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Stochastic process generation

Exercise 1
Let X = [X1, X2, ..., Xn]

i.i.d∼ U([−1, 1]n) be a random vector uniformly distributed over the
n-dimensional square Γ = [−1, 1]n, and define the random variable Z = 1∥X∥l2<1. Observe
that

I = E[Z] =

∫
Γ
1∥x∥l2<1p(x)dx =

1

|Γ|
|B(0, 1)| ,

where p(x) is the PDF of U([−1, 1]n), and |B(0, 1)| is the volume of the n-dimensional sphere
with center 0 and radius 1.

1. Let n = 2. Use Monte Carlo to approximate the value of I:

IN :=
1

N

N∑
k=1

Zk,

For N = 10, 100, 1000, 10000, compute IN as well as an approximate confidence interval
and compare with the exact value I. In addition, plot the relative error |IN−I|

I versus
N in logarithmic scale and verify the convergence rate.

2. (On the choice of N). By a priori analysis (knowing that Z ∼ Bernoulli(p) with
p = π/4), determine three lower bounds for N(α, ϵ) with ϵ = 10−2 and α = 10−4 for
ensuring that

P
(∣∣IN − π/4

∣∣ > ϵ
)
< α

using Chebycheff’s inequality (rigorous), the Berry-Esseen Theorem (rigorous) and the
leap of faith

IN − π/4√
Var(Z)/N

∼ N(0, 1).

Discuss the advantages and disadvantages of using each bound.

3. An important property of the MC method is that, under very weak regularity assump-
tions, an O(N−1/2) convergence rate holds independently of the dimensionality of the
underlying problem. To illustrate this, consider approximating E[Z] as in the first point,
for n = 6.
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Exercise 2
Note: Refer to Section 4.4 of the lecture notes.
Consider the chemical reactions between three species S1, S2, S3, which are determined by
the following four reaction channels:

S1
c1→ ∅ ,

S1 + S1
c2→ S2 ,

S2
c3→ S1 + S1 ,

S2
c4→ S3 .

To simulate this system, consider the process Nt = (N1
t , N

2
t , N

3
t ) ∈ N3

0, where N i
t denotes the

number of molecules of species Si at time t ≥ 0. In fact, this process is a time-continuous
Markov chain with transition probabilities given by

P
(
Nt+h = Nt,1 = (N1 − 1, N2, N3)

∣∣Nt = = (N1, N2, N3)
)
= a1(Nt)h+ o(h) ,

P
(
Nt+h = Nt,2 = (N1 − 2, N2 + 1, N3)

∣∣Nt = (N1, N2, N3)
)
= a2(Nt)h+ o(h) ,

P
(
Nt+h = Nt,3 = (N1 + 2, N2 − 1, N3)

∣∣Nt = (N1, N2, N3)
)
= a3(Nt)h+ o(h) ,

P
(
Nt+h = Nt,4 = (N1, N2 − 1, N3 + 1)

∣∣Nt = (N1, N2, N3)
)
= a4(Nt)h+ o(h) ,

P
(
Nt+h = Nt,5 = (N1, N2, N3)

∣∣Nt = (N1, N2, N3)
)
= 1− h

4∑
j=1

aj(Nt) + o(h) ,

for h sufficiently small, where Nt,k, k ∈ {1, ..., 5} indexes the possible transitions. Here, the
so-called propensity functions are

a1(N) = c1N
1 , a2(N) = c2

N1(N1 − 1)

2
, a3(N) = c3N

2 , a4(N) = c4N
2 ,

with N = (N1, N2, N3).

1. Try to construct the transition matrix corresponding to the above transition probabil-
ities and note the challenges. Is it possible to simulate the chemical reaction without
the explicit Q matrix? Hint: Think back to how you simulated the process in Exercise
2.1.

2. Utilise the following algorithm to simulate the chemical reaction system. Plot a time
series for each species’ number of molecules for t ∈ [0, T ], T = 0.2, for the reaction rates

c1 = 1 , c2 = 5 , c3 = 15 , c4 =
3

4
,

using N0 = (400, 800, 0) as initial number of molecules. Repeat the simulation for the
same reaction rates c1, . . . , c4 also for T = 5.

