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Exercise 1
Consider a multivariate Gaussian random variable X = (X1, X2, . . . , Xn)

T ∼ N (µ,Σ), with
mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n.

1. Generate a sample of N = 106 independent random vectors Xi, 1 ≤ i ≤ N , each Xi

following a N (µ,Σ) distribution with

µ =

(
2
1

)
and Σ =

(
1 2
2 5

)
.

Specifically, use the Cholesky decomposition (numpy.linalg.cholesky() in Python1)
to compute the factor A, such that Σ = AAt. Generate the standard normal vectors
Yi ∼ N (0, I2×2), 1 ≤ i ≤ N , possibly using Numpy’s np.random.randn() function2.
Then generate the Xi as Xi = µ+ AYi. Assess the quality of the samples by plotting
a bivariate histogram3.

2. Propose a method for generating Gaussian random variables X ∼ N (µ,Σ) with covari-
ance matrix Σ =

(
1 2
2 4

)
and mean µ as before. Test your method by generating N = 106

independent copies of the random vector and plot a bivariate histogram. Compare the
outcomes with the previous point and explain the differences.

Exercise 2
Consider a Gaussian process {Xt , t ∈ I} on I = [0, 1] with mean function µX : I → R,

µX(t) ≡ E[Xt] = sin(2πt) ,

and covariance function CX : I × I → R,

CX(t, s) ≡ E[(Xt − µX(t))(Xs − µX(s))] = e−|t−s|/ρ ,

where ρ > 0.
1https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cholesky.html
2https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html
3https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram2d.html
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1. Generate the Gaussian process in a set of n points t1, . . . , tn ∈ I. Plot the resulting
point values of the random process for various values of n and ρ. Implement both direct
generation and circulant embedding method with FFT. Compare the costs varying n
which should behave as O(n3) and O(n log n), respectively.

2. Generate the Gaussian process for ρ = 1/200 on a uniform partition of I = [0, 1] with
n = 51 points, i.e. ti = i−1

n−1 for i = 1 . . . , n. Let’s denote this collection of point-wise
evaluations of {Xt, t ∈ I} by Zn. Then generate m = n − 1 = 50 additional point
evaluations of the Gaussian process in new points tn+1, . . . , tn+m by a uniform grid
refinement (i.e. tn+j = 2j−1

2(n−1) for j = 1, . . . ,m = n − 1), denoted by Ym, conditioned
upon the previously generated ones Zn. Specifically, use the results for conditioned
multivariate Gaussian random variables discussed in the lecture notes.

Exercise 3
The lecture notes introduce a Brownian bridge as a Wiener process {Wt , t ∈ [0, 1]} condi-
tioned upon W1 = b. Derive a generalized Brownian bridge {Xt , t ∈ [0, 1]} that is given
as the Wiener process conditioned on W0 = a and W1 = b and generate realizations of this
Brownian bridge at 0 = t0 < t1 < · · · < tn < tn+1 = 1. Specifically, carry out the following
exercises:

1. Show that
µX(t) = a+ (b− a)t

and
CX(t, s) = min{s, t} − st .

2. Propose and implement an iterative algorithm that generates Xti conditioned upon
Xti−1 and Xtn+1 = b.

Exercise 4
Consider a fractional Brownian motion (fBM) {BH(t), t ∈ [0, 1]}, which is a centered Gaussian
process with BH(0) = 0 and covariance function

Cov(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H),

where H ∈ (0, 1) is the so-called Hurst index.

1. To sample such a process let us consider, for a fixed h > 0, the increment process
δBh(t) = BH(t + h) − BH(t). Show that δBh(t) is a centered stationary Gaussian
process.

2. If one is able to sample exactly the process δBh(t) on a uniform grid tj = jh, then
one can construct an exact sample of the fractional Brownian motion on the same grid
points as BH(tk) =

∑k−1
j=0 δBh(tj). Sample a fractional Brownian motion using FFT

and circular embedding. Implement your experiment for different values of H < 1/2
and H > 1/2.
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(Optional) Exercise 5
(Lévy-Ciesielski construction). Let ξ−1 ∼ N (0, 1) and denote by Y0(t) the linear function on
[0, 1] with Y0(0) = 0, and Y0(1) = ξ−1. For j ∈ N and N = 0, 1, 2 . . . , let tNj = 2−Nj and let
YN (t) be the piecewise linear function such that

YN+1(t
N
j ) = YN (tNj ) (1)

YN+1(t
N+1
2j+1) =

1

2

(
YN (tNj ) + YN (tNj+1)

)
+ ξj,N , ξj,N

iid∼ N (0, 2−N−2). (2)

Here N is to be understood as a “discretization level” of the interval [0,1] on equal sub-intervals
of length 2−N . This process is known as the Lévy-Ciesielski construction of a Brownian
motion.

1. Simulate the previous process for different values of N .

2. Prove that for any N ∈ N, E[YN (tNj )] = 0 and Cov
(
YN (tNj ), YN (tNk )

)
= min{tNj , tNk },

with j, k = 0, . . . 2N .

3. For any s1, . . . , sm ∈ [0, 1], prove that [YN (s1), . . . , YN (sm)]T converges in distribution
to a normal N (0, C), where C has entries Cij = min{tNj , tNk }, with j, k = 0, . . . , 2N .

4. Write Wn(t) := [YN (0), YN (tN1 ), . . . YN (tN2N−1), YN (1)]. Conclude that WN (t) → W (t),
where W (t) is the standard Brownian motion.
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