# **Stochastic Simulations**

Autumn Semester 2024

Prof. Fabio Nobile Assistant: Matteo Raviola

Lab 02 – 19 September 2024

# Random Variable Generation

### Exercise 1

Consider the random variable X with cumulative distribution function (CDF)  $F: [-1,3] \rightarrow [0,1]$  given by

$$F(x) = \begin{cases} 0, & -1 \le x < 0, \\ 1 - \frac{2}{3}e^{-x/2}, & 0 \le x < 2, \\ 1, & 2 \le x \le 3. \end{cases}$$

Implement the inverse-transform method to generate n independent copies of the random variable X. Assess the quality of the realizations by comparing the empirical CDF with the theoretical CDF F for various values of n.

### Exercise 2

Consider the random variable X with probability density function (PDF) f, which is only known up a multiplicative constant. Specifically, let  $f(x) := k\tilde{f}(x)$  with

$$\tilde{f}(x) := (\sin^2(6x) + 3\cos^2(x)\sin^2(4x) + 1)e^{-x^2/2},$$

where the normalization constant  $k = \frac{1}{\int_{\mathbb{R}} \tilde{f}(x) dx}$  is unknown.

- 1. Argue that  $\tilde{f}(x)$  can be bounded by  $C\phi(x)$ , where C is an appropriately chosen constant and  $\phi$  denotes the PDF of the standard normal distribution, that is  $\phi(x) = e^{-x^2/2}/\sqrt{2\pi}$ . Find an acceptable value for C.
- 2. Generate  $n = 10^4$  random variables according to the PDF f using the Acceptance-Rejection Method. **Hint:** use scipy.stats.norm.rvs() to sample normally distributed random variables in Python.
- 3. Derive an estimate of the normalization constant k, using your procedure's acceptance probability. Compare it to the exact value k=0.1696542774. Furthermore, compare the empirical CDF to the theorized, normalized CDF  $F(x)=\int_{-\infty}^x f(u)\,du$ . **Hint**: you can use the file trueF\_RVG\_2.py from the course's website to plot the theorized CDF.

## Exercise 3

An element  $(x,y) \in \mathbb{R}^2$  may be represented by its polar coordinates  $(\rho,\Theta) \in [0,\infty) \times [0,2\pi)$  defined by

$$\rho(x,y) = \sqrt{x^2 + y^2},$$

and

$$\Theta(x,y) = \begin{cases} \tan^{-1}\left(\frac{y}{x}\right) & \text{if } x > 0 \text{ and } y \ge 0, \\ \tan^{-1}\left(\frac{y}{x}\right) + \pi & \text{if } x < 0, \\ \tan^{-1}\left(\frac{y}{x}\right) + 2\pi & \text{if } x > 0 \text{ and } y \le 0, \\ 0 & \text{if } x = y = 0, \end{cases}$$

where  $\tan^{-1} : \mathbb{R} \to (-\pi/2, \pi/2)$ .

1. Show by calculation that if the random variables  $X, Y \sim N(0, 1)$  are independent, then the polar coordinate representation of (X, Y) satisfies

$$\rho^2 \sim \exp(1/2)$$
 and  $\Theta \sim U([0, 2\pi))$ .

Show further that  $\rho$  and  $\Theta$  are independent.

2. In the opposite direction, show that if  $\rho^2 \sim \exp(1/2)$  and  $\Theta \sim U([0, 2\pi))$  and  $\rho$  and  $\Theta$  are independent, then the Cartesian representation of the polar coordinates  $(\rho, \Theta)$ ,

$$X = \rho \cos(2\pi\Theta)$$
 and  $Y = \rho \sin(2\pi\Theta)$ ,

satisfies  $X, Y \sim N(0, 1)$  with X and Y being independent.

3. In order to construct an Acceptance–Rejection (AR) method for generating standard normal random variables consider the auxiliary PDF  $g(x) = e^{-|x|}/2$ . For your auxiliary PDF, determine a  $C \ge 1$  such that

$$\frac{e^{-x^2/2}}{\sqrt{2\pi}} \le Cg(x), \qquad \forall x \in \mathbb{R}.$$

**Hint:** See lecture notes for how to sample from the PDF g.

4. Implement the above AR method and the Box-Muller method in Python and use the built-in timer function time() within the time module, to compare the performance of the respective methods in terms of runtime per sample.

### Exercise 4

Let  $X = (X_1, X_2, \dots, X_n)^T \sim \mathcal{U}((0, 1)^n)$  and denote by  $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$  the ordered sample (i.e. the order statistic).

- 1. Implement a procedure to generate the order statistic  $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}, n \in \mathbb{N}$ , based on *sorting* a collection X of i.i.d. uniform random variables.
- 2. Prove the following properties:

(a) Show that

$$\mathbb{P}(X_{(j)} \le x) = \sum_{i=j}^{n} \binom{n}{i} x^{i} (1-x)^{n-i},$$

for any  $x \in (0,1)$ . Furthermore, use this fact to infer the distribution of the random variable  $\max\{X_1, X_2, \dots, X_n\}$ .

(b) Then show that

$$\mathbb{P}(X_{(j)} \le z | X_{(k)} = x_k , \forall k > j) = \left(\frac{z}{x_{j+1}}\right)^j,$$

for all  $z \leq x_{j+1}$  and any j < n.

