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Control Variates and Stratification

Exercise 1
Suppose we are given a control variate Y with known mean E(Y ) and consider the usual
modified random variable

Z̃α = Z + α
(
Y − E(Y )

)
,

from which we aim at estimating µ = E(Z). In fact, here we consider the following one-shot
algorithm for estimating µ:

• Generate N i.i.d. replicas
(
Z(i), Y (i)

)
, i = 1, . . . , N .

• Estimate αopt by α̂opt := −σ̂2Z,Y /σ̂2Y , using the usual unbiased mean, variance, and
covariance estimators based on the sample

(
Z(i), Y (i)

)
i=1,...,N

.

• Compute the control variate estimator of µ as

µ̂ =
1

N

N∑
i=1

(
Z(i) + α̂opt

(
Y (i) − E(Y )

))
.

1. Show that the estimator µ̂ is asymptotically normally distributed, in the sense that
√
N
µ̂− µ

σopt
⇒

N→∞
N (0, 1) , where σopt =

√
Var(Z̃αopt) .

Furthermore, explain why the asymptotic normality also holds when σopt is replaced by
the usual empirical standard deviation based on a sample of realizations of Z̃αopt .
Hint: Consider re-writing the estimator as the summation of the control variate estimator
computed with the exact αopt and a correction term involving α̂opt − αopt as follows:

µ̂ =
1

N

N∑
i=1

(
Z(i) + αopt

(
Y (i) − E(Y )

))
+ (α̂opt − αopt)

( 1

N

N∑
i=1

Y (i) − E(Y )
)
.

Then, recall Slutsky’s theorem, which states that if ξn converges in distribution to ξ and
ηn converges in probability to a constant c, then f(ξn, ηn) ⇒

n→∞
f(ξ, c) for any continuous

function f : R× R → R. Here, the symbol ⇒ denotes convergence in distribution.

2. Implement the one-shot algorithm described above. Apply it to the examples considered
in Lab 06, Exercise 2. That is, approximate the probability p = P(X ∈ A) for the sets
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A =
{
x = (x1, x2) ∈ R2 : xi ≥ a, i = 1, 2

}
with a = 1, 3, 10. Here, X ∼ N (0,Σ) with

Σ =
(

4 −1
−1 4

)
.

(a) First, explain why Y = I{X1+X2≥2a} for X = (X1, X2) could be a decent control
variate for this problem.

(b) Then perform simulations and investigate the variance reduction effect for the
control variate Y . Moreover, use the result proved in point 1 to compute asymptotic
95% confidence intervals.

(c) Can you think of other appropriate control variates?

Exercise 2
Suppose we wish to construct a Brownian motion path {Bt : B0 = 0, 0 ≤ t ≤ T} that finishes
at T = 1 in S distinct strata. To stratify standard Brownian motion on its endpoint, one first
generates the S values at T = 1 and then samples the Brownian paths on the interval [0, T ]
conditional upon these stratified terminal values.

1. Implement an algorithm that generates stratified standard Brownian motion using S
equiprobable strata. Specifically, for each stratum Ωj , j = 1, . . . , S, your algorithm
should produce Nj stratified Brownian samples paths B(i,j)

tm , i = 1, . . . , Nj , evaluated
in the discrete times tm = m/M with m = 1, . . . ,M ∈ N. Test your implementation
for S = 12, M = 1000, and Nj = 2 by plotting the stratified samples paths. Hint:
Brownian bridge sampling.

2. Consider the geometric Brownian motion process Xt that solves

dX = rX dt+ σX dW , X(0) = X0 ,

and which is given by Xt = X0e
Yt , where Yt = (r − σ2/2)t + σWt with W being a

standard Wiener process. For M ∈ N, let

Ψ
(
Xt0 , . . . , XtM

)
= max

0≤m≤M
Xtm − min

0≤m≤M
Xtm ,

where tm = m/M as before. We want to estimate µ = E
[
Ψ
(
Xt0 , . . . , XtM

)]
for X0 = 6,

r = 0.05, σ = 0.3, and M = 100. Use your procedure developed in point 1 to estimate
µ using stratified sampling with S = 10 strata. Moreover, compute the total number
of samples N such that the asymptotic 99% confidence interval is smaller than 2 tol for
tol = 10−2, 10−3. Investigate both proportional and optimal sampling allocation in each
strata.
Remark: The function Ψ is related to the value of a look-back option whose payoff is
equivalent to buying at the minimum and selling at the maximum price on the time
interval [0, T = 1]. As given here, Ψ omits the (constant) discount factor e−rT that
compensates for waiting until time T to collect the payoff.

