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Exercise sheet 10

We will use several times in this exercise sheet Von Neumann’s inequality. We will
prove it in a last exercise. Von Neuman’s inequality says that if we let A, B ∈ Rd×K , with
K ≤ d, two matrices whose singular values are respectively σ1(A) ≥ . . . ≥ σK(A) and
σ1(B) ≥ . . . ≥ σK(B), then

|tr(A⊤B)| ≤
K∑

k=1
σk(A)σk(B).

Exercise 10.1 Proving part of Eckart-Young’s theorem...

(a) Use Von Neumann’s inequality to show that if A and B are as above then

∥A − B∥2
F ≥

K∑
k=1

(σk(A) − σk(B))2.

If UDV⊤ is the SVD of A then we have

∥A∥2
F = tr(UDV⊤V DU⊤) = tr(U⊤UDV⊤V D) = ∥D∥2

F =
K∑

k=1
σk(A)2.

and so, using Von Neumann’s inequality,

∥A−B∥2
F = ∥A∥2

F −2tr(A⊤B)+∥B∥2
F ≥

K∑
k=1

σk(A)2 −2
K∑

k=1
σk(A)σk(B)+

K∑
k=1

σk(B)2.

(b) Solve the problem

min
B

K∑
k=1

(σk(A) − σk(B))2 s.t. rank(B) ≤ r.

Let αk = σk(A) and βk = σk(B). We can rewrite the previous problem as

min
β

∥α − β∥2
2 s.t. ∥β∥0 ≤ r.

But since the coefficients of α are sorted in decreasing order, the smallest error is
obtained for the vector β∗ such that β∗

k = αk1{k≤r}. So any matrix B with singular
values α1, . . . , αr, 0, . . . , 0 is a minimum.
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(c) For a fixed matrix A, show that there exists a matrix B of rank r such that

∥A − B∥2
F =

K∑
k=r+1

σk(A)2

We can use B the matrix of projections of the rows of A on the r first principal
directions of A. More precisely, if UDV⊤ is the SVD of A, and U[r] ∈ Rd×r, S[r] ∈ Rr×r,
and V[r] ∈ Rd×r) denote respectively the matrices formed of the r first column of U ,
S and V , then ,if we let B = U[r]S[r]V

⊤
[r], we have ∥A − B∥2

F = ∥
∑K

k=r+1 skukv⊤
k∥2

F =∑K
k=r+1 s2

k, which proves the result since sk = σk(A). Note that if several singular
values are equal, then the SVD is not unique: the right and left subspaces associated
with a given singular value is of dimension larger than one and therefore admits
several bases. However, any of these bases would attain the proposed value. In that
case, there are several matrices B that attain the considered value.

(d) If A = USV⊤, let U[r] ∈ Rd×r, S[r] ∈ Rr×r, and V[r] ∈ Rd×r) denote respectively the
matrices formed of the r first column of U , S and V . Use the previous result to show
that B∗ = U[r]S[r]V

⊤
[r] minimizes:

min
B

∥A − B∥2
F s.t. rank(B) ≤ r,

By questions (a) and (b) we know that ∥A−B∥2
F ≥

∑K
k=r+1 σk(A)2 for any matrix B of

rank K. By question (c), we know that this value can be attained by B∗ = U[r]S[r]V
⊤
[r].

Exercise 10.2 Probabilistic version of PCA. Let D ∈ Rp×K be a fixed full column rank
matrix (thus with K ≤ p). We consider the following generative model:

z ∼ N (0, IK), x | z ∼ N (Dz, σ2Ip)
(a) Use that with previous model we equivalently have that x = Dz + ε with ε ∼

N (0, σ2Ip) where ε and z are independent, to obtain the marginal distribution of x;
in particular compute its mean and it covariance.
Solution: x is a linear combination of independent Gaussian r.v.s, and so it is
Gaussian as well. Its mean is

E[x] = E[Dz + ε] = DE[z] + E[ε] = 0.

And so, given that all variables are centered, its variance is
Cov(x) = E[xx⊤] = E[Dzz⊤D⊤] + E[εε⊤] = DD⊤ + σ2Ip,

where we used that, by independence, E[Dzε⊤] = E[Dz]E[ε]⊤ = 0.

(b) Assume that x1, . . . , xn is an i.i.d sample from the model above. Express its log-
likelihood as a function of Σ̂ = 1

n

∑n
i=1 xix⊤

i.

