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Multivariate random variable generation and
Gaussian random processes

Exercise 1

Consider a multivariate Gaussian random variable X = (X1, Xo,..., X,,)T ~ N(u, Y), with
mean g € R™ and covariance matrix 3 € R"*"™,

1. Generate a sample of N = 10° independent random vectors X;, 1 < i < N, each X;
following a N (p, X) distribution with

o= (2) s (2)

Specifically, use the Cholesky decomposition (numpy.linalg.cholesky() in Python!)
to compute the factor A, such that ¥ = AA!. Generate the standard normal vectors
Y, ~ N(0,I2x2),1 < i < N, possibly using Numpy’s np.random.randn () function?.

Then generate the X; as X; = p + AY;. Assess the quality of the samples by plotting

a bivariate histogram?.

2. Propose a method for generating Gaussian random variables X ~ N (u,Y) with covari-
ance matrix % = (% Z) and mean p as before. Test your method by generating N = 10°
independent copies of the random vector and plot a bivariate histogram. Compare the
outcomes with the previous point and explain the differences.

Exercise 2

Consider a Gaussian process {X; , t € I} on I = [0, 1] with mean function pux: I — R,
ux (t) = E[X;] = sin(27t) ,

and covariance function Cx: I x I — R,

Cx (t,5) = E[(Xe — px (0)(Xs — px(s))] = e 7517,

where p > 0.

'https://docs.scipy.org/doc/numpy /reference/generated /numpy.linalg.cholesky.html
2https://docs.scipy.org/doc/numpy /reference/generated /numpy.random.randn.html
3https://docs.scipy.org/doc/numpy /reference/generated /numpy.histogram2d.html



1. Generate the Gaussian process in a set of n points t1,...,t, € I. Plot the resulting
point values of the random process for various values of n and p. Implement both direct
generation and circulant embedding method with FFT. Compare the costs varying n
which should behave as O(n?®) and O(nlogn), respectively.

2. Generate the Gaussian process for p =1 /200 on a uniform partition of I = [0, 1] with

n = 51 points, i.e. t; = 7’;11 for i = 1...,n. Let’s denote this collection of point-wise
evaluations of {X;, ¢t € I} by Z,. Then generate m = n — 1 = 50 additional point
evaluations of the Gaussian process in new points tpy1,...,th+m by a uniform grid
refinement (i.e. t,4; = % for j =1,...,m = n — 1), denoted by Y,,, conditioned

upon the previously generated ones Z,. Specifically, use the results for conditioned
multivariate Gaussian random variables discussed in the lecture notes.

Exercise 3

The lecture notes introduce a Brownian bridge as a Wiener process {W; , ¢ € [0,1]} condi-
tioned upon W7 = b. Derive a generalized Brownian bridge {X; , ¢ € [0,1]} that is given
as the Wiener process conditioned on Wy = a and W; = b and generate realizations of this
Brownian bridge at 0 =ty < t; < --- < t, < th+1 = 1. Specifically, carry out the following
exercises:

1. Show that
px(t) =a+ (b—a)t

and
Cx(t,s) = min{s,t} — st .

2. Propose and implement an iterative algorithm that generates X;, conditioned upon
Xt and th_H =b.

i—1

Exercise 4

Consider a fractional Brownian motion (fBM) {B(t),t € [0, 1]}, which is a centered Gaussian
process with B¥(0) = 0 and covariance function

1
Cov(t,s) = S (It + || — [t — s[),

where H € (0,1) is the so-called Hurst index.

1. To sample such a process let us consider, for a fixed h > 0, the increment process
6By (t) = B (t + h) — B (t). Show that 6By (t) is a centered stationary Gaussian
process.

2. If one is able to sample exactly the process §Bp(t) on a uniform grid ¢; = jh, then
one can construct an exact sample of the fractional Brownian motion on the same grid
points as B (t) = Zf;é 0By (tj). Sample a fractional Brownian motion using FFT
and circular embedding. Implement your experiment for different values of H < 1/2
and H > 1/2.



(Optional) Exercise 5

(Lévy-Ciesielski construction). Let £_; ~ N(0,1) and denote by Yy(t) the linear function on
[0,1] with Y5(0) = 0, and Y(1) = &1 For j € Nand N =0,1,2..., let £} =27V j and let
Yn (t) be the piecewise linear function such that

Yvn(t)) = Ya(t)) (1)

1 iid _N—
Y () = 3 (Yn(t)) + Yn () +&v, &v ~ N(0,27V72), (2)

Here N is to be understood as a “discretization level” of the interval [0,1] on equal sub-intervals
of length 27N, This process is known as the Lévy-Ciesielski construction of a Brownian
motion.

1. Simulate the previous process for different values of V.
2. Prove that for any N € N, E[YN(th)] = 0 and Cov (YN(té-V), YN(t{CV)) = min{tév,t]kv},
with 7,k =0,...2N.

3. For any s1,...,8m € [0,1], prove that [Yy(s1),..., Yn(sm)]T converges in distribution
to a normal N (0,C'), where C has entries C;; = min{tév,t{f}, with j,k=0,...,2N.

4. Write Wy, (¢) := [Yn(0), YN (£), ... Y (tdy_1), Y (1)]. Conclude that W (t) — W(2),
where W (t) is the standard Brownian motion.



