Clustering, Gaussian mixture model and EM

MATH-412 - Statistical Machine Learning

K-means

Key assumption: Data composed of K "roundish" clusters of similar sizes with centroids (μ_1, \cdots, μ_K) .

Problem can be formulated as: $\min_{\boldsymbol{\mu}_1,\cdots,\boldsymbol{\mu}_K} \frac{1}{n} \sum_{i=1}^n \min_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2.$

Difficult (NP-hard) nonconvex problem.

$K ext{-means algorithm}$

- Draw centroids at random (or use the "k-means++" initialization)
- Assign each point to the closest centroid

$$C_k \leftarrow \left\{ i \mid \|\mathbf{x}_i - \boldsymbol{\mu}_k\|^2 = \min_{j} \|\mathbf{x}_i - \boldsymbol{\mu}_j\|^2 \right\}$$

Recompute centroid as center of mass of the cluster

$$\mu_k \leftarrow \frac{1}{\mid C_k \mid} \sum_{i \in C_k} \mathbf{x}_i$$

Go to 2

Math-412 EM 2

K-means properties

Three remarks:

- K-means is a greedy algorithm
- It can be shown that K-means converges in a finite number of steps.
- The algorithm however typically gets stuck in local minima and in practice it is necessary to try several restarts of the algorithms with different initialization to have chances to obtain a better solution.
- Will typically fail if the clusters are not round or of too different sizes.

FΜ 3/16

Jensen's Inequality

Consider a function $f: \mathbb{R}^d \to \mathbb{R}$

① if f is **convex** and if X is a random variable (with $\mathbb{E}[X] \in \mathbb{R}$), then

$$\mathbb{E}\big[f(X)\big] \ge f\big(\mathbb{E}[X]\big)$$

② When f is **strictly convex**, we have equality in the previous inequality if and only if X is constant almost surely.

Math-412 EM 5/16

The Kullback-Leibler divergence

Definition Let \mathcal{X} a finite (or countable) state space and p and q two distributions on \mathcal{X}

$$KL(p \parallel q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right]$$

Entropy: $H(p) = -\sum_{x} p(x) \log p(x) \ge 0$

So
$$KL(p \parallel q) = \mathbb{E}_{X \sim p} \left[-\log q(X) \right] - H(p).$$

Property: $\forall p, q, KL(p \parallel q) \geq 0$ (could be infinite)

Proof:

$$KL(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_{X \sim p} \left[\log \frac{p(X)}{q(X)} \right] = \mathbb{E}_{X \sim p} \left[-\log \frac{q(X)}{p(X)} \right] = \mathbb{E}_{X \sim p} \left[-\log \frac{q(X)}{p($$

The function $f(y) = -\log y$ is strictly convex so

$$\geq -\log \mathbb{E}_{X \sim p} \left[\frac{q(X)}{p(X)} \right] = -\log \sum_{x} p(x) \frac{q(X)}{p(X)} = -\log \sum_{x} q(x) = 0$$

with equality if and only if p = q almost surely

Math-412 EM 6/16

Differential KL and entropies

Let P and Q two probability distributions with densities p and q with respect to a measure μ . Then, we can define

$$KL(p \parallel q) = \int_{x} \left(\log \frac{p(x)}{q(x)} \right) p(x) d\mu(x) = \mathbb{E}_{X \sim P} \left[\log \frac{p(X)}{q(X)} \right]$$

Differential entropy

$$\mathcal{H}(p) = -\int_{x} p(x) \log p(x) d\mu(x)$$

Caveats: the differential entropy is dangerous

- $\mathcal{H}(p) \ngeq 0$
- ullet \mathcal{H} depends on the choice of $\mu...!$

Math-412 EM 7,

Gaussian mixture model

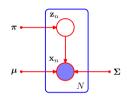
- ullet K components
- $z = (z_1, \dots, z_K)^{\top} \in \{0, 1\}^K$ indicator variable (one hot encoding)
- $z \sim \mathcal{M}(1, (\pi_1, \dots, \pi_K))$

$$ullet \ p(oldsymbol{z}) = \prod_{k=1}^K \pi_k^{z_k}$$
 , so $p(e_k) = \pi_k$

•
$$p(\mathbf{x}|\mathbf{z}; (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_k) = \sum_{k=1}^K z_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

•
$$p(\mathbf{x}) = \sum_{z} p(\mathbf{x}|z)p(z) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 $\bullet \ \, \text{Estimation:} \quad \mathop{\mathrm{argmax}}_{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k} \log \left[\sum_{k=1}^K \pi_k \, \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]$



