Stochastic Simulations

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 04 – 3 October 2024

Stochastic process generation

Exercise 1

Let $X = [X_1, X_2, ..., X_n] \stackrel{\text{i.i.d}}{\sim} \mathcal{U}([-1, 1]^n)$ be a random vector uniformly distributed over the n-dimensional square $\Gamma = [-1, 1]^n$, and define the random variable $Z = \mathbb{1}_{\|X\|_{l^2} < 1}$. Observe that

$$I = \mathbb{E}[Z] = \int_{\Gamma} \mathbb{1}_{\|x\|_{l^2} < 1} p(x) dx = \frac{1}{|\Gamma|} |B(0, 1)|,$$

where p(x) is the PDF of $\mathcal{U}([-1,1]^n)$, and |B(0,1)| is the volume of the *n*-dimensional sphere with center 0 and radius 1.

1. Let n=2. Use Monte Carlo to approximate the value of I:

$$\overline{I}_N := \frac{1}{N} \sum_{k=1}^N Z_k,$$

For N=10,100,1000,10000, compute \overline{I}_N as well as an approximate confidence interval and compare with the exact value I. In addition, plot the relative error $\frac{|\overline{I}_N-I|}{I}$ versus N in logarithmic scale and verify the convergence rate.

2. (On the choice of N). By a priori analysis (knowing that $Z \sim \text{Bernoulli}(p)$ with $p = \pi/4$), determine three lower bounds for $N(\alpha, \epsilon)$ with $\epsilon = 10^{-2}$ and $\alpha = 10^{-4}$ for ensuring that

$$\mathbb{P}\left(\left|\overline{I}_N - \pi/4\right| > \epsilon\right) < \alpha$$

using Chebycheff's inequality (rigorous), the Berry-Esseen Theorem (rigorous) and the leap of faith

$$\frac{\overline{I}_N - \pi/4}{\sqrt{\operatorname{Var}(Z)/N}} \sim N(0, 1).$$

Discuss the advantages and disadvantages of using each bound.

3. An important property of the MC method is that, under very weak regularity assumptions, an $O(N^{-1/2})$ convergence rate holds independently of the dimensionality of the underlying problem. To illustrate this, consider approximating $\mathbb{E}[Z]$ as in the first point, for n=6.

Exercise 2

Note: Refer to Section 4.4 of the lecture notes.

Consider the chemical reactions between three species S_1 , S_2 , S_3 , which are determined by the following four reaction channels:

$$S_1 \stackrel{c_1}{\to} \emptyset ,$$

$$S_1 + S_1 \stackrel{c_2}{\to} S_2 ,$$

$$S_2 \stackrel{c_3}{\to} S_1 + S_1 ,$$

$$S_2 \stackrel{c_4}{\to} S_3 .$$

To simulate this system, consider the process $N_t = (N_t^1, N_t^2, N_t^3) \in \mathbb{N}_0^3$, where N_t^i denotes the number of molecules of species S_i at time $t \geq 0$. In fact, this process is a time-continuous Markov chain with transition probabilities given by

$$\mathbb{P}(\mathbf{N}_{t+h} = \mathbf{N}_{t,1} = (N^{1} - 1, N^{2}, N^{3}) | \mathbf{N}_{t} = (N^{1}, N^{2}, N^{3})) = a_{1}(\mathbf{N}_{t})h + o(h) ,$$

$$\mathbb{P}(\mathbf{N}_{t+h} = \mathbf{N}_{t,2} = (N^{1} - 2, N^{2} + 1, N^{3}) | \mathbf{N}_{t} = (N^{1}, N^{2}, N^{3})) = a_{2}(\mathbf{N}_{t})h + o(h) ,$$

$$\mathbb{P}(\mathbf{N}_{t+h} = \mathbf{N}_{t,3} = (N^{1} + 2, N^{2} - 1, N^{3}) | \mathbf{N}_{t} = (N^{1}, N^{2}, N^{3})) = a_{3}(\mathbf{N}_{t})h + o(h) ,$$

$$\mathbb{P}(\mathbf{N}_{t+h} = \mathbf{N}_{t,4} = (N^{1}, N^{2} - 1, N^{3} + 1) | \mathbf{N}_{t} = (N^{1}, N^{2}, N^{3})) = a_{4}(\mathbf{N}_{t})h + o(h) ,$$

$$\mathbb{P}(\mathbf{N}_{t+h} = \mathbf{N}_{t,5} = (N^{1}, N^{2}, N^{3}) | \mathbf{N}_{t} = (N^{1}, N^{2}, N^{3})) = 1 - h \sum_{j=1}^{4} a_{j}(\mathbf{N}_{t}) + o(h) ,$$

for h sufficiently small, where $N_{t,k}$, $k \in \{1, ..., 5\}$ indexes the possible transitions. Here, the so-called propensity functions are

$$a_1(\mathbf{N}) = c_1 N^1$$
, $a_2(\mathbf{N}) = c_2 \frac{N^1(N^1 - 1)}{2}$, $a_3(\mathbf{N}) = c_3 N^2$, $a_4(\mathbf{N}) = c_4 N^2$, with $\mathbf{N} = (N^1, N^2, N^3)$.

- 1. Try to construct the transition matrix corresponding to the above transition probabilities and note the challenges. Is it possible to simulate the chemical reaction without the explicit Q matrix? **Hint:** Think back to how you simulated the process in Exercise 2.1.
- 2. Utilise the following algorithm to simulate the chemical reaction system. Plot a time series for each species' number of molecules for $t \in [0, T]$, T = 0.2, for the reaction rates

$$c_1 = 1$$
, $c_2 = 5$, $c_3 = 15$, $c_4 = \frac{3}{4}$,

using $N_0 = (400, 800, 0)$ as initial number of molecules. Repeat the simulation for the same reaction rates c_1, \ldots, c_4 also for T = 5.

