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Exercise 9.1 (Linear kernel) Consider the function K : Rp ×Rp → R defined by K(x, y) 7→
x⊤y.

(a) Show that K is a symmetric positive-definite function, and by Aronszajn’s theorem,
a reproducing kernel.
Solution: Notice that, for x, y ∈ Rp, K(x, y) = K(y, x) and for {xj}n

j=1 ⊂ Rp and
{αi}n

i=1 ⊂ R,

n∑
i,j=1

αiαjK(xi, xj) =
n∑

i,j=1
αiαjx⊤

ixj =
∥∥∥∥∥

n∑
i=1

αixi

∥∥∥∥∥
2

≥ 0

(b) Let H be the RKHS with reproducing kernel K defined above. Show that f ∈ H if
and only if f is a linear function, that is, there exists f̃ ∈ Rp such that f(x) = x⊤̃f =
K(x, f̃).
(Hint: One direction is very easy. For the other, you can first show that all the
functions K(x, ·) live a finite dimensional space and therefore have a canonical basis
on which can we decompose them, and then use the kernel reproducing property to
extend this to all functions in H).
Solution:

• We first show that any linear function is in H. Indeed, for any w ∈ Rp, the
function x 7→ w⊤x is exactly the function x 7→ K(w, x) that we denoted K(w, ·),
and we clearly have K(w, ·) ∈ H.

• We now show that any function in H is a linear function. Intuitively and
informally, this should be true because a RKHS is a vector space and taking
linear combinations of linear functions only produces linear functions, and taking
limits of sequences of linear functions also produces linear functions.

The following proof takes a more abstract approach:
Let {ej}p

j=1 is a basis of Rp. We will first show that any K(·, x) is a linear combination
of the K(·, ei). Indeed,

K(y, x) = y⊤x = y⊤
p∑

j=1
(x⊤ej)ej =

p∑
j=1

(x⊤ej)(y⊤ej) =
p∑

j=1
(x⊤ej)K(y, ej),

where ⟨x, y⟩ = x⊤y for x, y ∈ Rp. Thus, K(·, x) = ∑p
j=1(x⊤ej)K(·, ej).
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Now, if f ∈ H, then, if ⟨·, ·⟩ denotes the dot product in H, we have:

f(x) = ⟨f, K(·, x)⟩ = ⟨f,
p∑

j=1
(x⊤ej)K(·, ej)⟩ =

p∑
j=1

(x⊤ej)⟨f, K(·, ej)⟩ = x⊤[
p∑

j=1
⟨f, K(·, ej)⟩ ej ].

Thus, f = K(·, f̃) for f̃ = ∑p
j=1⟨f, K(·, ej)⟩ ej , which in particular proves that f is a

linear function.

(c) Using only elementary linear algebra (that is, without using any facts about re-
producing kernels), show that H forms a Hilbert space under the inner product
⟨K(·, x), K(·, y)⟩ = K(x, y).
Solution: Notice that there is a bijective correspondence between f ∈ H and f̃ ∈ Rp

given by f(x) = x⊤̃f . Additionally, for g ∈ H given by g(x) = x⊤g̃ and α, β ∈ R
we have that: (αf + βg)(x) = x⊤(αf̃ + βg̃) and ⟨f, g⟩ = ⟨K(·, f̃), K(·, g̃)⟩ = f̃⊤g̃. It
follows that H under its inner product is isomorphic to the Euclidean space Rp under
the inner product ⟨x, y⟩Rp = x⊤y, and is thus a Hilbert space, just like the latter.
Alternatively, we could have used the fact that every finite-dimensional inner-product
space is complete, and therefore, a Hilbert space.

Exercise 9.2 (Squared loss regression in RKHS) Let H denote the RKHS associated to a
Mercer kernel K.

(a) Preliminary questions

(i) Let K be a positive semi definite matrix. Show that K and (K+λI)−1 commute.
Solution: Both K and K + λI are diagonal in the orthogonal eigenbasis of K
and so is (K + λI)−1, this means that these matrices are co-diagonalizable and
therefore they commute.
Alternatively, one can write K(K + λI)−1 = (K + λI − λI)(K + λI)−1 =
I − λ(K + λI)−1 and similarly (K + λI)−1K is equal to the same expression.