Math-412 EM 8/16

Applying maximum likelihood to the Gaussian mixture

Let
$$\mathcal{Z} = \{z \in \{0,1\}^K \mid \sum_{k=1}^K z_k = 1\}$$

$$p(\mathbf{x}) = \sum_{z \in \mathcal{Z}} p(\mathbf{x}, z) = \sum_{z \in \mathcal{Z}} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{z_k} = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Issue

- The marginal log-likelihood $\tilde{\ell}(\theta) = \sum_i \log(p(\mathbf{x}^{(i)}))$ with $\theta = \left(\boldsymbol{\pi}, (\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)_{1 \leq k \leq K}\right)$ is now complicated
- $\log p(\mathbf{x}, \mathbf{z}) = \sum_k \log p(\mathbf{x}, e_k) 1(\mathbf{z} = e_k) = \sum_k z_k \log(\pi_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$
- By contrast the complete log-likelihood has a rather simple form:

$$\tilde{\ell}(\theta) = \sum_{i=1}^{M} \log p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}) = \sum_{i, k} z_k^{(i)} \log \mathcal{N}(x^{(i)}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i, k} z_k^{(i)} \log(\pi_k),$$

Math-412 EM 9/16

Principle of the Expectation-Maximization Algorithm

$$\log p(\mathbf{x}; \boldsymbol{\theta}) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta}) = \log \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z})}$$

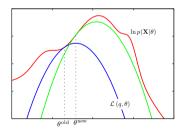
$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})}{q(\mathbf{z})} = \mathbb{E}_q[\log p(\mathbf{x}, \mathbf{z}; \boldsymbol{\theta})] + H(q) =: \mathcal{L}(q, \boldsymbol{\theta})$$

- This shows that $\mathcal{L}(q, \theta) \leq \log p(\mathbf{x}; \theta)$
- $m{ heta} \mapsto \mathcal{L}(q, m{ heta})$ is often^a concave or easy to maximize
- It is possible to show that

$$\mathcal{L}(\mathbf{q}, \boldsymbol{\theta}) = \log p(\mathbf{x}; \boldsymbol{\theta}) - KL(\mathbf{q} \parallel p(\cdot | \mathbf{x}; \boldsymbol{\theta}))$$

So that if we set $q(z) = p(z \mid \mathbf{x}; \boldsymbol{\theta}^{(t)})$ then

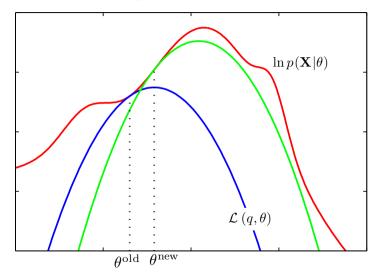
$$\mathcal{L}(q, \boldsymbol{\theta}^{(t)}) = \log p(\mathbf{x}; \boldsymbol{\theta}^{(t)}).$$



alt is concave if $p(\mathbf{x}, z; \boldsymbol{\theta})\}_{\theta \in \Theta}$ is a canonical exponential family, with θ its natural parameter, i.e., $p(\mathbf{x}, z; \boldsymbol{\theta}) = h(\mathbf{x}, z) \exp(\phi(\mathbf{x}, z)^{\top} \boldsymbol{\theta} - A(\boldsymbol{\theta}))$.

Math-412 EM 10/16

A graphical idea of the EM algorithm



Math-412 EM 11/

Expectation Maximization algorithm

Initialize $oldsymbol{ heta} = oldsymbol{ heta}_0$

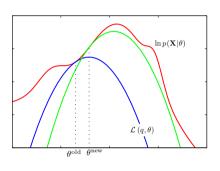
WHILE (Not converged)

Expectation step

$$2 \mathcal{L}(q, \theta) = \mathbb{E}_q [\log p(\mathbf{x}, \mathbf{Z}; \theta)] + H(q)$$

