Statistical Machine Learning

Exercise sheet 10

We will use several times in this exercise sheet Von Neumann's inequality. We will prove it in a last exercise. Von Neuman's inequality says that if we let $A, B \in \mathbb{R}^{d \times K}$, with $K \leq d$, two matrices whose singular values are respectively $\sigma_1(A) \geq \ldots \geq \sigma_K(A)$ and $\sigma_1(B) \geq \ldots \geq \sigma_K(B)$, then

$$|\operatorname{tr}(A^{\mathsf{T}}B)| \leq \sum_{k=1}^{K} \sigma_k(A)\sigma_k(B).$$

Exercise 10.1 Proving part of Eckart-Young's theorem...

(a) Use Von Neumann's inequality to show that if A and B are as above then

$$||A - B||_F^2 \ge \sum_{k=1}^K (\sigma_k(A) - \sigma_k(B))^2.$$

(b) Solve the problem

$$\min_{B} \sum_{k=1}^{K} (\sigma_k(A) - \sigma_k(B))^2 \quad \text{s.t.} \quad \text{rank}(B) \le r.$$

(c) For a fixed matrix A, show that there exists a matrix B of rank r such that

$$||A - B||_F^2 = \sum_{k=r+1}^K \sigma_k(A)^2$$

(d) If $A = USV^{\top}$, let $U_{[r]} \in \mathbb{R}^{d \times r}$, $S_{[r]} \in \mathbb{R}^{r \times r}$, and $V_{[r]} \in \mathbb{R}^{d \times r}$) denote respectively the matrices formed of the r first column of U, S and V. Use the previous result to show that $B^* = U_{[r]}S_{[r]}V_{[r]}^{\top}$ minimizes:

$$\min_{B} \|A - B\|_F^2 \quad \text{s.t.} \quad \text{rank}(B) \le r,$$

Exercise 10.2 Probabilistic version of PCA. Let $\mathbf{D} \in \mathbb{R}^{p \times K}$ be a fixed full column rank matrix (thus with $K \leq p$). We consider the following generative model:

$$\mathbf{z} \sim \mathcal{N}(0, \mathbf{I}_K), \quad \mathbf{x} \mid \mathbf{z} \sim \mathcal{N}(\mathbf{Dz}, \sigma^2 \mathbf{I}_p)$$

(a) Use that with previous model we equivalently have that $\mathbf{x} = \mathbf{Dz} + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_p)$ where ε and \mathbf{z} are independent, to obtain the marginal distribution of \mathbf{x} ; in particular compute its mean and it covariance.

- (b) Assume that $\mathbf{x}_1, \dots, \mathbf{x}_n$ is an i.i.d sample from the model above. Express its log-likelihood as a function of $\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}$.
- (c) Verify that $[\mathbf{D}\mathbf{D}^{\mathsf{T}} + \sigma^2\mathbf{I}_p]^{-1} = \sigma^{-2}\mathbf{I}_p \sigma^{-2}\mathbf{D}[\sigma^2\mathbf{I}_K + \mathbf{D}^{\mathsf{T}}\mathbf{D}]^{-1}\mathbf{D}^{\mathsf{T}}$.
- (d) Show that when $\sigma^2 \to 0$, then $\sigma^2 \ell(\mathbf{D}, \sigma^2)$ converges to $-\frac{n}{2} \operatorname{tr}(\widehat{\Sigma}(\mathbf{I} \mathbf{H}))$ with $\mathbf{H} = \mathbf{D}[\mathbf{D}^\mathsf{T}\mathbf{D}]^{-1}\mathbf{D}^\mathsf{T}$.
- (e) Using Von Neumann's inequality, prove that the projector on the subspace spanned by the K top eigenvectors of $\widehat{\Sigma}$ maximizes $\operatorname{tr}(\widehat{\Sigma}\mathbf{H})$.
- (f) Explain why when σ^2 is small, the maximum likelihood estimator for D can be expected to be a matrix whose columns span the kth right principal subspace of \mathbf{X} and whose singular values are the top singular values of \mathbf{X} where \mathbf{X} is the design matrix of the data.
- (g) In which sense is the probabilistic model introduced at the beginning of this exercise a probabilistic counterpart of PCA?

Practical Exercise

Exercise 10.3 (PCA and Dimensionality Reduction) Import the file data.csv using the read.csv function in R. It contains a list of 10 dimensional vectors with their class.

- (a) Using the svd function, compute the principal components of the given data set (exclude the class).
- (b) How many principal components do you need to explain more than 99% of the variance?
- (c) Plot the first two principal components and describe the shape of the data. Would it be a good idea to use linear classifiers to classify this data set? If not, why not?
- (d) Construct a function $f: \mathbb{R}^2 \to \mathbb{R}^3$ to transform the data by mapping the first two principal components so as to render the data easily classifiable using linear classifiers. Note: You may choose the function by inspection or trial and error.

Bonus Exercise

Exercise 10.4 (von Neumann's Inequality). The goal of this problem is to establish *Von Neumann's inequality*. Let $A, B \in \mathbb{R}^{d \times d}$ two matrices whose singular values are respectively $\sigma_1(A) \geq \ldots \geq \sigma_d(A)$ and $\sigma_1(B) \geq \ldots \geq \sigma_d(B)$. *Von Neuman's inequality* says that

$$|\operatorname{tr}(A^{\mathsf{T}}B)| \leq \sum_{k=1}^{d} \sigma_k(A)\sigma_k(B).$$

Updated: November 18, 2024

- (a) Why can we assume without loss of generality that A is a diagonal matrix? [Hint: inject the SVD of A.]
- (b) If A = D is diagonal, prove that Von Neumann's inequality is equivalent to the inequality $|\operatorname{tr}(DUSV^{\top})| \leq \operatorname{tr}(DS)$, where USV^{\top} is the SVD of B.
- (c) Let $P_k = \text{Diag}(\underbrace{1,\ldots,1}_{k \text{ ones}},\underbrace{0,\ldots,0}_{d-k \text{ zeros}})$. Let $\sigma_{d+1}(A) = \sigma_{d+1}(B) = 0$ by convention, and let $a_k = \sigma_k(A) \sigma_{k+1}(A)$ and $b_k = \sigma_k(B) \sigma_{k+1}(B)$, so that we have

$$D = \sum_{k=1}^{d} a_k P_k \quad \text{and} \quad S = \sum_{l=1}^{d} b_l P_l.$$

Show that Von Neumann's inequality can equivalently written as

$$|\sum_{k=1}^d \sum_{l=1}^d a_k b_l \operatorname{tr}(P_k U P_l V^{\mathsf{T}})| \leq \sum_{l=1}^d a_k b_l \operatorname{tr}(P_k P_l).$$

(d) Deduce from the previous question that it is sufficient to prove

$$|\operatorname{tr}(P_k U P_l V^{\mathsf{T}})| \le \operatorname{tr}(P_k P_l),$$

which is actually exactly Von Neumann's inequality but for a particular kind of matrix.

- (e) Let \mathbf{u}_k denote the kth column of U and \mathbf{v}_l denote the lth column of V. Show that $\operatorname{tr}(P_k U P_l V^{\mathsf{T}}) = \sum_{i=1}^{l} \langle P_k \mathbf{u}_i, \mathbf{v}_i \rangle \leq l$ and deduce that in fact $\operatorname{tr}(P_k U P_l V^{\mathsf{T}}) \leq \min(k, l)$.
- (f) Use this last result to prove Von Neumann's inequality.
- (g) Assume now that $A, B \in \mathbb{R}^{d \times K}$ with K < d, why is the inequality still true?