3. Repeat the previous point, but now consider only Nj = 2 samples per stratum Ωj ,
j = 1, . . . , S, and investigate the estimator’s variance decay as a function of S.
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Exercise 3
Consider the problem of estimating µ = E(Z) for Z = ψ(X) and X ∼ U(0, 1).

1. Show that the randomized midpoint quadrature estimator

µ̂S :=
1

S

S∑
j=1

ψ

(
j − 1 + Uj

S

)
,

with U1, . . . , US i.i.d. U(0, 1), corresponds to a stratified sampling estimator of µ. Hint:
consider uniform strata.
Optional: explain why µ̂S is called randomized midpoint quadrature estimator.

2. Suppose that ψ ∈ C1
(
[0, 1]

)
Show that the estimator µ̂S , which is a Monte Carlo type

estimator, converges with super-canonical rate (i.e. faster than S−1/2). Specifically,
show that √

E[(µ− µ̂S)
2] ≤ cS−3/2 ,

for an appropriate positive constant c < ∞ independent of S. Determine also the
constant c.

Exercise 4
1. Consider the random variable Z = 4 I{U2

1+U2
2≤1} with U1, U2

i.i.d.∼ U(0, 1), so that E(Z) =
π. Consider the control variates Z̃α,i = Z − α(Yi − E(Yi)) where the controls Yi are
given by:

Y1 := I{U1+U2≤1} , Y2 := I{U1+U2≥
√
2} , and Y3 := (U1 + U2 − 1)I{1<U1+U2≤

√
2} .

Estimate their respective expected variance reduction Var(Z̃α,i)/Var(Z) using N = 106

simulations.

2. Consider again the random variable Z = 4 I{U2
1+U2

2≤1} as in point 1. We now wish to
use multiple control variates and compare their variance reduction to the single control
variate case. Consider the control variate Z̃α = Z − α · (Y − E(Y )) where α ∈ Rd

and Y is a d-dimensional control vector. Perform simulations and report the expected
variance reduction Var(Z̃α)/Var(Z) for each of the following control vectors:

Y 1 := (Y1, Y2)
T , Y 2 := (Y1, Y3)

T , Y 3 := (Y2, Y3)
T , and Y 4 := (Y1, Y2, Y3)

T .

Here, the random variables Yi, i = 1, 2, 3 are as described in point 1.

3. Implement a one-shot control variate algorithm for the control vector with the best
variance reduction.
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Exercise 5 (Optional)
Let Z be a random variable of which we would like to estimate the mean value and let Y be
a suitable control variate. It the mean of Y is known, we can build a Control Variate Monte
Carlo estimator as

µ̂CV =
1

N

∑
i

(Z(i) − α(Y (i) − E[Y ])), with (Z(i), Y (i)) ∼ i.i.d (Z, Y ) (1)

Consider now that case in which E[Y ] is not known and we need to estimate it via sampling.

1. A first idea is to estimate E[Y ] by the sample average estimator µ̂Y = 1
N

∑
j Y

(j) using
the same sample as in Eq. (1). Show that the resulting estimator is unbiased but its
variance is not smaller than (actually equal to) the one of a crude Monte Carlo estimator
on Z.

2. A second idea is to estimate E[Y ] with an independent Monte Carlo estimator using a
sample size NY . Let us denote by CZ the cost of generating Z(i) and by CY the cost
of generating Y (i), which we assume smaller than CZ , and rename the sample size N
used in Eq. (1) as NZ . For a given total budget C = NZ(CZ + CY ) + NY CY for this
control variate estimator, determine the optimal choice of NZ and NY and the minimal
variance achievable by the above strategy.

3. Compare then the variance obtained with that of a crude Monte Carlo estimator that
uses a sample size N the exhausts the same total budget C = NCZ .
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