
Stochastic Simulations
Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 02 – 19 September 2024

Random Variable Generation

Exercise 1
Consider the random variable X with cumulative distribution function (CDF) F : [−1, 3] →
[0, 1] given by

F (x) =


0 , −1 ≤ x < 0 ,

1− 2
3e

−x/2 , 0 ≤ x < 2 ,

1 , 2 ≤ x ≤ 3 .

Implement the inverse-transform method to generate n independent copies of the random
variable X. Assess the quality of the realizations by comparing the empirical CDF with the
theoretical CDF F for various values of n.

Exercise 2
Consider the random variable X with probability density function (PDF) f , which is only
known up a multiplicative constant. Specifically, let f(x) := kf̃(x) with

f̃(x) :=
(
sin2(6x) + 3 cos2(x) sin2(4x) + 1

)
e−x2/2 ,

where the normalization constant k = 1∫
R f̃(x) dx

is unknown.

1. Argue that f̃(x) can be bounded by Cϕ(x), where C is an appropriately chosen constant
and ϕ denotes the PDF of the standard normal distribution, that is ϕ(x) = e−x2/2/

√
2π.

Find an acceptable value for C.

2. Generate n = 104 random variables according to the PDF f using the Acceptance–
Rejection Method. Hint: use scipy.stats.norm.rvs() to sample normally distributed
random variables in Python.

3. Derive an estimate of the normalization constant k, using your procedure’s acceptance
probability. Compare it to the exact value k = 0.1696542774. Furthermore, compare
the empirical CDF to the theorized, normalized CDF F (x) =

∫ x
−∞ f(u) du. Hint: you

can use the file trueF_RVG_2.py from the course’s website to plot the theorized CDF.

1

Exercise 3
An element (x, y) ∈ R2 may be represented by its polar coordinates (ρ,Θ) ∈ [0,∞)× [0, 2π)
defined by

ρ(x, y) =
√

x2 + y2,

and

Θ(x, y) =


tan−1

(y
x

)
if x > 0 and y ≥ 0,

tan−1
(y
x

)
+ π if x < 0,

tan−1
(y
x

)
+ 2π if x > 0 and y ≤ 0,

0 if x = y = 0,

where tan−1 : R → (−π/2, π/2).

1. Show by calculation that if the random variables X,Y ∼ N(0, 1) are independent, then
the polar coordinate representation of (X,Y) satisfies

ρ2 ∼ exp(1/2) and Θ ∼ U([0, 2π)).

Show further that ρ and Θ are independent.

2. In the opposite direction, show that if ρ2 ∼ exp(1/2) and Θ ∼ U([0, 2π)) and ρ and Θ
are independent, then the Cartesian representation of the polar coordinates (ρ,Θ),

X = ρ cos(2πΘ) and Y = ρ sin(2πΘ),

satisfies X,Y ∼ N(0, 1) with X and Y being independent.

3. In order to construct an Acceptance–Rejection (AR) method for generating standard
normal random variables consider the auxiliary PDF g(x) = e−|x|/2. For your auxiliary
PDF, determine a C ≥ 1 such that

e−x2/2

√
2π

≤ Cg(x), ∀x ∈ R .

Hint: See lecture notes for how to sample from the PDF g.

4. Implement the above AR method and the Box–Muller method in Python and use the
built-in timer function time() within the time module, to compare the performance of
the respective methods in terms of runtime per sample.

Exercise 4
Let X = (X1, X2, . . . , Xn)

T ∼ U
(
(0, 1)n

)
and denote by X(1) ≤ X(2) ≤ · · · ≤ X(n) the ordered

sample (i.e. the order statistic).

1. Implement a procedure to generate the order statistic X(1) ≤ X(2) ≤ · · · ≤ X(n), n ∈ N,
based on sorting a collection X of i.i.d. uniform random variables.

2. Prove the following properties:

2

(a) Show that

P
(
X(j) ≤ x

)
=

n∑
i=j

(
n

i

)
xi(1− x)n−i ,

for any x ∈ (0, 1). Furthermore, use this fact to infer the distribution of the random
variable max{X1, X2, . . . , Xn}.

(b) Then show that

P
(
X(j) ≤ z

∣∣X(k) = xk , ∀ k > j
)
=

(
z

xj+1

)j

,

for all z ≤ xj+1 and any j < n.

