Clustering,
Gaussian mixture model and EM

MATH-412 - Statistical Machine Learning
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K-means

Key assumption: Data composed of K “roundish” clusters of
similar sizes with centroids (g1, , K ).

n
o1 :
Problem can be formulated as: min — E min||x; — pr|]?.
Hiopr Mk
1=

Difficult (NP-hard) nonconvex problem.

K-means algorithm
@ Draw centroids at random (or use the “k-means++" initialization)

@ Assign each point to the closest centroid
Cr « {i | [lxi — pll® = mjin lIx; — w1}

© Recompute centroid as center of mass of the cluster

Q Goto?
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K-means properties

Three remarks:
o K-means is a greedy algorithm
@ It can be shown that K-means converges in a finite number of steps.

@ The algorithm however typically gets stuck in local minima and in practice it is
necessary to try several restarts of the algorithms with different initialization to have
chances to obtain a better solution.

o Will typically fail if the clusters are not round or of too different sizes.
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The EM algorithm for the Gaussian mixture model
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Jensen’s Inequality

Consider a function f : R? » R
Q if f is convex and if X is a random variable (with E[X] € R), then

E[f(X)] > f(E[X])

@ When f is strictly convex, we have equality in the previous inequality if and only if X
is constant almost surely.
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The Kullback-Leibler divergence

Definition Let X" a finite (or countable) state space and p and ¢ two distributions on X

p(X)
)1 =Ex~p| 1
Lpllq) = Zp og X p[ qu(X)]
Entropy: H(p) = —)_, p(x)logp(x) >0
So KL(p|lq) = Ex~p[ —logq(X)] — H(p).
Property: Vp,q, KL(p| ¢) >0 (could be infinite)
Proof:
p(X) a(X)
L(p|lq p(z)lo =Ex~ [lo —] =Ex~ [—lo =
1) =3 p(w)log 1y =B 198 53| = Eavoy 108 5
The function f(y) = —logy is strictly convex so
q(X q(X) _ _
> —logEx., [p(X ] logzp (X = —log;q(x) =

with equality if and only if p = ¢ almost surely
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Differential KL and entropies

Let P and @ two probability distributions with densities p and ¢
with respect to a measure y. Then, we can define

KLplo) = [

T

(log %) ple)dua) = Bxrlog 20

Differential entropy

Hip) = — / p(2) log p(z)du(z)

Caveats: the differential entropy is dangerous

e H(p) 20
@ H depends on the choice of u...!
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Gaussian mixture
@ K components

@ z=(21,...,2K

o ZNM(I (7‘(‘1,..

H”k

p(x[2; (r, X))

= > p(xlz)p(z) =

@ Estimation:

argmax log
TP

model

)T € {0,1}¥ indicator variable (one hot encoding)

S TK))
SO p ek = Tk
K

=3 2N )

k=1

K

> N p, B

k=1

;

> e N(x; pr, Zi)

k=1
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Applying maximum likelihood to the Gaussian mixture
Let Z={ze {0,1}K |0 2z =1}

px) =Y px2) =) H [Wk/\f X5 e, 2, } Zﬂk-/\/ X; W, Xi)

z€Z z€Z k=1 k=1

Issue

o The marginal log-likelihood () = 3", log(p(x®)) with 6 = (7, (ks Zh)1<k<k ) is
now complicated

o logp(x,z) = > logp(x,exr)l(z = er) = > zi log(meN (x5 pi, X))
@ By contrast the complete log-likelihood has a rather simple form:

Zlogp M), 20 sz log N (29; g, ) +sz log (),

i, k i,k
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Principle of the Expectation-Maximization Algorithm
logp(x;0) = log) p(x,z6) 10gz Pl % 9)

> a0 0 — o, 2:0)] + H(a) = £(a.6)

@ This shows that £(q,0) < log p(x;0)

e 0 — L(q,0) is often® concave or easy to maximize

@ It is possible to show that
L(q,0) = logp(x;8) — KL(q | p(-|x; 0))
So that if we set ¢(z) = p(z | x;0")) then :
£(q,6") = log p(x; 6).

It is concave if p(x, z; 0) }oco is a canonical exponential family, with € its natural
parameter, i.e., p(x,z;0) = h(x,z)exp(p(x,2) 0 — A(9)).

Math-412 EM



A graphical idea of the EM algorithm

eold GHBW

Math-412



Expectation Maximization algorithm

Initialize 8 = 6
WHILE (Not converged)

Expectation step
0 q(z) =p(z | x;007Y)
Q@ L(q,0) =E,[logp(x,Z;0)] + H(q)

Maximization step
Q@ 0 = argmax Eq[logp(x, Z; )]
6

ENDWHILE
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Expected complete log-likelihood

With the notation: qi(,? = ]P’q(t) (z,(:) =1)= Eq(t) [z,(:)], we have
Eq(t) [[7 ] = E,u» [logp (X, Z, 9]

= qu){zlogp ), 20, 9)}
= qu)[zz)log/\f (xD, i, B) + szf)log(m)}

= Z E® Zk ]108;N( )|k, ) +ZE (t) Zli)] log ()

ik

= Z 0y log N'(x D, e, ) + 3 '} og(my)

ik
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Expectation step for the Gaussian mixture

We computed previously qi(t)(z(i)), which is a multinomial distribution
defined by
qi” (z") = p(=1|xD; 1)
Abusing notation we will denote (qg), ceey qz(z) the corresponding vector of probabilities
defined by

af) =P o (e =1) =E o [2{]

q(t) _ p(z(i) — 1| x@, =Dy = W;E;t_l)N(X(i)w,(f_l), E,(f‘l))
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Maximization step for the Gaussian mixture

(', (), 2 1<herc) = argmax [£6)]

This yields the updates:

i . . T
o Zx D] [ 2 =) 0 — ) o
Zi qi(]? Zz qgli)
(t)
and 7T’(f) _ i dik
Zi,k’ qz(l?’
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Final EM algorlthm for the Gaussian mixture model
Initialize @

WHILE (Not converged)
Expectation step
® 771(: DA (x), “(t 1) E(t Dy

ik,
N0, T, 5

Maximization step

LY T L Ot
kE ’ kE

Zi qz(l? Z q
0 _ D qzk

and T
t
Zz K qz(k2

ENDWHILE
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