Stochastic Simulations
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 02 — 19 September 2024

Random Variable Generation

Exercise 1

Consider the random variable X with cumulative distribution function (CDF) F': [-1,3] —
[0, 1] given by

0, —-1<z<0,
Flz)=q1-2¢%2, 0<z<2,
1, 2<z<3.

Implement the inverse-transform method to generate n independent copies of the random
variable X. Assess the quality of the realizations by comparing the empirical CDF with the
theoretical CDF F' for various values of n.

Exercise 2

Consider the random variable X with probability density function (PDF) f, which is only
known up a multiplicative constant. Specifically, let f(z) := kf(x) with

flz) = (sinz(ﬁx) + 3 cos?(z) sin?(4z) + 1)@‘””2/2 ’

where the normalization constant k = is unknown.

1

f]R f(z)dz

1. Argue that f () can be bounded by C'¢(x), where C' is an appropriately chosen constant
and ¢ denotes the PDF of the standard normal distribution, that is ¢(z) = e~*"/2/y/2x.
Find an acceptable value for C.

2. Generate n = 10* random variables according to the PDF f using the Acceptance—
Rejection Method. Hint: use scipy.stats.norm.rvs() to sample normally distributed
random variables in Python.

3. Derive an estimate of the normalization constant k, using your procedure’s acceptance
probability. Compare it to the exact value k = 0.1696542774. Furthermore, compare
the empirical CDF to the theorized, normalized CDF F(z) = [*_ f(u)du. Hint: you
can use the file trueF_RVG_2.py from the course’s website to plot the theorized CDF.

Exercise 3

An element (z,y) € R? may be represented by its polar coordinates (p,®) € [0,00) x [0,27)
defined by

and

p(x,y) = 22 +y2,

tan~! (%) ifz>0andy >0,
O(z.y) = tan~! (%)+7r if z <0,
’ tan—! (%) +2r ifz>0andy <0,
0 ifer=y=0,

where tan~! : R — (—7/2,7/2).

1. Show by calculation that if the random variables X,Y ~ N(0,1) are independent, then

the polar coordinate representation of (X,Y) satisfies
p? ~exp(1/2) and © ~ U([0,27)).

Show further that p and © are independent.

2. In the opposite direction, show that if p? ~ exp(1/2) and © ~ U([0,27)) and p and ©

are independent, then the Cartesian representation of the polar coordinates (p, ©),
X =pcos(2r®) and Y = psin(270O),
satisfies X, Y ~ N(0,1) with X and Y being independent.

In order to construct an Acceptance—Rejection (AR) method for generating standard
normal random variables consider the auxiliary PDF g(x) = e~ /2. For your auxiliary
PDF, determine a C' > 1 such that

e—x2/2

<C , Ve eR.
N 9() T

Hint: See lecture notes for how to sample from the PDF g.

Implement the above AR method and the Box-Muller method in Python and use the
built-in timer function time () within the time module, to compare the performance of
the respective methods in terms of runtime per sample.

Exercise 4

Let X = (X1, Xo,..., X,)T ~ L{((O, 1)") and denote by X(1) < X(9) < -+ < X(;,) the ordered
sample (i.e. the order statistic).

1. Implement a procedure to generate the order statistic X(;) < Xy <--- < X, n €N,

based on sorting a collection X of i.i.d. uniform random variables.

2. Prove the following properties:

(a) Show that
n
n . .z
P(Xg) <a) =) (Z.)afl(l —a)"
=]
for any x € (0,1). Furthermore, use this fact to infer the distribution of the random
variable max{ Xy, Xo,..., X, }.

(b) Then show that

J
P(X(j) < Z|X(k) =Tk, vk >]) = <5L'2:,_1> s
J

for all z < x;41 and any j < n.

3. Use the facts above to implement a procedure that enables generating copies from the
order statistic X() < X(g) < --- < X(,,) without sorting. Compare this procedures and
the procedure based on sorting with respect to time for various values of n. What do
you observe? Explain.

Hint: To measure time in Python, you can use

4. Implement a procedure that generates uniform random vectors in the unit simplex

n
S = {(xl,mg,...,xn)TeR": x; >0Vi, Zx, < 1}.
i=1

Assess your sampling procedure by visualizing N = 1000 sampling points for n = 3
Hint 1: You can use the following template to do a 3D scatter plot in Python.

Hint 2: Notice that a vector, whose coordinates are distributed according to the order
statistic of a collection of i.i.d. (0, 1), takes values in the “wedge” W = {(ul, U, ... up)t €
R":0<wu; <1Vi, u <ug<---<wuy,}. The unit simplex S is then simply the image

of the “wedge” W under the linear transformation & = Au where

1 0 0

-1 1 0
A=)

0 -1 1

Exercise 5 (optional)

The PDF for the Cauchy distribution centered at xg € R and with scale parameter v € R is

given by
1

- <1 ; (m—;o)?) |

1. Show by integration of the PDF that the CDF of the Cauchy distribution with z¢o =0
and v = 1 is given by F(x;0,1) = tan~!(z)/7 + 1/2, for tan~! : R — (—7/2,7/2).

flay@o,y) =

2. Show that if X7, Xo ~ N(0,1) are independent, then X = X; /X5 is Cauchy distributed
with zg =0 and v = 1.

3. Based on the information from the 5.1 and 5.2, describe and implement two algorithms
for sampling X ~ F(-;0,1) in Python. Compare the performance of the respective
algorithms in terms of runtime per sample.

4. Tt is possible to extend the preceding methods to sample from X ~ F(-;xq,) for any
zg € R and v > 0. How?

Exercise 6 (optional)

The density of a random variable X, given a sample X1, Xs,..., X, i x , may be approxi-
mated by a mixed distribution generated by so called kernel density estimation. In its simplest
form, kernel density estimation consists of the following steps:

(i) Choose a so called kernel function K € {f : R = Ry | [|fllzim) = 1}. (So the kernel is
itself a PDF.)

(ii) For some n € N, generate a sequence of i.i.d. random variable X1, Xs, ..., X,, from the
distribution of X.

(iii) Define the kernel density estimator by
Fla) = 13" Ko -)
0 s é i)s

where

1 _ X
Kg(m—Xi)::(sK(xé) 5> 0,

and ¢ is an appropriately chosen scaling parameter relating to the width of the kernel.

The Burr type XII distribution has the CDF
0 <0
F(z;a,c k) =
with parameters o, c, k > 0.

1. Consider the Gaussian density kernel function
—z2/2

V2T ’

K(z) =S

and implement a kernel density estimator for
X ~BurrXIl(a = 1,¢ =2,k = 4)

in Python. Samples of X can be obtained using the scipy.stats class burri2. In your
code, for varying n = [100,10°] and 6(n) = n~'/5, compute kernel density estimators

1
fa(z) = n ZKé(n)(ZE - Xi),
=1

4

and plot f, and the PDF of BurrXII(1,2,4). Furthermore, for each value of n sample
N = 200000 i.i.d. random variables Y;* ~ f,,(z) by means of the composition method.

Hint: The numpy.random built-in function randint and might come handy.

. Study how well the empirical CDF of Y], Yy, ..., Y}, which we denote by EN(2),
converges towards F'(z;1,3,1). That is, investigate how fast

DN = sup |EN(z) - F(x;1,2,4)]
z€[—2,5]

decreases as n increases.