Maximization step

ENDWHILE



$$oldsymbol{ heta}^{\mathsf{old}} = oldsymbol{ heta}^{(t-1)}$$

$$oldsymbol{ heta}^{\mathsf{new}} = oldsymbol{ heta}^{(t)}$$

Math-412 EM 12/16

Expected complete log-likelihood

With the notation:
$$q_{ik}^{(t)}=\mathbb{P}_{q_i^{(t)}}(z_k^{(i)}=1)=\mathbb{E}_{q_i^{(t)}}\big[z_k^{(i)}\big]$$
, we have

$$\begin{split} \mathbb{E}_{q^{(t)}} \left[\tilde{\ell}(\theta) \right] &= \mathbb{E}_{q^{(t)}} \left[\log p(\boldsymbol{X}, \boldsymbol{Z}; \theta) \right] \\ &= \mathbb{E}_{q^{(t)}} \left[\sum_{i=1}^{M} \log p(\mathbf{x}^{(i)}, \boldsymbol{z}^{(i)}; \theta) \right] \\ &= \mathbb{E}_{q^{(t)}} \left[\sum_{i,k} z_k^{(i)} \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} z_k^{(i)} \log(\pi_k) \right] \\ &= \sum_{i,k} \mathbb{E}_{q_i^{(t)}} \left[z_k^{(i)} \right] \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} \mathbb{E}_{q_i^{(t)}} \left[z_k^{(i)} \right] \log(\pi_k) \\ &= \sum_{i,k} q_{ik}^{(t)} \log \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) + \sum_{i,k} q_{ik}^{(t)} \log(\pi_k) \end{split}$$

Math-412 EM 13/16

Expectation step for the Gaussian mixture

We computed previously $q_i^{(t)}(\boldsymbol{z}^{(i)})$, which is a multinomial distribution defined by

$$q_i^{(t)}(\boldsymbol{z}^{(i)}) = p(\boldsymbol{z}^{(i)}|\mathbf{x}^{(i)};\boldsymbol{\theta}^{(t-1)})$$

Abusing notation we will denote $(q_{i1}^{(t)}, \ldots, q_{iK}^{(t)})$ the corresponding vector of probabilities defined by

$$q_{ik}^{(t)} = \mathbb{P}_{q_i^{(t)}}(z_k^{(i)} = 1) = \mathbb{E}_{q_i^{(t)}}[z_k^{(i)}]$$

$$q_{ik}^{(t)} = p(z_k^{(i)} = 1 \mid \mathbf{x}^{(i)}; \boldsymbol{\theta}^{(t-1)}) = \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})}{\sum_{j=1}^K \pi_j^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \boldsymbol{\mu}_j^{(t-1)}, \boldsymbol{\Sigma}_j^{(t-1)})}$$

Math-412 EM 14/16

Maximization step for the Gaussian mixture

$$\left(\boldsymbol{\pi}^t, (\boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)})_{1 \leq k \leq K}\right) = \operatorname*{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{q^{(t)}} \big[\tilde{\ell}(\boldsymbol{\theta})\big]$$

This yields the updates:

$$\mu_k^{(t)} = \frac{\sum_i \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_i q_{ik}^{(t)}}$$

$$\boxed{ \boldsymbol{\mu}_k^{(t)} = \frac{\sum_i \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_i q_{ik}^{(t)}}, \quad \boxed{\boldsymbol{\Sigma}_k^{(t)} = \frac{\sum_i \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{(t)}\right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_k^{(t)}\right)^\top q_{ik}^{(t)}}{\sum_i q_{ik}^{(t)}} }$$

and
$$\pi_k^{(t)} = \frac{\sum_i q_{ik}^{(t)}}{\sum_{i,k'} q_{ik'}^{(t)}}$$

Math-412 EM 15/16

Final EM algorithm for the Gaussian mixture model Initialize $\theta = \theta_0$

WHILE (Not converged)

Expectation step

$$q_{ik}^{(t)} \leftarrow \frac{\pi_k^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \pmb{\mu}_k^{(t-1)}, \pmb{\Sigma}_k^{(t-1)})}{\sum_{j=1}^K \pi_j^{(t-1)} \mathcal{N}(\mathbf{x}^{(i)}, \pmb{\mu}_j^{(t-1)}, \pmb{\Sigma}_j^{(t-1)})}$$

Maximization step

$$\begin{split} \boldsymbol{\mu}_{k}^{(t)} &= \frac{\sum_{i} \mathbf{x}^{(i)} \, q_{ik}^{(t)}}{\sum_{i} q_{ik}^{(t)}} \,, \quad \boldsymbol{\Sigma}_{k}^{(t)} &= \frac{\sum_{i} \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}^{(t)}\right) \left(\mathbf{x}^{(i)} - \boldsymbol{\mu}_{k}^{(t)}\right)^{\top} q_{ik}^{(t)}}{\sum_{i} q_{ik}^{(t)}} \\ & \quad \text{and} \quad \boldsymbol{\pi}_{k}^{(t)} &= \frac{\sum_{i} q_{ik}^{(t)}}{\sum_{i,k'} q_{ik'}^{(t)}} \end{split}$$

ENDWHILE

Math-412 EM 16/16