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Making models non-linear with a feature map

Idea : make non-linear transformation of the data first

@ Quadratic map :

o (x) = (21,. .. ,xp,x%, .. ,a:g, T1T2, T1T3,. .., Tp—1Tp)

@ Fourier basis, spline basis, wavelet basis

Regularized empirical risk minimization with a mapping ¢ :

1

min — Zé(qub(mi)? yi) + Mw|?.
P
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Representer theorem (simple version with the feature map)

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

min L(w' (z1),.-, w0 §(w)) + Aol

Then any local minimum is of the form w = Z a;p(z;),

i=1
for some vector a € R"™. Interpretation : w € span(qb(xl), e d)(:vn)).
So that fw(z) =w' ¢(z) = Zai<¢($i)a o(x)) = ZaiK(%’an)-
i=1 i=1
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Applying the representer theorem to the ERM problem
1 n
min — > lw ' pw:),yi) + Aw]*.
=1

By the theorem of Kimmeldorf and Wahba, w* = Za§¢(xj).

j=1
So replacing in the previous expression, we get

n

min 25703 (). il)on) + 3|3 b

i=1  j=1 j=1

H}iﬂﬁZf(Za] z]7yz>+)‘ Z alaﬂ ijs

1<i,5<n

i

with K;; = K(x;, %) = <¢(:L’i),¢( x;)) the values of a kernel function on pairs of input
datapoints.
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The ERM expressed with the kernel matrix

1 n
We rewrote II}II)DE ;K(qub(xi),yi) + Mw|? as:

() s
J= 1<i,j<n
with Ky = K (v, ;) = (¢(xi), p(75)).

This can be rewritten in matrix vector form as

min —ZE(K a,yz> +la' Ka.

acR™ n

Furthermore to make a prediction, our predictor is computed as

fl@)=w Tp(z) =Y af K(z),2)
Jj=1
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The kernel matrix when ¢(x) = x.
Based on the design matrix X, two symmetric p.s.d. matrices are natural :
e the empirical covariance matrix (assuming X is centered)

S—1xTx

T n

Lk

Ske = Cov(X®, X0 = <7X 7%X€>
n n

@ the kernel matrix or Gram matrix

Kij = (xi,x;)
K is simply the matrix of all dot products. K encodes information about the data vectors
X; = XiT while ¥ encodes information about the variables x* = X ;.
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Properties of the kernel matrix when ¢(x) = x.

The kernel matrix contains a lot of information about the data :

@ It contains the information about all the distances between all pairs of data points (and
between each data points and the origin). Indeed,

i — x;3 = K — 2K + Kj;.

@ As a consequence, any factorization of the matrix K of the form
K =RR',

retrieves a representation of the data up to an isometry. This can be obtained for
example by the Cholesky decomposition.
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Why is this useful 7
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Dot products in feature space
Let x = (w1, 72) € R? and ¢(x) = (21, 29, 2%, 23, vV22122) T

(0(x),0(¥)) = xiy1 + oy2 + TTYT + 235 + 2w1 22192
= 1+ 22y2 + (2151)° + (212)” + 2(191) (292)
= (xy) +(xy)’
Forw=(0,0,1,1,0)7, w'¢(x)-1<0 < [x]?<L1

Linear separators in R® correspond to conic separators in R2.

https://www.youtube.com/watch?v=Q7vTO--5VII

Let x = (1,...,2p) € RP and

o(x) = (x1,... ,zp,m%, o 2N 22, \/ia:ixj, ... \/ﬁxp_lmp)T.

) p7

Still have
(p(x),d(y)) = (x,9) + (x,y)?