Exercise 3

Let $\{N_t \in \mathbb{N}_0 : t \geq 0, N_0 = 0\}$ be a Poisson process with rate λ .

Algorithm 1: Reaction simulation

- 1: Set $N_0 = (N_0^1, N_0^2, N_0^3), J_0 = 0$
- 2: **for** n = 1, 2, ... **do**
- Compute $\lambda = \sum_{j=1}^{4} a_j(\mathbf{N}_{J_{n-1}})$ Generate $S_n \sim \text{Exp}(\lambda)$ and set $J_n = J_{n-1} + S_n$ 4:
- Generate $I \in \{1, 2, 3, 4\}$ with probability mass function $\mathbb{P}(I = j) = \frac{a_j(N_{J_{n-1}})}{\sum_{l=1}^4 a_l(N_{J_{n-1}})}$, 5: which is the probability that the j^{th} reaction happens.
- Set $N_t = N_{J_{n-1}} \forall t \in [J_{n-1}, J_n)$ and $N_{J_n} = N_{t,I}$
- 7: end for
- 1. Show that, conditional on the event $\{N_T = n\}$, the jump times J_1, \ldots, J_n have joint density function

$$f_{J_1,...,J_n}(j_1,...,j_n) = n!T^{-n}\mathbb{I}(0 \le j_1 \le \cdots \le j_n \le T)$$
.

In other words, show that conditional on $\{N_T = n\}$, the jump times J_1, \ldots, J_n have the same distribution as an ordered sample of size n from the uniform distribution on [0,T].

Hints: Use the joint distribution of the holding times S_1, \ldots, S_{n+1} to first derive the joint distribution of the jump times, where $S_{i+1} = J_{i+1} - J_i$. Then compute the conditional distribution of the jump times given that $N_T = n$, using the fact that $\{N_T = n\} = \{J_n \le T < J_{n+1}\} \ a.s.$

2. Use the property above to propose an algorithm to generate the process N_t , $t \in (t_1, t_2)$, conditional upon $N_{t_1} = n_1$ and $N_{t_2} = n_2 > n_1$. Such a process is called *Poisson bridge*.

Exercise 4

Let $\{N_t, t \geq 0, N_0 = 0\}$ be a non-homogeneous Poisson process with rate $\lambda : [0, \infty) \mapsto \mathbb{R}_+$. In addition, define $\Lambda(t) = \int_0^t \lambda(s) ds$, and let $\{\tilde{N}_t, t \geq 0, \tilde{N}_0 = 0\}$ be a homogeneous Poisson process with rate one.

- 1. Show that the non-homogeneous Poisson process can be obtained as $N_t = \tilde{N}_t \circ \Lambda(t)$, i.e., $N_t = \tilde{N}_{\Lambda(t)}$.
- 2. Simulate a non-homogeneous Poisson process with rate function $\lambda(t) = \sin^2(t)$ on the interval [0, 50].

Exercise 5 (Optional)

1. Generate a random walk $\{X_n \in \mathbb{Z}, n \in \mathbb{N}_0, X_0 = 0\}$ with transition probabilities

$$\mathbb{P}(X_{n+1} = j | X_n = j-1) = \mathbb{P}(X_{n+1} = j | X_n = j+1) = a \;, \quad \mathbb{P}(X_{n+1} = j | X_n = j) = 1-2a \;,$$
 for some $0 < a \le 1/2$.

- 2. Consider the rescaled process $Y_{t_i} := \sqrt{\Delta t/(2a)}X_i$ for i = 0, ..., n with $t_i = i\Delta t$. Compare this process with the process W_{t_i} , i = 0, ..., n, where W_t denotes a Wiener process with $W_0 = 0$. That is, show that both processes "look similar" in the limit as $\Delta t \to 0$ by plotting multiple realizations of both processes for $n = \lceil 1/\Delta t \rceil$.
- 3. (Optional:) More theoretical analysis of the observed phenomenon:
 - (a) Consider the spatial mesh $x_m = m\Delta x = m\sqrt{\Delta t/(2a)}$ for $m \in \mathbb{Z}$ and the following notation for the rescaled process' probability mass function at time t_i :

$$\bar{u}(t_i, x_m) := \mathbb{P}(Y_{t_i} = x_m | Y_0 = 0), \quad m \in \mathbb{Z}, i = 0, 1, \dots$$

Use the discrete Chapman–Kolmogorov formula

$$\mathbb{P}(Y_{t_{i+1}} = x_m | Y_0 = 0) = \sum_k \mathbb{P}(Y_{t_{i+1}} = x_m | Y_{t_i} = x_k) \mathbb{P}(Y_{t_i} = x_k | Y_0 = 0)$$
 (1)

to derive a difference equation for $\bar{u}(t_{i+1}, x_m)$ in terms of $\bar{u}(t_i, \cdot)$.

(b) Show that the difference equation obtained in 3a corresponds to a finite difference approximation of the one dimensional heat equation

$$u_t(t,x) = \frac{u_{xx}(t,x)}{2}, \quad x \in \mathbb{R}, t > 0,$$

on a uniform grid $x_i = i\Delta x$ and $t_j = j\Delta t$ with $\Delta t = 2ax^2$, using a second order centered finite difference stencil in space and a first order forward Euler scheme in time.

(c) For the standard Wiener process with $\mathbb{P}(W_0 = 0) = 1$, we denote the probability density function at time t > 0 by

$$u(t,x) := \frac{e^{-x^2/(2t)}}{\sqrt{2\pi t}}, \qquad x \in \mathbb{R}.$$

For all t > 0 and $x \in \mathbb{R}$, show that the density satisfies the same heat equation introduced in point 3b.