Candidate accepted with probability \alpha}
 6:
 7:
          Set X_{n+1} = X_n {Candidate rejected with probability 1 - \alpha}
 8:
       end if
 9:
10: end for
```

- 1. Compute the transition matrix of the Markov chain $\{X_n\}_{n\geq 0}$ generated by Algorithm 1.
- 2. Show that the transition matrix is in detailed balance with π .

Exercise 1

Let us consider a 2D uniform square-lattice with atoms placed at each vertex, as is sketched in Figure 1. The atoms can have an upward (red arrow) or a downward (blue arrow) pointing magnetic moment (so-called spin). Specifically, let the lattice be made out of $m \times m$ atoms. Therefore the system's possible states are the 2^{m^2} possible spin choices for the m^2 atoms. That is, the spin of the atom at position (i,j) in the lattice is denoted with s_{ij} , $1 \le i, j \le m$, and can take a value in $\{-1, +1\}$. A specific system configuration is described by the matrix $S = (s_{ij}) \in \{-1, +1\}^{m \times m}$, containing the spin of each of the m^2 atoms.

The energy of a given system state of this Ising model is given by

$$H(\mathbf{S}) = -\sum_{i,j=1}^{m} \left(\frac{1}{2} J s_{ij} (s_{i-1,j} + s_{i+1,j} + s_{i,j-1} + s_{i,j+1}) + B s_{ij} \right) , \qquad (1)$$

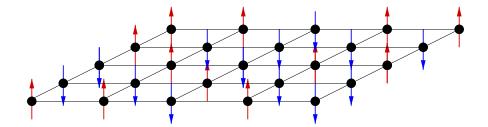


Figure 1: Sketch of 2D square-lattice Ising model.

where J is a magnetic coupling constant and B is a constant describing the external magnetic field. To account for boundary effects, we set $s_{-1,j} = s_{j,-1} = s_{m,j} = s_{j,m} = 0$ in (1). The probability of obtaining a specific system state is then given by the *Boltzmann* distribution with Probability Mass Function (PMF)

$$f(\mathbf{S}) \equiv f_{\beta}(\mathbf{S}) = \frac{1}{Z_{\beta}} e^{-H(\mathbf{S})\beta}$$
, (2)

where $\beta = 1/(k_B T)$ denotes the so-called inverse-temperature (or thermodynamic beta) with k_B being the Boltzmann constant and T the absolute temperature. Here, Z_{β} denotes the normalization constant that makes the target distribution $f_{\beta} : \{-1, +1\}^{m \times m} \to \mathbb{R}_+$ a proper PMF.

Let's denote by $M(S) = \sum_{i,j=1}^{m} s_{ij}/m^2$ the system's average magnetic moment corresponding to the configuration S. Notice that the random realizations of the configuration matrix S depend on the inverse temperature β . The expected value of the average magnetic moment $\overline{M}(\beta)$ as a function of the inverse temperature β thus reads

$$\overline{M}(\beta) = \sum_{S \in \mathcal{K}} M(S) f_{\beta}(S) = \frac{1}{Z_{\beta}} \sum_{S \in \mathcal{K}} M(S) e^{-H(S)\beta} , \qquad (3)$$

where $\mathcal{K} = \{-1,1\}^{m \times m}$ is the set of all possible system configurations. Since the explicit computation of the normalization constant Z_{β} is computationally expensive (Explain why!), we rely on the Metropolis–Hastings algorithm here. That is, at each step a candidate configuration is proposed by randomly choosing an atom, with uniform probability, and "flipping" its spin.

- 1. Write a Python function that implements the Metropolis–Hastings algorithm for the Ising model. The input parameters for your function are: the number of steps n of the chain that should be simulated, the number of atoms m^2 , the inverse temperature β , the constants J and B, and the initial state of the system. The function should return a list of energies and mean magnetic moments computed for each step of the chain, as well as the final configuration of the system.
- 2. Use your Python function with $\beta=1/3$ and for n, such that both the energy and the average magnetic moment appear to have reached stationarity. Plot also the final system configuration. Furthermore, compute the mean magnetic moment $\overline{M}(\beta)$ for different values of $\beta \in [\frac{1}{3}, 1]$ and $n=5\cdot 10^6$. Choose a lattice of 50×50 atoms, J=1, and B>0 for all simulations.

Exercise 2

Recall that the standard Metropolis-Hastings algorithm accepts a new candidate state j drawn from the transition matrix Q, given the current state i, with probability $\alpha(i,j) = \min\left(\frac{\pi_j Q_{ji}}{\pi_i Q_{ij}}, 1\right)$, where π is the target probability measure. Consider now a Metropolis-Hastings algorithm that uses the following alternative acceptance probabilities

$$\alpha_1(i,j) = \frac{\pi_j Q_{ji}}{\pi_j Q_{ji} + \pi_i Q_{ij}},$$

and

$$\alpha_2(i,j) = \frac{\delta_{ij}}{\pi_i Q_{ij}},$$

with δ such that $\delta_{ij} \leq \pi_i Q_{ij} \forall i, j$. Show that, in both cases, the produced Markov chain satisfies the detailed balance condition.

Exercise 3

Consider the following AR(k) model defined by

$$\boldsymbol{y}_n = A\boldsymbol{y}_{n-1} + \boldsymbol{\xi}_n, \quad \boldsymbol{\xi}_n \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,\Gamma), \quad \boldsymbol{\xi}_n \in \mathbb{R}^k,$$

with $A \in \mathbb{R}^{k \times k}$, invertible and $\Gamma \in \mathbb{R}^{k \times k}$ full rank.

- (a) Show that the previous process is a Markov chain.
- (b) Show that if $y_0 \sim \mathcal{N}(0, \Gamma_0)$, then y_n follows a multivariate Gaussian distribution for all n.
- (c) Find the invariant distribution of an AR(1) process (i.e, a special case of the previous model).
- (d) Simulate the AR(1) process and assess its convergence to the invariant distribution. In addition, verify the ergodic theorem on the quantity

$$\hat{\mu}^N = \frac{1}{N} \sum_{n=1}^N y_n.$$

(e) Establish theoretically the convergence of $\hat{\mu}^N$ by using the strong law of large numbers, and a weighted version of the central limit theorem (e.g. Lindberg-Feller)