Stochastic Simulations

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 05 - 10 October 2024

The Monte Carlo method and Variance Reduction Techniques

Exercise 1

A simulator would like to produce an unbiased estimate of $\mathbb{E}(XY)$, where the two independent random variables X and Y have bounded first moments and can be generated by a stochastic simulation. To this end, she simulates $R \in \mathbb{N}$ replications X_1, \ldots, X_R of X and, independently of this, R replications Y_1, \ldots, Y_R of Y. She thus has the following two natural estimators for $\mathbb{E}(XY)$ at her disposal:

$$\operatorname{Est}_1 := \left(\frac{1}{R} \sum_{r=1}^R X_r\right) \left(\frac{1}{R} \sum_{r=1}^R Y_r\right) \quad \text{and} \quad \operatorname{Est}_2 := \frac{1}{R} \sum_{r=1}^R X_r Y_r \ .$$

- 1. Verify that both estimators Est₁ and Est₂ are unbiased.
- 2. Show that $Var(Est_1) < Var(Est_2)$.
- 3. Use the delta method to show that $\sqrt{R}(\operatorname{Est}_1 \mu_x \mu_y) \stackrel{d}{\to} N(0, \tau^2)$. Find τ^2 explicitly and derive a 1α asymptotic confidence interval.

Exercise 2

Algorithm 1 proposes a sequential Monte Carlo method to compute the expectation $\mathbb{E}[X]$ of a random variable X, where the sample size is doubled at each iteration until the estimated $1-\alpha$ confidence interval based on a central limit theorem approximation is smaller than a prescribed tolerance ϵ . The algorithm then outputs the final sample size $N(\epsilon, \alpha)$, as well as the estimated value \bar{X}_N .

Algorithm 1 can be particularly sensitive to the choice of initial sample size N_0 , and as such, we would like to assess the robustness of such an algorithm in estimating $\mathbb{E}[X]$ for different distributions of X. For some values of N_0 ranging between 10 and 50, consider $\alpha = 10^{-1.5}$ and $\epsilon = 1/10$, and the following random variables:

1.
$$X \sim \text{Pareto}(x_m = 1, \gamma = 3.1)$$
 (i.e. with PDF $p(y) = \mathbb{1}_{y > x_m} x_m^{\gamma} \gamma y^{-(\gamma+1)}$), $\mathbb{E}[X] = \frac{\gamma x_m}{\gamma - 1}$.

2.
$$X \sim \text{Lognormal}(\mu = 0, \sigma = 1), \mathbb{E}[X] = \exp\left(\mu + \frac{\sigma^2}{2}\right)$$
.

3.
$$X \sim U([-1,1]), \mathbb{E}[X] = 0.$$

Algorithm 1 Sample Variance Based SMC

Input: N_0 , distribution λ , accuracy $\epsilon > 0$, confidence $1 - \alpha > 0$.

Output: $\overline{X}_{\epsilon,\alpha}$ (i.e, approximation of $\mathbb{E}[X]$ with $X \sim \lambda$), N.

Set k = 0, generate N_k i.i.d. replica $\{X_i\}_{i=1}^{N_k}$ of $X \sim \lambda$ and

$$\bar{X}_{N_k} = \frac{1}{N_k} \sum_{i=1}^{N_k} X_i, \tag{1}$$

$$\overline{\sigma}_{N_k}^2 := \frac{1}{N_k - 1} \sum_{i=1}^{N_k} (X_i - \overline{X}_{N_k})^2.$$
 (2)

while $\bar{\sigma}_{N_k}C_{1-\alpha/2}/\sqrt{N_k} > \epsilon$ do

Set k = k + 1 and $N_k = 2N_{k-1}$.

Generate a new batch of N_k i.i.d. replicas $\{X_i\}_{i=1}^{N_k}$ of $X \sim \lambda$.

Compute the sample variance $\overline{\sigma}_{N_k}^2$ by (2).

end while

Set $N = N_k$, generate i.i.d. samples $\{X_i\}_{i=1}^N$ of λ and compute the output sample mean $\overline{X}_{\epsilon,\alpha}$.

