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Exercise 0
Recall the Metropolis-Hastings algorithm 1.

Algorithm 1 Metropolis-Hastings Algorithm
Require: λ (initial distribution), Q (proposal distribution), π (target distribution)

1: Generate X0 ∼ λ
2: for n = 0, 1, . . . do
3: Generate candidate new state X̃n+1 ∼ Q(Xn, ·)
4: Generate U ∼ U([0, 1])
5: if U ≤ α(Xn, X̃n+1) then
6: Set Xn+1 = X̃n+1 {Candidate accepted with probability α}
7: else
8: Set Xn+1 = Xn {Candidate rejected with probability 1− α}
9: end if

10: end for

1. Compute the transition matrix of the Markov chain {Xn}n≥0 generated by Algorithm 1.

2. Show that the transition matrix is in detailed balance with π.

Exercise 1
Let us consider a 2D uniform square-lattice with atoms placed at each vertex, as is sketched
in Figure 1. The atoms can have an upward (red arrow) or a downward (blue arrow) pointing
magnetic moment (so-called spin). Specifically, let the lattice be made out of m×m atoms.
Therefore the system’s possible states are the 2m

2 possible spin choices for the m2 atoms.
That is, the spin of the atom at position (i, j) in the lattice is denoted with sij , 1 ≤ i, j ≤ m,
and can take a value in {−1,+1}. A specific system configuration is described by the matrix
S = (sij) ∈ {−1,+1}m×m, containing the spin of each of the m2 atoms.

The energy of a given system state of this Ising model is given by

H(S) = −
m∑

i,j=1

(
1

2
Jsij(si−1,j + si+1,j + si,j−1 + si,j+1) +Bsij

)
, (1)
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Figure 1: Sketch of 2D square-lattice Ising model.

where J is a magnetic coupling constant and B is a constant describing the external magnetic
field. To account for boundary effects, we set s−1,j = sj,−1 = sm,j = sj,m = 0 in (1). The
probability of obtaining a specific system state is then given by the Boltzmann distribution
with Probability Mass Function (PMF)

f(S) ≡ fβ(S) =
1

Zβ
e−H(S)β , (2)

where β = 1/(kBT ) denotes the so-called inverse-temperature (or thermodynamic beta) with
kB being the Boltzmann constant and T the absolute temperature. Here, Zβ denotes the
normalization constant that makes the target distribution fβ : {−1,+1}m×m → R+ a proper
PMF.

Let’s denote by M(S) =
∑m

i,j=1 sij/m
2 the system’s average magnetic moment corre-

sponding to the configuration S. Notice that the random realizations of the configuration
matrix S depend on the inverse temperature β. The expected value of the average magnetic
moment M(β) as a function of the inverse temperature β thus reads

M(β) =
∑
S∈K

M(S)fβ(S) =
1

Zβ

∑
S∈K

M(S)e−H(S)β , (3)

where K = {−1, 1}m×m is the set of all possible system configurations. Since the explicit
computation of the normalization constant Zβ is computationally expensive (Explain why!),
we rely on the Metropolis–Hastings algorithm here. That is, at each step a candidate config-
uration is proposed by randomly choosing an atom, with uniform probability, and “flipping”
its spin.

1. Write a Python function that implements the Metropolis–Hastings algorithm for the
Ising model. The input parameters for your function are: the number of steps n of the
chain that should be simulated, the number of atoms m2, the inverse temperature β,
the constants J and B, and the initial state of the system. The function should return
a list of energies and mean magnetic moments computed for each step of the chain, as
well as the final configuration of the system.

2. Use your Python function with β = 1/3 and for n, such that both the energy and the
average magnetic moment appear to have reached stationarity. Plot also the final system
configuration. Furthermore, compute the mean magnetic moment M(β) for different
values of β ∈ [13 , 1] and n = 5 · 106. Choose a lattice of 50× 50 atoms, J = 1, and B > 0
for all simulations.

2



Exercise 2
Recall that the standard Metropolis-Hastings algorithm accepts a new candidate state j
drawn from the transition matrix Q, given the current state i, with probability α(i, j) =

min
(
πjQji

πiQij
, 1
)

, where π is the target probability measure. Consider now a Metropolis-
Hastings algorithm that uses the follwing alternative acceptance probabilities

α1(i, j) =
πjQji

πjQji + πiQij
,

and
α2(i, j) =

δij
πiQij

,

with δ such that δij ≤ πiQij∀i, j. Show that, in both cases, the produced Markov chain
satisfies the detailed balance condition.

Exercise 3
Consider the following AR(k) model defined by

yn = Ayn−1 + ξn, ξn
iid∼ N (0,Γ), ξn ∈ Rk,

with A ∈ Rk×k, invertible and Γ ∈ Rk×k full rank.

(a) Show that the previous process is a Markov chain.

(b) Show that if y0 ∼ N (0,Γ0), then yn follows a multivariate Gaussian distribution for all
n.

(c) Find the invariant distribution of an AR(1) process (i.e, a special case of the previous
model).

(d) Simulate the AR(1) process and assess its convergence to the invariant distribution. In
addition, verify the ergodic theorem on the quantity

µ̂N =
1

N

N∑
n=1

yn.

(e) Establish theoretically the convergence of µ̂N by using the strong law of large numbers,
and a weighted version of the central limit theorem (e.g. Lindberg-Feller)
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