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Making models non-linear with a feature map

Idea : make non-linear transformation of the data first

Quadratic map :

ϕ(x) = (x1, . . . , xp, x
2
1, . . . , x

2
p, x1x2, x1x3, . . . , xp−1xp)

Fourier basis, spline basis, wavelet basis

Regularized empirical risk minimization with a mapping ϕ :

min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2.
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Representer theorem (simple version with the feature map)

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min
w∈Rd

L(w⊤ϕ(x1), . . . ,w
⊤ϕ(xn)) + λ∥w∥2

Then any local minimum is of the form w =

n∑
i=1

αiϕ(xi),

for some vector α ∈ Rn. Interpretation : w ∈ span
(
ϕ(x1), . . . ,ϕ(xn)

)
.

So that fw(x) = w⊤ϕ(x) =

n∑
i=1

αi⟨ϕ(xi),ϕ(x)⟩ =
n∑
i=1

αiK(xi, x).
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Applying the representer theorem to the ERM problem

min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2.

By the theorem of Kimmeldorf and Wahba, w⋆ =

n∑
j=1

α⋆jϕ(xj).

So replacing in the previous expression, we get

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αj⟨ϕj(xj),ϕi(xi)⟩, yi
)
+ λ

∥∥∥ n∑
j=1

αjϕ(xj)
∥∥∥2.

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αjKij , yi

)
+ λ

∑
1≤i,j≤n

αiαjKij ,

with Kij = K(xi, xj) = ⟨ϕ(xi),ϕ(xj)⟩ the values of a kernel function on pairs of input
datapoints.
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The ERM expressed with the kernel matrix

We rewrote min
w

1

n

n∑
i=1

ℓ(w⊤ϕ(xi), yi) + λ∥w∥2 as :

min
α

1

n

n∑
i=1

ℓ
( n∑
j=1

αjKij , yi

)
+ λ

∑
1≤i,j≤n

αiαjKij ,

with Kij = K(xi, xj) = ⟨ϕ(xi),ϕ(xj)⟩.

This can be rewritten in matrix vector form as

min
α∈Rn

1

n

n∑
i=1

ℓ
(
Ki·α, yi

)
+ λα⊤Kα.

Furthermore to make a prediction, our predictor is computed as

f̂(x) = w⋆⊤ϕ(x) =

n∑
j=1

α⋆j K(xj , x).
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The kernel matrix when ϕ(x) = x.
Based on the design matrix X, two symmetric p.s.d. matrices are natural :

the empirical covariance matrix (assuming X is centered)

Σ̂ = 1
nX

⊤X

Σ̂kℓ = Ĉov(X(k), X(ℓ)) =
〈 1√

n
xk,

1√
n
xℓ
〉

the kernel matrix or Gram matrix

K = XX⊤

Kij = ⟨xi,xj⟩
K is simply the matrix of all dot products. K encodes information about the data vectors
xi = X⊤

i· while Σ̂ encodes information about the variables xk = X·k
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Properties of the kernel matrix when ϕ(x) = x.

The kernel matrix contains a lot of information about the data :

It contains the information about all the distances between all pairs of data points (and
between each data points and the origin). Indeed,

∥xi − xj∥22 = Kii − 2Kij +Kjj .

As a consequence, any factorization of the matrix K of the form

K = RR⊤,

retrieves a representation of the data up to an isometry. This can be obtained for
example by the Cholesky decomposition.

Math-412 Kernel methods 7/18



Why is this useful ?
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Dot products in feature space
Let x = (x1, x2) ∈ R2 and ϕ(x) = (x1, x2, x

2
1, x

2
2,
√
2x1x2)

⊤.

⟨ϕ(x),ϕ(y)⟩ = x1y1 + x2y2 + x21y
2
1 + x22y

2
2 + 2x1x2y1y2

= x1y1 + x2y2 + (x1y1)
2 + (x2y2)

2 + 2(x1y1)(x2y2)

= ⟨x,y⟩+ ⟨x,y⟩2

For w = (0, 0, 1, 1, 0)⊤, w⊤ϕ(x)− 1 ≤ 0 ⇔ ∥x∥2 ≤ 1.

Linear separators in R5 correspond to conic separators in R2.
https://www.youtube.com/watch?v=Q7vT0--5VII

Let x = (x1, . . . , xp) ∈ Rp and

ϕ(x) = (x1, . . . , xp, x
2
1, . . . , x

2
p,
√
2x1x2, . . . ,

√
2xixj , . . .

√
2xp−1xp)

⊤.

Still have
⟨ϕ(x),ϕ(y)⟩ = ⟨x,y⟩+ ⟨x,y⟩2

But explicit mapping too expensive to compute : ϕ(x) ∈ Rp+p(p+1)/2.
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Which abstract space is a good predictor space ?
Require that

(1) the space should be a Hilbert space (H, ∥ · ∥H)
(2) ∀x ∈ X , the evaluation functional f 7→ f(x) is continuous from (H, ∥ · ∥H) to R.

