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Stochastic process generation

Exercise 1

Let X = [X1, Xa, ..., Xa] % 1(]
n-dimensional square I' = [—1,1
that

—1,1]™) be a random vector uniformly distributed over the
]", and define the random variable Z = 1 X||p<1- Observe

1
[=E[7] = /F Tt ap(e)ds = 7o BO.D).

where p(x) is the PDF of U([—1, 1]™), and |B(0,1)| is the volume of the n-dimensional sphere
with center 0 and radius 1.

1. Let n = 2. Use Monte Carlo to approximate the value of I:

1 N
Iy ::Nkzlzk,

For N = 10,100, 1000, 10000, compute Iy as well as an approximate confidence interval
and compare with the exact value I. In addition, plot the relative error M

N in logarithmic scale and verify the convergence rate.

versus

2. (On the choice of N). By a priori analysis (knowing that Z ~ Bernoulli(p) with
p = 7/4), determine three lower bounds for N(a,¢€) with ¢ = 1072 and o = 10~* for
ensuring that

P(|In —7/4| > €) <

using Chebychefl’s inequality (rigorous), the Berry-Esseen Theorem (rigorous) and the

leap of faith B
In—m/4

JVar(Z)/N

Discuss the advantages and disadvantages of using each bound.

N(0,1).

3. An important property of the MC method is that, under very weak regularity assump-
tions, an O(N -1/ 2) convergence rate holds independently of the dimensionality of the
underlying problem. To illustrate this, consider approximating E[Z] as in the first point,
for n = 6.



Exercise 2

Note: Refer to Section 4.4 of the lecture notes.
Consider the chemical reactions between three species S1, So, S3, which are determined by
the following four reaction channels:

S0,
Sl + Sl g SQ )
So =t S1+ 51,
Sy % S5
To simulate this system, consider the process N; = (N}, N2, N?) € N}, where N} denotes the

number of molecules of species S; at time ¢ > 0. In fact, this process is a time-continuous
Markov chain with transition probabilities given by

P(Nysp = Nyjp = (N —1,N* N?)|N, = = (N N3)) = a1(Ny)h + o(h)
P(Nysp = Npg = (N =2, N* +1,N%)|N, = (NI,NQ, N3)) = as(Ny)h + o(h)
P(Nysph = Npg = (N +2,N* = 1, N?)|N, = (Nl, N2 N%)) = ag(Ny)h + o(h)
P(Npyp = Nya = (N',N? =1, N?> + 1)| Ny = (N', N?, N?)) = ay(Ny)h + o(h) ,

4
P(Nith = Ny = (N',N?, N*)|N; = (N', N>, N®)) =1 =1 Y _a;(IN;) + o(h) ,
j=1

for h sufficiently small, where Ny, k € {1,...,5} indexes the possible transitions. Here, the
so-called propensity functions are

NYNT —1)

al(N):clNl, CLQ(N):CQ B N

az(N) = csN? | as(N) = caN? ,

with N = (N1, N2 N3).

1. Try to construct the transition matrix corresponding to the above transition probabil-
ities and note the challenges. Is it possible to simulate the chemical reaction without
the explicit Q matrix? Hint: Think back to how you simulated the process in Exercise
2.1.

2. Utilise the following algorithm to simulate the chemical reaction system. Plot a time
series for each species’ number of molecules for ¢ € [0,T], T = 0.2, for the reaction rates

c1=1, c=5, c3=15, Ca=7

using Ny = (400,800, 0) as initial number of molecules. Repeat the simulation for the
same reaction rates ci,...,cq also for T' = 5.

Exercise 3

Let {N; € Ng: t > 0, Np = 0} be a Poisson process with rate A.



Algorithm 1: Reaction simulation
1: Set No = (Ng, Ng,N§), Jo=0
2: forn=1,2,...do
3:  Compute \ = Z?Zl a;j(Ny,_,)
4:  Generate S, ~ Exp (A\) and set J,, = J,—1 + S
5 aj(Ny

. s . N ne1)
Generate I € {1,2,3,4} with probability mass function P(I = j) = STy,

which is the probability that the j** reaction happens.
6: Set N; = NJn_Nt S [Jn—l, Jn) and NJn = Nt7[
7. end for

1. Show that, conditional on the event {Np = n}, the jump times Ji,...,J, have joint
density function

le ..... Jn(]h,]n):n'T_nH(OS]lSS]nST)

In other words, show that conditional on {Ny = n}, the jump times Ji,...,J, have
the same distribution as an ordered sample of size n from the uniform distribution on
[0, T7].

Hints: Use the joint distribution of the holding times S1,...,Spy1 to first derive the
joint distribution of the jump times, where S;+1 = Jiv1 — Ji.  Then compute the
conditional distribution of the jump times given that Ny = n, using the fact that
{Np =n}={J, <T < Jpt1} a.s.

2. Use the property above to propose an algorithm to generate the process V¢, t € (t1,t2),
conditional upon N, = n; and Ny, = ng > n;. Such a process is called Poisson bridge.
Exercise 4

Let {NN¢,¢t > 0,No = 0} be a non-homogeneous Poisson process with rate A : [0,00) — Ry.
In addition, define A(t) = fg A(s)ds, and let {Ny,t > 0, Ng = 0} be a homogeneous Poisson
process with rate one.

1. Show that ‘the non-homogeneous Poisson process can be obtained as Ny = N; o A(t),
i.e., Nt = NA(t)-

2. Simulate a non-homogeneous Poisson process with rate function A(t) = sin?(¢) on the
interval [0, 50].
Exercise 5 (Optional)
1. Generate a random walk {X,, € Z, n € Ny, Xy = 0} with transition probabilities
P(Xns1 = j1Xn = j=1) = B(Xpp1 = j1Xn = j+1) =a, P(Xpp1 = j1Xn = j) = 1-2a

for some 0 < a < 1/2.



2. Consider the rescaled process Y;, := \/At/(2a)X; for i = 0,...,n with ¢; = iAt. Com-
pare this process with the process Wy, i = 0,...,n, where W; denotes a Wiener process
with Wy = 0. That is, show that both processes “look similar” in the limit as At — 0
by plotting multiple realizations of both processes for n = [1/At].

3. (Optional:) More theoretical analysis of the observed phenomenon:

(a)

Consider the spatial mesh x,, = mAx = m+/At/(2a) for m € Z and the following
notation for the rescaled process’ probability mass function at time ¢;:

U(ti, Tm) =P(Yy, =xm|Yo=0), meZ,i=0,1,...
Use the discrete Chapman—Kolmogorov formula

P(Yiy = 2m|Yo = 0) = Y P(Yey, = 2m|Yy, = 2)P(Yy, = 2[Yo = 0) (1)

k

141

to derive a difference equation for @(t;y1,x,,) in terms of u(t;, ).
Show that the difference equation obtained in 3a corresponds to a finite difference
approximation of the one dimensional heat equation

t
w(t,z) = um(2,:v)7 zeR,t>0,

on a uniform grid z; = iAz and t; = jAt with At = 2ax?, using a second order
centered finite difference stencil in space and a first order forward Euler scheme in
time.

For the standard Wiener process with P(WWy = 0) = 1, we denote the probability
density function at time ¢ > 0 by
o—72/(20)
u(t,xr) := ———, x € R
(t) V27t
For all t > 0 and = € R, show that the density satisfies the same heat equation
introduced in point 3b.