(ii) Deduce from the previous question that if h ∈ ker(K) then so does (K + λI)−1h.
Solution: We need to show that if h′ = (K + λI)−1h then Kh′ = 0 but
indeed, using the result of the previous question, Kh′ = K(K + λI)−1h =
(K + λI)−1Kh = 0.

(iii) Let K =
(
K(xi, xj)

)
1≤i,j≤n

with K the above defined Mercer kernel. Show that
if h ∈ ker(K) then the function ∑n

i=1 hiK(xi, ·) is constant and equal to 0.
Solution: We compute the norm of this function in H:

∥∥ n∑
i=1

hiK(xi, ·)
∥∥2

H
=

〈 n∑
i=1

hiK(xi, ·),
n∑

j=1
hjK(xj , ·)

〉
H

=
n∑

i=1

n∑
j=1

hihj
〈
K(xi, ·), K(xj , ·)

〉
H

.

But then using K(xi, xj) = ⟨K(xi, ·), K(xj , ·)
〉

H
, we have

∥∥ n∑
i=1

hiK(xi, ·)
∥∥2

H
= h⊤Kh = 0,

since h ∈ ker(K). This shows that this function is the zero function.
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(b) Show that the solution to the regression problem

min
f∈H

1
n

n∑
i=1

{yi − f(xi)}2 + λ∥f∥2
H

is f̂(x) = ∑n
i=1 α̂iK(x, xi) with α̂ = (K + nλI)−1y, where K is the Gram matrix

associated to K.
Solution: By the representer theorem, the function solution is of the form f̂(x) =∑n

i=1 α̂iK(x, xi), so we only need to find the form of the vector α̂. By substituting
f̂(x) = ∑n

i=1 α̂iK(x, xi) we get,

α̂ = argmin
α∈Rn

1
n

n∑
i=1

{
yi −

n∑
j=1

αjK(xi, xj)
︸ ︷︷ ︸

=(Kα)i

}2

+ λα⊤Kα

= argmin
α∈Rn

1
n

∥y − Kα∥2 + λα⊤Kα;

since ∥f∥2
H = α⊤Kα. To solve this optimization problem we differentiate with respect

to α, giving the normal equation

−K⊤(y − Kα) + nλKα = 0 ⇔ K(−y + Kα + nλα) = 0,

using the symmetry of the Gram matrix K. Thus, (−y + Kα + nλα) ∈ Ker K,
that is α = α̂ + h, where α̂ = (K + nλI)−1y and h = (K + nλI)−1h′ such that
h′ ∈ Ker K.
But by (a.ii), h ∈ ker(K). And so, f̂(x) = ∑n

i=1 α̂iK(x, xi) + ∑n
i=1 hiK(x, xi) =∑n

i=1 α̂iK(x, xi) because ∑n
i=1 hiK(·, xi) = 0, by (a.iii).

(c) Using the above result show that the solution to the ridge regression problem with
no intercept,

β̂ = argmin
β

1
n

∥y − Xβ∥2 + λ∥β∥2
2,

where y ∈ Rn and the design matrix X is n × p is given by β̂ = X⊤(XX⊤ + nλI)−1y.
Solution: Let K : Rp × Rp → R given by K(x, y) = x⊤y. Then

∥y − Xβ∥2 =
n∑

i=1

yi −
p∑

j=1
βjxij

2

=
n∑

i=1

(
yi − K(β, xi)

)2

where xi is ith column of X⊤ and ∥β∥2
2 = ∥K(·, β)∥2

H. Using Exercise 10.1 (b), the
problem can be equivalently stated as:

f̂ = argmin
f∈H

1
n

n∑
i=1

(
yi − f(xi)

)2
+ λ∥f∥2

H,

with f̂ = K(·, β̂). By the result of Kimmeldorf and Wahba, it follows that f̂(x) =∑n
i=1 α̂iK(x, xi) = K(x,

∑n
i=1 α̂ixi) with α̂ = (K + nλI)−1y = (XX⊤ + nλI)−1y. It

follows that β̂ = X⊤(XX⊤ + nλI)−1y.
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Exercise 9.3 (Ridge regression and kernel trick) Consider again, the ridge regression
problem with no intercept,

β̂ = argmin
β

1
n

∥y − Xβ∥2 + λ∥β∥2
2,

where y ∈ Rn and the design matrix X is n × p.