ℓ(D, σ2) =
n∑

i=1
log p(xi) = −1

2

n∑
i=1

x⊤
i[DD⊤ + σ2Ip]−1xi − n

2 log det[DD⊤ + σ2Ip]

= −n
2

n∑
i=1

tr(xix⊤
i[DD⊤ + σ2Ip]−1) − n

2 log det[DD⊤ + σ2Ip]

= −n
2 tr(Σ̂[DD⊤ + σ2Ip]−1) − n

2 log det[DD⊤ + σ2Ip].
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(c) Verify that [DD⊤ + σ2Ip]−1 = σ−2Ip − σ−2D[σ2IK + D⊤D]−1D⊤.

We can check that

σ−2
(
DD⊤ + σ2Ip

)(
Ip − D[σ2IK + D⊤D]−1D⊤

)
= Ip.

Indeed, the LHS expression above multiplied by σ2 is equal to

DD⊤ + σ2Ip − DD⊤D[σ2IK + D⊤D]−1D⊤ − Dσ2Ip[σ2IK + D⊤D]−1D⊤

=σ2Ip + D
(
[σ2IK + D⊤D][σ2IK + D⊤D]−1 − D⊤D[σ2IK + D⊤D]−1 − σ2Ip[σ2IK + D⊤D]−1

)
D⊤

and we see that what is inside of the parentheses is equal to zero.

(d) Show that when σ2 → 0, then σ2ℓ(D, σ2) converges to −n
2 tr(Σ̂(I − H)) with H =

D[D⊤D]−1D⊤.

We can write σ2ℓ(D, σ2) = −n
2 [A1(σ2) + A2(σ2)] with

A1(σ2) := σ2tr(Σ̂[DD⊤ + σ2Ip]−1) and A2(σ2) := σ2 log det[DD⊤ + σ2Ip].

First note that using question (c) we can rewrite A1(σ2) as

A1(σ2) = tr(Σ̂) − tr(D[σ2IK + D⊤D]−1D⊤Σ̂),

so that when σ2 → 0 we have A1(σ2) → tr(Σ̂) − tr(HΣ̂).

Then note that A2(σ2) = σ2
K∑

j=1
log(sj + σ2) + σ2(p − K) log σ2, where s1 ≥ . . . ≥ sK

are the eigenvalues of DD⊤, so that when σ2 → 0, then A1(σ2) → 0 because
σ2 log σ2 → 0.

(e) Using Von Neumann’s inequality, prove that the projector on the subspace spanned
by the K top eigenvectors of Σ̂ maximizes tr(Σ̂H).
Indeed by VN’s inequality tr(Σ̂H) ≤

∑K
k=1 sk and we obtain an equality for H =

U[k]U
⊤
[k] where U[k] ∈ Rd×K is the matrix whose columns are the k top eigenvectors

of Σ̂. We have not proven here that U[k]U
⊤
[k] is the unique maximizer, but, if the

eigenvalues of Σ̂ are distinct, a closer look at equality cases in VN’s inequality would
allow us to prove that it is.

(f) Explain why when σ2 is small, the maximum likelihood estimator for D can be
expected to be a matrix whose columns span the kth right principal subspace of X
and whose singular values are the top singular values of X where X is the design
matrix of the data.
When σ2 is small we proved in the previous questions that the log-likelihood is
dominated by the term 1

σ2
n
2 tr(Σ̂(H − I)) which entails that, when the eigenvalues of

Σ̂ are distinct, the matrix H maximizing the likelihood should be close to U[k]U
⊤
[k].
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Of course in practice we maximize with respect to D, but the space spanned by the
columns of D is the same as the space spanned by the columns of H. By analyzing
more closely the maximum likelihood estimator for D we could show that D⊤D
estimates the covariance structure of the data in the basis of the subspace given by
the columns of U[k].

(g) In which sense is the probabilistic model introduced at the beginning of this exercise
a probabilistic counterpart of PCA?
Intuitively first, the model is constructed as a generative model where a datapoint is
generated in the subspace spanned by the columns of D with a covariance structure
given by DD⊤ and the observed data is then obtained by adding a noise of variance
σ2. It therefore makes sense that this model would estimate a principal subspace
of the data. Then, we gave some argument towards proving that the maximum
likelihood estimator would estimate approximately the same subspace as PCA when
σ2 is small.

Practical Exercise

Exercise 10.3 (PCA and Dimensionality Reduction) Import the file data.csv using the
read.csv function in R. It contains a list of 10 dimensional vectors with their class.

(a) Using the svd function, compute the principal components of the given data set
(exclude the class).