3. Use the facts above to implement a procedure that enables generating copies from the
order statistic X(1) ≤ X(2) ≤ · · · ≤ X(n) without sorting. Compare this procedures and
the procedure based on sorting with respect to time for various values of n. What do
you observe? Explain.
Hint: To measure time in Python, you can use

4. Implement a procedure that generates uniform random vectors in the unit simplex

S =
{
(x1, x2, . . . , xn)

T ∈ Rn : xi ≥ 0 ∀ i ,
n∑

i=1

xi ≤ 1
}
.

Assess your sampling procedure by visualizing N = 1000 sampling points for n = 3
Hint 1: You can use the following template to do a 3D scatter plot in Python.
Hint 2: Notice that a vector, whose coordinates are distributed according to the order
statistic of a collection of i.i.d. U(0, 1), takes values in the “wedge” W =

{
(u1, u2, . . . , un)

T ∈
Rn : 0 ≤ ui ≤ 1 ∀ i , u1 ≤ u2 ≤ · · · ≤ un}. The unit simplex S is then simply the image
of the “wedge” W under the linear transformation x = Au where

A =


1 0 . . . 0
−1 1 . . . 0
...
0 . . . −1 1

 .

Exercise 5 (optional)
The PDF for the Cauchy distribution centered at x0 ∈ R and with scale parameter γ ∈ R is
given by

f(x;x0, γ) =
1

πγ

(
1 +

(
x−x0
γ

)2
) .

1. Show by integration of the PDF that the CDF of the Cauchy distribution with x0 = 0
and γ = 1 is given by F (x; 0, 1) = tan−1(x)/π + 1/2, for tan−1 : R → (−π/2, π/2).

2. Show that if X1, X2 ∼ N(0, 1) are independent, then X = X1/X2 is Cauchy distributed
with x0 = 0 and γ = 1.

3

3. Based on the information from the 5.1 and 5.2, describe and implement two algorithms
for sampling X ∼ F (·; 0, 1) in Python. Compare the performance of the respective
algorithms in terms of runtime per sample.

4. It is possible to extend the preceding methods to sample from X ∼ F (·;x0, γ) for any
x0 ∈ R and γ > 0. How?

Exercise 6 (optional)

The density of a random variable X, given a sample X1, X2, . . . , Xn
iid∼ X, may be approxi-

mated by a mixed distribution generated by so called kernel density estimation. In its simplest
form, kernel density estimation consists of the following steps:

(i) Choose a so called kernel function K ∈ {f : R → R+ | ∥f∥L1(R) = 1}. (So the kernel is
itself a PDF.)

(ii) For some n ∈ N, generate a sequence of i.i.d. random variable X1, X2, . . . , Xn from the
distribution of X.

(iii) Define the kernel density estimator by

f(x) =
1

n

n∑
i=1

Kδ(x−Xi),

where
Kδ(x−Xi) :=

1

δ
K

(
x−Xi

δ

)
, δ > 0,

and δ is an appropriately chosen scaling parameter relating to the width of the kernel.

The Burr type XII distribution has the CDF

F (x;α, c, k) =

0 x ≤ 0

1− 1

(1+(x
α)

c
)
k , x ∈ (0,∞), x > 0,

with parameters α, c, k > 0.

1. Consider the Gaussian density kernel function

K(x) =
e−x2/2

√
2π

,

and implement a kernel density estimator for

X ∼ BurrXII(α = 1, c = 2, k = 4)

in Python. Samples of X can be obtained using the scipy.stats class burr12. In your
code, for varying n = [100, 105] and δ(n) = n−1/5, compute kernel density estimators

fn(x) =
1

n

n∑
i=1

Kδ(n)(x−Xi),

4

and plot fn and the PDF of BurrXII(1,2,4). Furthermore, for each value of n sample
N = 200000 i.i.d. random variables Y n

i ∼ fn(x) by means of the composition method.
Hint: The numpy.random built-in function randint and might come handy.

2. Study how well the empirical CDF of Y n
1 , Y n

2 , . . . , Y n
N , which we denote by FN

n (x),
converges towards F (x; 1, 3, 1). That is, investigate how fast

DN
n = sup

x∈[−2,5]
|FN

n (x)− F (x; 1, 2, 4)|

decreases as n increases.

5