Repeat the simulation $K=20\alpha^{-1}$ times and record the sample sizes $\{N^{(i)}\}_{i=1}^K$ as well as the computed sample means $\{\bar{X}_{\epsilon,\alpha}^{(i)}\}_{i=1}^K$ returned by the algorithm for each run i=1,...,K. Estimate the probability of failure \bar{p} of the algorithm:

$$\overline{p}_K(N_0,\epsilon,\alpha) = \frac{1}{K} \sum_{i=1}^K \mathbb{1}_{|\bar{X}_{\epsilon,\alpha}^{(i)} - \mathbb{E}[X]| > \epsilon}.$$

Then check whether $\overline{p}_K(N_0, \epsilon, \alpha) \leq \alpha$ holds. Repeat your experiment for different values of ϵ and α . Discuss your results. **Hint:** You may generate Pareto (x_m, α) r.v. by inversion.

Then, compare Algorithm 1 with the sequential Monte Carlo method in Algorithm 2, where one realization is added at a time.

Exercise 3

Consider the problem of pricing a Barrier option with maturity T > 0 based on the stock price S, which is given as the solution to the stochastic differential equation

$$dS = rS dt + \sigma S dW , \quad S(0) = S_0 ,$$

where W denotes a standard one-dimensional Wiener process. One can show that $S_t = S_0 e^{X_t}$, where $X_t = (r - \sigma^2/2)t + \sigma W_t$ with W being a standard Wiener process. It follows that S_t has a log-normal distribution for any t > 0. For $m \in \mathbb{N}$, let $t_i = i\Delta t$ with $\Delta t = T/m$ denote the discrete observation times of the stock price S (e.g. daily at market closure). The payoff of a call option subject to a lower barrier is then given by

$$\Psi(S_{t_0}, S_{t_1}, \dots, S_T) = (S_T - K)_+ \mathbb{I}_{\{B \le \min_{i=0,\dots,m}(S_{t_i})\}},$$

Algorithm 2 One-at-a-time Sample Variance Based SMC

Input: N_0 , distribution λ , accuracy $\epsilon > 0$, confidence $1 - \alpha > 0$.

Output: $\overline{X}_{\epsilon,\alpha}$ (i.e, approximation of $\mathbb{E}[X]$ with $X \sim \lambda$), N.

Set k = 0, generate N_k i.i.d. samples $\{X_i\}_{i=1}^{N_k}$ of λ and compute the sample variance

$$\overline{\sigma}_{N_k}^2 := \frac{1}{N_k - 1} \sum_{i=1}^{N_k} (X_i - \overline{X}_{N_k})^2.$$
 (3)

while $\bar{\sigma}_{N_k}C_{1-\alpha/2}/\sqrt{N_k} > \epsilon$ do

Set k = k + 1 and $N_k = N_{k-1} + 1$.

Generate a new i.i.d. sample $X^{(N_k+1)}$ of λ .

Compute

$$\bar{\mu}_{N_k+1} = \frac{N_k}{N_k+1}\bar{\mu} + \frac{1}{N_k+1}X^{(N_k+1)} \tag{4}$$

$$\bar{\sigma}_{N_k+1}^2 = \frac{N_k - 1}{N_k} \sigma_{N_k}^2 + \frac{1}{N_k + 1} (X^{(N_k+1)} - \bar{\mu}_{N_k})^2$$
 (5)

end while

Set $N = N_k$, generate i.i.d. samples $\{X_i\}_{i=1}^N$ of λ and compute the output sample mean $\overline{X}_{\epsilon,\alpha}$.

where $B < S_0$ denotes the Barrier and $K \le S_0$ the strike price. Here, $z_+ = (|z|+z)/2$ denotes the positive part of z. Estimate the expected payoff $\mathbb{E}(\Psi(S_{t_0}, S_{t_1}, \dots, S_T))$ with antithetic variables, using the process parameters m = 1000, r = 0.5, $\sigma = 0.3$, T = 2, $S_0 = 5$, and K = 10. Specifically, investigate the variance reduction effect for different barrier values B.