(b) How many principal components do you need to explain more than 99% of the
variance?
Solution: The singular values sj drop suddenly after j = 2 and thus the first two
principal components capture most of the variance. Although the data is of dimension
10, it appears that it is essentially of dimension 2.

(c) Plot the first two principal components and describe the shape of the data. Would it
be a good idea to use linear classifiers to classify this data set? If not, why not?
Solution: Thus projecting high-dimensional data to a low-dimensional subspace can
reveal important information. Linear classifiers can not be used because the resulting
data does not appear linearly separable.

(d) Construct a function f : R2 → R3 to transform the data by mapping the first two
principal components so as to render the data easily classifiable using linear classifiers.
Note: You may choose the function by inspection or trial and error.
Solution: Pick f(x, y) = exp(ax2 + by2) and fit a, b > 0 by inspection.

Bonus Exercise
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Exercise 10.4 (von Neumann’s Inequality). The goal of this problem is to establish Von
Neumann’s inequality. Let A, B ∈ Rd×d two matrices whose singular values are respectively
σ1(A) ≥ . . . ≥ σd(A) and σ1(B) ≥ . . . ≥ σd(B). Von Neuman’s inequality says that

|tr(A⊤B)| ≤
d∑

k=1
σk(A)σk(B).

(a) Why can we assume without loss of generality that A is a diagonal matrix?[Hint:
inject the SVD of A.]
Let UADV⊤

A be the singular value of A. Then we consider Ã = D and B̃ = U⊤
ABVA.

Then tr(A⊤B) = tr(VADU⊤
AB) = tr(DU⊤

ABVA) = tr(Ã⊤B̃) and we have σk(A) =
σk(D) = σk(Ã) and σk(B) = σk(B̃) because if USV⊤ is the SVD of B then U⊤

AU and
V⊤

AV are still orthogonal matrices. So if we show the result for the pair (Ã, B̃), the
result will be true for the pair (A, B).

(b) If A = D is diagonal, prove that Von Neumann’s inequality is equivalent to the
inequality |tr(DUSV⊤)| ≤ tr(DS), where USV⊤ is the SVD of B.
This is just because D and S contain precisely the singular values of A and B.

(c) Let Pk = Diag(1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0︸ ︷︷ ︸
d−k zeros

). Let σd+1(A) = σd+1(B) = 0 by convention, and let

ak = σk(A) − σk+1(A) and bk = σk(B) − σk+1(B), so that we have

D =
d∑

k=1
akPk and S =

d∑
l=1

blPl.

Show that Von Neumann’s inequality can equivalently written as

|
d∑

k=1

d∑
l=1

ak bl tr(PkUPlV
⊤)| ≤

d∑
l=1

ak bl tr(PkPl).

This is an immediate consequence of the linearity of the trace.

(d) Deduce from the previous question that it is sufficient to prove

| tr(PkUPlV
⊤)| ≤ tr(PkPl),

which is actually exactly Von Neumann’s inequality but for a particular kind of
matrix.
By construction ak ≥ 0 and bl ≥ 0 so that

|
d∑

k=1

d∑
l=1

ak bl tr(PkUPlV
⊤)| ≤

d∑
k=1

d∑
l=1

ak bl |tr(PkUPlV
⊤)|,

so indeed the previous inequality would allow to conclude.
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(e) Let uk denote the kth column of U and vl denote the lth column of V . Show that
tr(PkUPlV

⊤) =
∑l

i=1⟨Pkui, vi⟩ ≤ l and deduce that in fact tr(PkUPlV
⊤) ≤ min(k, l).

Let U[l] (resp. V[l]) be the matrix formed of the l first columns of U (resp. of V ),
then UPlV

⊤ = UPlPlV
⊤ = U[l]V

⊤
[l]. So that

tr(PkUPlV
⊤) = tr(PkU[l]V

⊤
[l]) = tr(V⊤

[l]PkU[l]) =
l∑

i=1
⟨vi, Pkui⟩.

Permuting under the trace we have tr(PkUPlV
⊤) = tr(PlV

⊤PkU) and so by exchanging
the roles of U and V⊤ we get the symmetric inequality (with this time the rows of U
and V ).

(f) Use this last result to prove Von Neumann’s inequality.
Finally we proved tr(PkUPlV

⊤) = min(k, l) but clearly tr(PkPl) = min(k, l), so we
proved the inequality | tr(PkUPlV

⊤)| ≤ tr(PkPl), and therefore the original inequality.

(g) Assume now that A, B ∈ Rd×K with K < d, why is the inequality still true?
We can always add zero columns to A and B to turn them into square matrices. This
adds only singular values equal to zero to both matrices.
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