3. Use the facts above to implement a procedure that enables generating copies from the order statistic  $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$  without sorting. Compare this procedures and the procedure based on sorting with respect to time for various values of n. What do you observe? Explain.

Hint: To measure time in Python, you can use

4. Implement a procedure that generates uniform random vectors in the unit simplex

$$S = \left\{ (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n \colon x_i \ge 0 \ \forall i \ , \ \sum_{i=1}^n x_i \le 1 \right\}.$$

Assess your sampling procedure by visualizing N=1000 sampling points for n=3

Hint 1: You can use the following template to do a 3D scatter plot in Python.

**Hint 2:** Notice that a vector, whose coordinates are distributed according to the order statistic of a collection of i.i.d.  $\mathcal{U}(0,1)$ , takes values in the "wedge"  $\mathcal{W} = \{(u_1, u_2, \dots, u_n)^T \in \mathbb{R}^n : 0 \leq u_i \leq 1 \ \forall i \ , \ u_1 \leq u_2 \leq \dots \leq u_n\}$ . The unit simplex  $\mathcal{S}$  is then simply the image of the "wedge"  $\mathcal{W}$  under the linear transformation  $\mathbf{x} = A\mathbf{u}$  where

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ -1 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & -1 & 1 \end{pmatrix} .$$

# Exercise 5 (optional)

The PDF for the Cauchy distribution centered at  $x_0 \in \mathbb{R}$  and with scale parameter  $\gamma \in \mathbb{R}$  is given by

$$f(x; x_0, \gamma) = \frac{1}{\pi \gamma \left(1 + \left(\frac{x - x_0}{\gamma}\right)^2\right)}.$$

- 1. Show by integration of the PDF that the CDF of the Cauchy distribution with  $x_0 = 0$  and  $\gamma = 1$  is given by  $F(x; 0, 1) = \tan^{-1}(x)/\pi + 1/2$ , for  $\tan^{-1}: \mathbb{R} \to (-\pi/2, \pi/2)$ .
- 2. Show that if  $X_1, X_2 \sim N(0, 1)$  are independent, then  $X = X_1/X_2$  is Cauchy distributed with  $x_0 = 0$  and  $\gamma = 1$ .

3

- 3. Based on the information from the 5.1 and 5.2, describe and implement two algorithms for sampling  $X \sim F(\cdot; 0, 1)$  in Python. Compare the performance of the respective algorithms in terms of runtime per sample.
- 4. It is possible to extend the preceding methods to sample from  $X \sim F(\cdot; x_0, \gamma)$  for any  $x_0 \in \mathbb{R}$  and  $\gamma > 0$ . How?

# Exercise 6 (optional)

The density of a random variable X, given a sample  $X_1, X_2, \ldots, X_n \stackrel{\text{iid}}{\sim} X$ , may be approximated by a mixed distribution generated by so called kernel density estimation. In its simplest form, kernel density estimation consists of the following steps:

- (i) Choose a so called kernel function  $K \in \{f : \mathbb{R} \to \mathbb{R}_+ \mid ||f||_{L^1(\mathbb{R})} = 1\}$ . (So the kernel is itself a PDF.)
- (ii) For some  $n \in \mathbb{N}$ , generate a sequence of i.i.d. random variable  $X_1, X_2, \dots, X_n$  from the distribution of X.
- (iii) Define the kernel density estimator by

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} K_{\delta}(x - X_i),$$

where

$$K_{\delta}(x - X_i) := \frac{1}{\delta} K\left(\frac{x - X_i}{\delta}\right), \quad \delta > 0,$$

and  $\delta$  is an appropriately chosen scaling parameter relating to the width of the kernel.

The Burr type XII distribution has the CDF

$$F(x; \alpha, c, k) = \begin{cases} 0 & x \le 0\\ 1 - \frac{1}{\left(1 + \left(\frac{x}{\alpha}\right)^c\right)^k}, & x \in (0, \infty), & x > 0, \end{cases}$$

with parameters  $\alpha, c, k > 0$ .

1. Consider the Gaussian density kernel function

$$K(x) = \frac{e^{-x^2/2}}{\sqrt{2\pi}},$$

and implement a kernel density estimator for

$$X \sim \text{BurrXII}(\alpha = 1, c = 2, k = 4)$$

in Python. Samples of X can be obtained using the scipy.stats class burr12. In your code, for varying  $n = [100, 10^5]$  and  $\delta(n) = n^{-1/5}$ , compute kernel density estimators

$$f_n(x) = \frac{1}{n} \sum_{i=1}^n K_{\delta(n)}(x - X_i),$$

and plot  $f_n$  and the PDF of BurrXII(1,2,4). Furthermore, for each value of n sample N=200000 i.i.d. random variables  $Y_i^n \sim f_n(x)$  by means of the composition method.

Hint: The numpy.random built-in function randint and might come handy.

2. Study how well the empirical CDF of  $Y_1^n, Y_2^n, \dots, Y_N^n$ , which we denote by  $F_n^N(x)$ , converges towards F(x; 1, 3, 1). That is, investigate how fast

$$D_n^N = \sup_{x \in [-2,5]} |F_n^N(x) - F(x;1,2,4)|$$

decreases as n increases.