Exercise 3
Let {Nt ∈ N0 : t ≥ 0, N0 = 0} be a Poisson process with rate λ.
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Algorithm 1: Reaction simulation
1: Set N0 = (N1

0 , N
2
0 , N

3
0 ), J0 = 0

2: for n = 1, 2, ... do
3: Compute λ =

∑4
j=1 aj(NJn−1)

4: Generate Sn ∼ Exp (λ) and set Jn = Jn−1 + Sn

5: Generate I ∈ {1, 2, 3, 4} with probability mass function P(I = j) =
aj(NJn−1

)∑4
l=1 al(NJn−1

)
,

which is the probability that the jth reaction happens.
6: Set Nt = NJn−1∀t ∈ [Jn−1, Jn) and NJn = Nt,I

7: end for

1. Show that, conditional on the event {NT = n}, the jump times J1, . . . , Jn have joint
density function

fJ1,...,Jn(j1, . . . , jn) = n!T−nI(0 ≤ j1 ≤ · · · ≤ jn ≤ T ) .

In other words, show that conditional on {NT = n}, the jump times J1, . . . , Jn have
the same distribution as an ordered sample of size n from the uniform distribution on
[0, T ].
Hints: Use the joint distribution of the holding times S1, . . . , Sn+1 to first derive the
joint distribution of the jump times, where Si+1 = Ji+1 − Ji. Then compute the
conditional distribution of the jump times given that NT = n, using the fact that
{NT = n} = {Jn ≤ T < Jn+1} a.s.

2. Use the property above to propose an algorithm to generate the process Nt, t ∈ (t1, t2),
conditional upon Nt1 = n1 and Nt2 = n2 > n1. Such a process is called Poisson bridge.

Exercise 4
Let {Nt, t ≥ 0, N0 = 0} be a non-homogeneous Poisson process with rate λ : [0,∞) 7→ R+.
In addition, define Λ(t) =

∫ t
0 λ(s)ds, and let {Ñt, t ≥ 0, Ñ0 = 0} be a homogeneous Poisson

process with rate one.

1. Show that the non-homogeneous Poisson process can be obtained as Nt = Ñt ◦ Λ(t),
i.e., Nt = ÑΛ(t).

2. Simulate a non-homogeneous Poisson process with rate function λ(t) = sin2(t) on the
interval [0, 50].

Exercise 5 (Optional)
1. Generate a random walk {Xn ∈ Z, n ∈ N0, X0 = 0} with transition probabilities

P(Xn+1 = j|Xn = j−1) = P(Xn+1 = j|Xn = j+1) = a , P(Xn+1 = j|Xn = j) = 1−2a ,

for some 0 < a ≤ 1/2.
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2. Consider the rescaled process Yti :=
√

∆t/(2a)Xi for i = 0, . . . , n with ti = i∆t. Com-
pare this process with the process Wti , i = 0, . . . , n, where Wt denotes a Wiener process
with W0 = 0. That is, show that both processes “look similar” in the limit as ∆t → 0
by plotting multiple realizations of both processes for n = d1/∆te.

3. (Optional:) More theoretical analysis of the observed phenomenon:

(a) Consider the spatial mesh xm = m∆x = m
√
∆t/(2a) for m ∈ Z and the following

notation for the rescaled process’ probability mass function at time ti:

ū(ti, xm) := P(Yti = xm|Y0 = 0), m ∈ Z, i = 0, 1, . . .

Use the discrete Chapman–Kolmogorov formula

P(Yti+1 = xm|Y0 = 0) =
∑
k

P(Yti+1 = xm|Yti = xk)P(Yti = xk|Y0 = 0) (1)

to derive a difference equation for ū(ti+1, xm) in terms of ū(ti, ·).
(b) Show that the difference equation obtained in 3a corresponds to a finite difference

approximation of the one dimensional heat equation

ut(t, x) =
uxx(t, x)

2
, x ∈ R, t > 0,

on a uniform grid xi = i∆x and tj = j∆t with ∆t = 2ax2, using a second order
centered finite difference stencil in space and a first order forward Euler scheme in
time.

(c) For the standard Wiener process with P(W0 = 0) = 1, we denote the probability
density function at time t > 0 by

u(t, x) :=
e−x2/(2t)

√
2πt

, x ∈ R.

For all t > 0 and x ∈ R, show that the density satisfies the same heat equation
introduced in point 3b.
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