(a) Using what you know about ridge regression and the identity, (X⊤X + λIp)X⊤ =
X⊤(XX⊤ + λIn), show that β̂ = X⊤(XX⊤ + nλIn)−1y as in the previous problem.
Solution: The conclusion follows by multiplying both sides of the identity by
(XX⊤ + λIn)−1y from right and by (X⊤X + λIp)−1.

(b) Thus, there are two methods for computing β̂: X⊤(XX⊤ + nλIn)−1y and (X⊤X +
nλIn)−1X⊤y. What is the computational complexity of applying each method? When
should one be favored over the other?
Solution: The two costly operations involved are matrix multiplication and that
of solving linear equations. The complexity of solving Ax = y, where A is a n × n
matrix and x, y matrices, is n × 1 is O(n3) while that of multiplying a p × q matrix
B with a q × r matrix C is O(pqr).
Using these facts, one can compute that the complexity of evaluating X⊤(XX⊤ +
nλI)−1y is O(n3 + n2p) while that of evaluating (X⊤X + λIp)−1X⊤y is O(p3 + p2n).
When p < n, the latter is a better method for calculating β̂.

Exercise 9.4 (RKHS and the representer theorem) Suppose that K has an eigen-expansion

K(x, y) =
∞∑

j=1
γjϕj(x)ϕj(y), (1)

where γj ≥ 0 are eigenvalues that satisfy ∑∞
j=1 |γj |2 < ∞ and {ϕj}∞

j=1 forms the orthogonal
basis of the function space H. The space H has the form

H =
{

f : Rp → R : f(x) =
∞∑

i=1
ciϕi(x) for all x and

∞∑
i=1

c2
i /γi < ∞

}

For f(x) =
∞∑

i=1
ciϕi(x) and g(x) =

∞∑
i=1

diϕi(x) in H, define

⟨f, g⟩H =
∞∑

i=1

cidi

γi
.

NOTE: In the following problems, do not use any results about reproducing kernels.

(a) Show that ⟨·, ·⟩H is an inner product.
Solution: It suffices to verify that for α, β ∈ R and f(x) = ∑∞

i=1 ciϕi(x), g(x) =∑∞
i=1 diϕi(x) and h(x) = ∑∞

i=1 eiϕi(x) with (ci)∞
i=1, (di)∞

i=1, (ei)∞
i=1 ∈ ℓ2 we have,
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1. Positivity: ⟨f, f⟩H = ∑∞
i=1 c2

i /γi ≥ 0 with equality if and only if ci = 0 for i ≥ 1,
that is, if and only if f = 0.

2. Symmetry: ⟨f, g⟩H = ∑∞
i=1 cidi/γi = ⟨g, f⟩H.

3. Linearity: ⟨αf + βg, h⟩H = ∑∞
i=1(αci + βdi)ei/γi = α⟨f, h⟩H + β⟨g, h⟩H.

(b) For any f ∈ H and x ∈ Rp, show that ⟨K(·, x), f⟩H = f(x).
Solution: By definition, we have

⟨K(·, x), f⟩H =
〈 ∞∑

j=1
γjϕj(·)ϕj(x),

∞∑
j=1

cjϕj(·)
〉

H

=
∞∑

j=1

γjϕj(x)cj

γj

= f(x).

(c) For any x, y ∈ Rp, show that ⟨K(·, x), K(·, y)⟩H = K(x, y).
Solution: We have

⟨K(·, x), K(·, y)⟩H =
〈 ∞∑

j=1
γjϕj(·)ϕj(x),

∞∑
j=1

γjϕj(·)ϕj(y)
〉

H

=
∞∑

j=1

γjϕj(x)γjϕj(y)
γk

= K(x, y).

(d) If f(x) = ∑m
i=1 αiK(x, xi) and g(x) = ∑k

j=1 βjK(x, xj), show that

⟨f, g⟩H =
m∑

i=1

k∑
j=1

αiβjK(xi, xj)

and in particular,

∥f∥2
H =

m∑
i=1

m∑
j=1

αiαjK(xi, xj).

Solution: Using the result of (c), we have

⟨f, g⟩H =
〈

m∑
i=1

αiK(·, xi),
k∑

j=1
βjK(·, xj)

〉
H

=
m∑

i=1

k∑
j=1

αiβj ⟨K(·, xi), K(·, xj)⟩H

=
m∑

i=1

k∑
j=1

αiβjK(xi, xj)

and the result for ∥f∥2
H follows from ∥f∥2

H = ⟨f, f⟩H.
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