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Statistical Machine Learning

Exercise sheet 10

We will use several times in this exercise sheet Von Neumann’s inequality. We will
prove it in a last exercise. Von Neuman’s inequality says that if we let A, B ∈ Rd×K , with
K ≤ d, two matrices whose singular values are respectively σ1(A) ≥ . . . ≥ σK(A) and
σ1(B) ≥ . . . ≥ σK(B), then

|tr(A⊤B)| ≤
K∑

k=1
σk(A)σk(B).

Exercise 10.1 Proving part of Eckart-Young’s theorem...

(a) Use Von Neumann’s inequality to show that if A and B are as above then

∥A − B∥2
F ≥

K∑
k=1

(σk(A) − σk(B))2.

(b) Solve the problem

min
B

K∑
k=1

(σk(A) − σk(B))2 s.t. rank(B) ≤ r.

(c) For a fixed matrix A, show that there exists a matrix B of rank r such that

∥A − B∥2
F =

K∑
k=r+1

σk(A)2

(d) If A = USV⊤, let U[r] ∈ Rd×r, S[r] ∈ Rr×r, and V[r] ∈ Rd×r) denote respectively the
matrices formed of the r first column of U , S and V . Use the previous result to show
that B∗ = U[r]S[r]V

⊤
[r] minimizes:

min
B

∥A − B∥2
F s.t. rank(B) ≤ r,

Exercise 10.2 Probabilistic version of PCA. Let D ∈ Rp×K be a fixed full column rank
matrix (thus with K ≤ p). We consider the following generative model:

z ∼ N (0, IK), x | z ∼ N (Dz, σ2Ip)

(a) Use that with previous model we equivalently have that x = Dz + ε with ε ∼
N (0, σ2Ip) where ε and z are independent, to obtain the marginal distribution of x;
in particular compute its mean and it covariance.
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(b) Assume that x1, . . . , xn is an i.i.d sample from the model above. Express its log-
likelihood as a function of Σ̂ = 1

n

∑n
i=1 xix⊤

i.

(c) Verify that [DD⊤ + σ2Ip]−1 = σ−2Ip − σ−2D[σ2IK + D⊤D]−1D⊤.

(d) Show that when σ2 → 0, then σ2ℓ(D, σ2) converges to −n
2 tr(Σ̂(I − H)) with H =

D[D⊤D]−1D⊤.

(e) Using Von Neumann’s inequality, prove that the projector on the subspace spanned
by the K top eigenvectors of Σ̂ maximizes tr(Σ̂H).

(f) Explain why when σ2 is small, the maximum likelihood estimator for D can be
expected to be a matrix whose columns span the kth right principal subspace of X
and whose singular values are the top singular values of X where X is the design
matrix of the data.

(g) In which sense is the probabilistic model introduced at the beginning of this exercise
a probabilistic counterpart of PCA?

Practical Exercise

Exercise 10.3 (PCA and Dimensionality Reduction) Import the file data.csv using the
read.csv function in R. It contains a list of 10 dimensional vectors with their class.

(a) Using the svd function, compute the principal components of the given data set
(exclude the class).

(b) How many principal components do you need to explain more than 99% of the
variance?

(c) Plot the first two principal components and describe the shape of the data. Would it
be a good idea to use linear classifiers to classify this data set? If not, why not?

(d) Construct a function f : R2 → R3 to transform the data by mapping the first two
principal components so as to render the data easily classifiable using linear classifiers.
Note: You may choose the function by inspection or trial and error.

Bonus Exercise

Exercise 10.4 (von Neumann’s Inequality). The goal of this problem is to establish Von
Neumann’s inequality. Let A, B ∈ Rd×d two matrices whose singular values are respectively
σ1(A) ≥ . . . ≥ σd(A) and σ1(B) ≥ . . . ≥ σd(B). Von Neuman’s inequality says that

|tr(A⊤B)| ≤
d∑

k=1
σk(A)σk(B).
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(a) Why can we assume without loss of generality that A is a diagonal matrix?[Hint:
inject the SVD of A.]

(b) If A = D is diagonal, prove that Von Neumann’s inequality is equivalent to the
inequality |tr(DUSV⊤)| ≤ tr(DS), where USV⊤ is the SVD of B.

(c) Let Pk = Diag(1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0︸ ︷︷ ︸
d−k zeros

). Let σd+1(A) = σd+1(B) = 0 by convention, and let

ak = σk(A) − σk+1(A) and bk = σk(B) − σk+1(B), so that we have

D =
d∑

k=1
akPk and S =

d∑
l=1

blPl.

Show that Von Neumann’s inequality can equivalently written as

|
d∑

k=1

d∑
l=1

ak bl tr(PkUPlV
⊤)| ≤

d∑
l=1

ak bl tr(PkPl).

(d) Deduce from the previous question that it is sufficient to prove

| tr(PkUPlV
⊤)| ≤ tr(PkPl),

which is actually exactly Von Neumann’s inequality but for a particular kind of
matrix.

(e) Let uk denote the kth column of U and vl denote the lth column of V . Show that
tr(PkUPlV

⊤) =
∑l

i=1⟨Pkui, vi⟩ ≤ l and deduce that in fact tr(PkUPlV
⊤) ≤ min(k, l).

(f) Use this last result to prove Von Neumann’s inequality.

(g) Assume now that A, B ∈ Rd×K with K < d, why is the inequality still true?
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