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QMC and LH sampling

On randomized QMC formulas

Let P = {X1,...,Xn}, Xi € R% be a low-discrepancy sequence and denote the QMC
quadrature by figymc = % ZZ]L 1(X;). We are interested in estimating the error | — figmc|-
Notice that since the points X; are not i.i.d., we can’t use a variance estimator or a CLT as in
MC. In order to be able to do this, we can randomize the QMC formula. Let U; id U([0,1]%),
7 =1,...,K. If the set of points P is a low discrepancy point set, so is the randomly
shifted point set Pyj = {{X1 + Uj},...,{Xn + U;}}, where {-} represents the fractional
part. Moreover, since U; i U([0,11%), so is {X; + U;} for any ¢ = 1,...,N. Thus, we can
apply a Monte Carlo estimator on figarc, by computing K independent estimators /:ng v for
each of the randomly shifted point sets Py ;, and then averaging out the estimators. This in
turn results in an unbiased estimator ﬁQ mo of p, for which we can use the standard variance
estimator and CLT results. C.f the lecture notes for more details.

On generating low-discrepancy sequences

Use the module sobol_new.py available on the course’s website to generate Sobol sequences.!

The Python ? syntax R = generate_points(N,d,0) generates a matrix R of size N x d
corresponding to N vectors of dimension d.

Exercise 1

Consider the problem of approximating the integral
L) = [ f@)de,
[0,1)7

for some given function f: [0, l]d — R. In this exercise we will investigate the approximation
qualities of different estimators of I4(f) for various functions f, which differ mainly by their

!These functions were adapted from John Burkardt’s website page at the Florida State University:
http://people.sc.fsu.edu/~jburkardt/m_src/m_src.html. There you can also find many other sequence
generators.

2Download the files sobol_new.py and Sobol_new-joe-kuo-6.21201 from the course website and use them
by writing from sobol_new import * at the beginning of your python script. Both files should be in the same
directory



regularity. Specifically, for each function listed below address to the following points. Perform
all computations at least for d = 2 and d = 20.

1.

Implement a crude Monte Carlo estimator to approximate the integral I(f).

Estimate the error using the central limit theorem (CLT'). Plot both the exact error (c.f.
exact solutions below) and the CLT-based error estimate as functions of the number of
used samples M, say, and estimate the convergence rate.

. Implement a Latin Hypercube Sampling estimator using N points in the hypercube to

approximate I(f).

Estimate the error using a sample variance estimator based on K repetitions of the Latin
Hypercube Sampling estimator. Again, plot both the exact error and an asymptotic
confidence interval based error estimate as functions of the number of points N, say,
and estimate the convergence rate.

Implement a Quasi Monte Carlo (QMC) estimator to approximate the integral I(f).
Use the module sobol_1ib.py available on the course’s website to generate Sobol se-
quences.

Estimate the error using the CLT by estimating the variance with a randomized QMC.
Once again, plot both the exact error and estimated error based on random shifts as
functions of the number of N and estimate the convergence rate.

List of functions

Investigate the approximation techniques for I;( f) mentioned above for the following functions
f:[0,1]¢ - R, with & = (x1,...,24). Please note that a testing suite with several of the
function definitions listed below can be found here?.

1.

Oscillatory function: f(x) = cos (27rw1 + Z;l:l cjxj), with ¢; = 9/d, wy = 3.
The exact solution is:

d
() = WH% @)

where ¢ denotes the imaginary unit and R(z) the real part of z € C.

~1
. Product peak: f(z) = []% (cj_Q + (z; — wj)2> , with ¢; = 7.25/d and w; = 3.

J=1
Exact solution:

(arctan(c;(1 — wj)) + arctan(cjw;)) .

||:j&

Gaussian: f(x) = exp (— Z?Zl c?(xj - wj)z), with ¢; = 7.03/d and w; = 3.

Exact solution:

_ ﬁ ;/j(erf(cj(l —wj)) + erf(cjwj)> :

3https://people.math.sc.edu/Burkardt/c_src/testpack/testpack.html



4. Continuous function: f(x) = exp (— Z;l:l cjley — wﬂ), with ¢; = 2.04/d and w; = 3.
Exact solution:

¢
L =1 - (2 _ e _ e—cju—wj)) .

5. Discontinuous function:
0 if 1 > wy or 29 > we
flx) = d .
exp (D1 ¢jx;) otherwise,

us
5 -

d )
szg(ecJ — 1) (eclwl
d
Hj:l Cj

with ¢; = 4.3/d, wy = 7§, and wo =
Exact solution:

Ia(f) = — (=™ —1).

6. Volume of the simplex:

0 otherwise.

Fa) = {1 it Y4 ;<1

Exact solution:

Exercise 2

Consider the random boundary value problem (BVP)

(a(a:,w)u’(x,w))/ =0, in (0,L),
U(O, ) =0,
CL(L, ')u,(La ) =1,

where w represents an elementary random event, so that a = a(z,w) is a random field. The
BVP is a simplified model for a linear beam of length L, which is fixed on one side (x = 0)
and free on the other at which a unit load is applied. Here, the random field ¢ models the
beam’s spatially varying uncertain material properties. We are interested in quantifying the
resulting uncertainty on the beam’s displacement at the free end-point. Specifically, we are
interested in studying the expected value of the random variable

L
7z =Zw):=u(L,w) :/0 a(:vlw) dx .

However, Z is usually not computable for a general elasticity coefficient a. Instead, we
consider the computable, approximate random quantity of interest Zj, which is obtained by
approximating the integral by the midpoint rule on a uniform grid,
-1 1
Zr=Zi(w):=h _
2 a5

with x; =ih,i=0,...,] € Nyand h = L/I.

We are interested in approximating E[Z;] for L = 1 for two different elasticity coefficients:



(i) the random field a is given by

d
o cos(mnx) .
ai(z,w) = p+ 2 E TYn(w) , Yu(w)~U(-1,1) iid.,

n=1
where p =1 and o = 4,

(ii) let as(z,w) = exp(k(z,w)), where

d sin((n — 3)mz)
k(z,w) =x + \@Z (—ZYn(w) , Yo (w) ~N(0,1) iid.
n=1

n— 3

To that end, approximate E[Z;] for various values of d and for various sub-divisions I using
(a) a crude Monte Carlo method, (b) Latin Hybercube Sampling (LHS) and (c) Quasi Monte
Carlo (QMC) sampling. Use repeated LHS and randomized QMC to estimate the error and
provide asymptotic confidence intervals.