This is equivalent to requiring that for a given x ∈ X :

if ∥f − g∥H is small then |f(x)− g(x)| should be small.

The motivation is that we would like that(
∥f̂n − f∗∥H → 0

)
⇒

(
f̂n(x) → f∗(x)

)
Riesz Representation Theorem

Let H be a Hilbert space, and ψ : H → R be a continuous linear form, then there exists
hψ ∈ H such that

∀f ∈ H, ψ(f) = ⟨hψ, f⟩H .

Under (1) and (2) by this theorem, there must exist an element hx ∈ H such that

∀f ∈ H, f(x) = ⟨hx, f⟩H .
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Reproducing Kernel Hilbert Space
So if H is a Hilbert space of functions in which the evaluation functionals
are continuous, then by the Riesz representation theorem,
there must exist an element hx ∈ H such that

∀f ∈ H, f(x) = ⟨hx, f⟩H .

But then by definition hy(x) = ⟨hx, hy⟩H = hx(y).
Define the reproducing kernel as the function

K : X × X → R
(x, y) 7→ ⟨hx, hy⟩H .

By definition hx(·) = K(x, ·) so that

f(x) = ⟨K(x, ·), f⟩H and ⟨K(x, ·),K(y, ·)⟩H = K(x, y).

A space with these properties is called a reproducing kernel Hilbert space (RKHS).
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Positive definite functions

(x, y) 7→ K(x, y)

is a positive definite function if the matrix constructed as

K =


K(x1, x1) . . . , . . . K(x1, xn)
K(x2, x1) . . . , . . . K(x2, xn)

...
...

K(xn, x1) . . . , . . . K(xn, xn)


is a positive semi-definite matrix

i.e., ∀α ∈ Rn, α⊤Kα ≥ 0,

for any choice of x1, . . . , xn and any value of n.
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A reproducing kernel is a positive definite function

Proposition

A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric positive definite
function since for all x1, . . . , xn ∈ X , we have ⟨K(xi, ·),K(xj , ·)⟩H = K(xi, xj), and thus
for all α1, . . . , αn ∈ R.

0 ≤
〈∑

i αiK(xi, ·),
∑

j αjK(xj , ·)
〉

H
=

∑
i,j

αiαjK(xi, xj),

with equality if and only if αi = 0 for all i.

Converse ?

Yes, any symmetric positive definite function is the reproducing kernel of a RKHS
(Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there exists a Hilbert space
H and a mapping

ϕ : X → H
x 7→ ϕ(x)

such that K(x, y) = ⟨ϕ(x), ϕ(y)⟩H.

In fact, this mapping is ϕ(x) = hx

Such symmetric p.d. functions are often called Mercer kernels.

We will not show this theorem in this course.
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Common RKHSes for X = Rp

Linear kernel

K(x,y) = x⊤y

H = {fw : x 7→ w⊤x | w ∈ Rp}
∥fw∥H = ∥w∥2

Polynomial kernel

Kh(x,y) = (γ + x⊤y)d

H

Radial Basis Function kernel (RBF)

Kh(x,y) = exp
(
− ∥x−y∥22

2h

)
H = Gaussian RKHS
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min
f∈H

L(f(x1), . . . , f(xn)) + λ∥f∥2H

Then any local minimum is of the form f =

n∑
i=1

αiK(xi, ·),

where K is the reproducing kernel associated with the RKHS H and α is a vector in Rn.

Proof Indeed, let f be a local minimum and consider the subspace

S = {g | g =

n∑
i=1

αiK(xi, ·), α ∈ Rn}.
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Representer theorem

We can decompose f = f// + f⊥ with f// = ProjS(f). We then have

f⊥(xi) = ⟨f⊥,K(xi, ·)⟩H = 0 and ⟨f⊥, f//⟩H = 0.

Thus

L(f(x1), . . . , f(xn)) + λ∥f∥2H
= L(f//(x1), . . . , f//(xn)) + λ

(
∥f//∥2H + 2⟨f⊥, f//⟩H + ∥f⊥∥2H

)
= L(f//(x1), . . . , f//(xn)) + λ ∥f//∥2H + λ ∥f⊥∥2H

So that we must have f⊥ = 0.
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Regularized ERM for f in a RKHS

min
f∈H

1

n

n∑
i=1

ℓ(f(xi), yi) + λ ∥f∥2H (P)

By the representer theorem, the solution of the regularized empirical risk minimization
problem lies in the subspace of H generated by the point xi, i.e.,

f∗ =
n∑
j=1

αjK(xj , ·) for some αi ∈ R. (R)

The solution of (P) is therefore of the form (R) with α ∈ Rn the solution of

min
α∈Rn

1

n

n∑
i=1

ℓ
( n∑
j=1

αjK(xj , xi), yi

)
+ λ

∑
1≤i,j≤n

αiαjK(xi, xj).
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