Stochastic Simulations

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 07 - 31 October 2024

Control Variates and Stratification

Exercise 1

Suppose we are given a control variate Y with known mean $\mathbb{E}(Y)$ and consider the usual modified random variable

$$\tilde{Z}_{\alpha} = Z + \alpha (Y - \mathbb{E}(Y))$$
,

from which we aim at estimating $\mu = \mathbb{E}(Z)$. In fact, here we consider the following *one-shot algorithm* for estimating μ :

- Generate N i.i.d. replicas $(Z^{(i)}, Y^{(i)}), i = 1, \dots, N$.
- Estimate α_{opt} by $\hat{\alpha}_{\text{opt}} := -\hat{\sigma}_{Z,Y}^2/\hat{\sigma}_Y^2$, using the usual unbiased mean, variance, and covariance estimators based on the sample $(Z^{(i)}, Y^{(i)})_{i=1,\dots,N}$.
- Compute the control variate estimator of μ as

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \left(Z^{(i)} + \hat{\alpha}_{\text{opt}} \left(Y^{(i)} - \mathbb{E}(Y) \right) \right).$$

1. Show that the estimator $\hat{\mu}$ is asymptotically normally distributed, in the sense that

$$\sqrt{N} \frac{\hat{\mu} - \mu}{\sigma_{\text{opt}}} \underset{N \to \infty}{\Rightarrow} \mathcal{N}(0, 1) , \text{ where } \sigma_{\text{opt}} = \sqrt{\text{Var}(\tilde{Z}_{\alpha_{\text{opt}}})} .$$

Furthermore, explain why the asymptotic normality also holds when $\sigma_{\rm opt}$ is replaced by the usual empirical standard deviation based on a sample of realizations of $\tilde{Z}_{\alpha_{\rm opt}}$.

<u>Hint:</u> Consider re-writing the estimator as the summation of the control variate estimator computed with the exact $\alpha_{\rm opt}$ and a correction term involving $\hat{\alpha}_{\rm opt} - \alpha_{\rm opt}$ as follows:

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \left(Z^{(i)} + \alpha_{opt} (Y^{(i)} - \mathbb{E}(Y)) \right) + (\hat{\alpha}_{opt} - \alpha_{opt}) \left(\frac{1}{N} \sum_{i=1}^{N} Y^{(i)} - \mathbb{E}(Y) \right).$$

Then, recall Slutsky's theorem, which states that if ξ_n converges in distribution to ξ and η_n converges in probability to a constant c, then $f(\xi_n, \eta_n) \underset{n \to \infty}{\Rightarrow} f(\xi, c)$ for any continuous function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$. Here, the symbol \Rightarrow denotes convergence in distribution.

2. Implement the one-shot algorithm described above. Apply it to the examples considered in Lab 06, Exercise 2. That is, approximate the probability $p = \mathbb{P}(X \in A)$ for the sets

 $A = \{ \boldsymbol{x} = (x_1, x_2) \in \mathbb{R}^2 : x_i \ge a, i = 1, 2 \}$ with a = 1, 3, 10. Here, $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{0}, \Sigma)$ with $\Sigma = \begin{pmatrix} 4 & -1 \\ -1 & 4 \end{pmatrix}$.

- (a) First, explain why $Y = \mathbb{I}_{\{X_1 + X_2 \ge 2a\}}$ for $\boldsymbol{X} = (X_1, X_2)$ could be a decent control variate for this problem.
- (b) Then perform simulations and investigate the variance reduction effect for the control variate Y. Moreover, use the result proved in point 1 to compute asymptotic 95% confidence intervals.
- (c) Can you think of other appropriate control variates?

Exercise 2

Suppose we wish to construct a Brownian motion path $\{B_t \colon B_0 = 0, 0 \le t \le T\}$ that finishes at T = 1 in S distinct strata. To stratify standard Brownian motion on its endpoint, one first generates the S values at T = 1 and then samples the Brownian paths on the interval [0, T] conditional upon these stratified terminal values.

- 1. Implement an algorithm that generates stratified standard Brownian motion using S equiprobable strata. Specifically, for each stratum Ω_j , $j=1,\ldots,S$, your algorithm should produce N_j stratified Brownian samples paths $B_{t_m}^{(i,j)}$, $i=1,\ldots,N_j$, evaluated in the discrete times $t_m=m/M$ with $m=1,\ldots,M\in\mathbb{N}$. Test your implementation for $S=12,\ M=1000$, and $N_j=2$ by plotting the stratified samples paths. Hint: Brownian bridge sampling.
- 2. Consider the geometric Brownian motion process X_t that solves

$$dX = rX dt + \sigma X dW$$
, $X(0) = X_0$,

and which is given by $X_t = X_0 e^{Y_t}$, where $Y_t = (r - \sigma^2/2)t + \sigma W_t$ with W being a standard Wiener process. For $M \in \mathbb{N}$, let

$$\Psi(X_{t_0}, \dots, X_{t_M}) = \max_{0 \le m \le M} X_{t_m} - \min_{0 \le m \le M} X_{t_m} ,$$

where $t_m = m/M$ as before. We want to estimate $\mu = \mathbb{E}\left[\Psi\left(X_{t_0}, \dots, X_{t_M}\right)\right]$ for $X_0 = 6$, r = 0.05, $\sigma = 0.3$, and M = 100. Use your procedure developed in point 1 to estimate μ using stratified sampling with S = 10 strata. Moreover, compute the total number of samples N such that the asymptotic 99% confidence interval is smaller than $2 \, tol$ for $tol = 10^{-2}, 10^{-3}$. Investigate both proportional and optimal sampling allocation in each strata.