But explicit mapping too expensive to compute : ¢(x) € RPHP(P+1)/2,
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https://www.youtube.com/watch?v=Q7vT0--5VII

Which abstract space is a good predictor space ?
Require that
(1) the space should be a Hilbert space (H, || - ||%)
(2) Va € X, the evaluation functional f — f(x) is continuous from (H, || - ||%) to R.
e This is equivalent to requiring that for a given z € X" :
if [|f — gl is small then |f(z) — g(x)| should be small.
e The motivation is that we would like that

(1fn=Flle=0) = (fal@) = f(2))

Riesz Representation Theorem
Let H be a Hilbert space, and ¥ : H — R be a continuous linear form, then there exists
hy € H such that

Ve, ¥(f) = (hy, [, -

Under (1) and (2) by this theorem, there must exist an element h, € # such that
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Reproducing Kernel Hilbert Space

So if H is a Hilbert space of functions in which the evaluation functionals
are continuous, then by the Riesz representation theorem,
there must exist an element h, € H such that

VieM, [f(@)= (haf)y-

But then by definition hy(z) = (hs, hy),, = ha(y).
Define the reproducing kernel as the function

K:XxX R
(@,y) = (ha hy),, -
By definition h,(-) = K(z,-) so that
f(x): <K($7 )af)H and <K($’ )’K(ya)>H:K($7y)

A space with these properties is called a reproducing kernel Hilbert space (RKHS).
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Positive definite functions

(z,y) = K(z,y)

is a positive definite function if the matrix constructed as

K(zy,z1) ..., ... K(z1,zp)
K(xo,x ceey e K(zg, 2
K (? 1) (2. )
K(zp,z1) ..., ... K(zp,xn)

is a positive semi-definite matrix
e, VaeR", a'Ka>0,

for any choice of x1,...,x, and any value of n.
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A reproducing kernel is a positive definite function

Proposition J

A reproducing kernel is a positive definite function.

Proof of the claim The reproducing kernel is necessarily a symmetric positive definite
function since for all z1,...,z, € X', we have (K(z;,-), K(xj,-)),, = K(x;,x;), and thus
for all aq,...,a, € R.

0< <Zz aiK(xia')vzj a] .CC], > Zaza] .Tl,l'j),

H

with equality if and only if a; = 0 for all <.

Converse ?
Yes, any symmetric positive definite function is the reproducing kernel of a RKHS
(Aronszajn, 1950).
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Moore-Aronszajn theorem

Theorem

A symmetric function K on X is positive definite if and only if there exists a Hilbert space
H and a mapping

p: X —>H
x — ¢(x)

such that K(x,y) = (¢(x), d(y))x.

e In fact, this mapping is ¢(x) = h,
@ Such symmetric p.d. functions are often called Mercer kernels.

@ We will not show this theorem in this course.
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Common RKHSes for X = RP

Linear kernel
° K(x,y)=x"y
o H={fw:x—w'x|wecRP}

® || fwlln = [[wll2

Polynomial kernel

o Kn(x,y)=(y+x'y)*
o H

Radial Basis Function kernel (RBF)

x—l2
o Ki(x,y) = exp ( — )
@ H = Gaussian RKHS
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Representer theorem

Theorem (Kimmeldorf and Wahba, 1971)

Consider the optimization problem

n
Then any local minimum is of the form  f = Z o, K (x4, ),

i=1

where K is the reproducing kernel associated with the RKHS H and « is a vector in R™.

Proof Indeed, let f be a local minimum and consider the subspace

S={glg=> aiK(z;,-), acR"}.
i=1
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Representer theorem

We can decompose f = f, + fi. with f, = Projs(f). We then have

Ji(zi) = (fL, K(xi,-))» =0 and (fL,f)u =0.
Thus

L(f(z1),- -, flza)) + AlIFII3
L(fy(x1), - fy(wn)) + X (15 + 20FL, f)a + 1FL117)
= L(fy(@1),- fylwn)) + NIF G+ X A5

So that we must have f; = 0.

flz
Jr
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Regularized ERM for f in a RKHS

- E 7 7 A P
?lelﬁn; () vi) + MIfI% (P)

By the representer theorem, the solution of the regularized empirical risk minimization
problem lies in the subspace of H generated by the point z;, i.e.,

ff= ZajK(wj, -)  for some «; € R. (R)
j=1

The solution of (P) is therefore of the form (R) with o € R™ the solution of

o{rel%RI}LE Z€<ZO‘J (xj, ), Z) + A Z a0 K (x4, ).

1<ij<n
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