Remark: The function Ψ is related to the value of a look-back option whose payoff is equivalent to buying at the minimum and selling at the maximum price on the time interval [0, T = 1]. As given here, Ψ omits the (constant) discount factor e^{-rT} that compensates for waiting until time T to collect the payoff.

3. Repeat the previous point, but now consider only $N_j = 2$ samples per stratum Ω_j , $j = 1, \ldots, S$, and investigate the estimator's variance decay as a function of S.

Exercise 3

Consider the problem of estimating $\mu = \mathbb{E}(Z)$ for $Z = \psi(X)$ and $X \sim U(0,1)$.

1. Show that the randomized midpoint quadrature estimator

$$\hat{\mu}_S := \frac{1}{S} \sum_{j=1}^S \psi\left(\frac{j-1+U_j}{S}\right),\,$$

with U_1, \ldots, U_S i.i.d. U(0,1), corresponds to a stratified sampling estimator of μ . Hint: consider uniform strata.

Optional: explain why $\hat{\mu}_S$ is called randomized midpoint quadrature estimator.

2. Suppose that $\psi \in C^1([0,1])$ Show that the estimator $\hat{\mu}_S$, which is a Monte Carlo type estimator, converges with *super-canonical rate* (i.e. faster than $S^{-1/2}$). Specifically, show that

$$\sqrt{\mathbb{E}[(\mu - \hat{\mu}_S)^2]} \le cS^{-3/2} ,$$

for an appropriate positive constant $c < \infty$ independent of S. Determine also the constant c.

Exercise 4

1. Consider the random variable $Z = 4 \mathbb{I}_{\{U_1^2 + U_2^2 \le 1\}}$ with $U_1, U_2 \stackrel{\text{i.i.d.}}{\sim} \mathcal{U}(0, 1)$, so that $\mathbb{E}(Z) = \pi$. Consider the control variates $\tilde{Z}_{\alpha,i} = Z - \alpha(Y_i - \mathbb{E}(Y_i))$ where the controls Y_i are given by:

$$Y_1 := \mathbb{I}_{\{U_1 + U_2 \le 1\}}, \quad Y_2 := \mathbb{I}_{\{U_1 + U_2 \ge \sqrt{2}\}}, \quad \text{and} \quad Y_3 := (U_1 + U_2 - 1)\mathbb{I}_{\{1 < U_1 + U_2 \le \sqrt{2}\}}.$$

Estimate their respective expected variance reduction $Var(\tilde{Z}_{\alpha,i})/Var(Z)$ using $N=10^6$ simulations.

2. Consider again the random variable $Z=4\mathbb{I}_{\{U_1^2+U_2^2\leq 1\}}$ as in point 1. We now wish to use multiple control variates and compare their variance reduction to the single control variate case. Consider the control variate $\tilde{Z}_{\alpha}=Z-\alpha\cdot (Y-\mathbb{E}(Y))$ where $\alpha\in\mathbb{R}^d$ and Y is a d-dimensional control vector. Perform simulations and report the expected variance reduction \mathbb{V} ar(\tilde{Z}_{α})/ \mathbb{V} ar(Z) for each of the following control vectors:

$$\mathbf{Y}^1 := (Y_1, Y_2)^T$$
, $\mathbf{Y}^2 := (Y_1, Y_3)^T$, $\mathbf{Y}^3 := (Y_2, Y_3)^T$, and $\mathbf{Y}^4 := (Y_1, Y_2, Y_3)^T$.

Here, the random variables Y_i , i = 1, 2, 3 are as described in point 1.

3. Implement a one-shot control variate algorithm for the control vector with the best variance reduction.

Exercise 5 (Optional)

Let Z be a random variable of which we would like to estimate the mean value and let Y be a suitable control variate. It the mean of Y is known, we can build a Control Variate Monte Carlo estimator as

$$\hat{\mu}_{CV} = \frac{1}{N} \sum_{i} (Z^{(i)} - \alpha(Y^{(i)} - E[Y])), \text{ with } (Z^{(i)}, Y^{(i)}) \sim \text{i.i.d } (Z, Y)$$
 (1)

Consider now that case in which $\mathbb{E}[Y]$ is not known and we need to estimate it via sampling.

- 1. A first idea is to estimate $\mathbb{E}[Y]$ by the sample average estimator $\hat{\mu}_Y = \frac{1}{N} \sum_j Y^{(j)}$ using the same sample as in Eq. (1). Show that the resulting estimator is unbiased but its variance is not smaller than (actually equal to) the one of a crude Monte Carlo estimator on Z.
- 2. A second idea is to estimate $\mathbb{E}[Y]$ with an independent Monte Carlo estimator using a sample size N_Y . Let us denote by C_Z the cost of generating $Z^{(i)}$ and by C_Y the cost of generating $Y^{(i)}$, which we assume smaller than C_Z , and rename the sample size N used in Eq. (1) as N_Z . For a given total budget $C = N_Z(C_Z + C_Y) + N_Y C_Y$ for this control variate estimator, determine the optimal choice of N_Z and N_Y and the minimal variance achievable by the above strategy.
- 3. Compare then the variance obtained with that of a crude Monte Carlo estimator that uses a sample size N the exhausts the same total budget $C = NC_Z$.