
Clustering,
Gaussian mixture model and EM

MATH-412 - Statistical Machine Learning

Math-412 EM 1/16



K-means
Key assumption: Data composed of K “roundish” clusters of
similar sizes with centroids (µ1, · · · ,µK).

Problem can be formulated as: min
µ1,··· ,µK

1

n

n∑
i=1

min
k
∥xi − µk∥2.

Difficult (NP-hard) nonconvex problem.

K-means algorithm

1 Draw centroids at random (or use the “k-means++” initialization)

2 Assign each point to the closest centroid

Ck ←
{
i | ∥xi − µk∥2 = min

j
∥xi − µj∥2

}
3 Recompute centroid as center of mass of the cluster

µk ←
1

| Ck |
∑
i∈Ck

xi

4 Go to 2
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K-means properties

Three remarks:

K-means is a greedy algorithm

It can be shown that K-means converges in a finite number of steps.

The algorithm however typically gets stuck in local minima and in practice it is
necessary to try several restarts of the algorithms with different initialization to have
chances to obtain a better solution.

Will typically fail if the clusters are not round or of too different sizes.
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The EM algorithm for the Gaussian mixture model
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Jensen’s Inequality

Consider a function f : Rd → R
1 if f is convex and if X is a random variable (with E[X] ∈ R), then

E
[
f(X)

]
≥ f

(
E[X]

)
2 When f is strictly convex, we have equality in the previous inequality if and only if X

is constant almost surely.
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The Kullback-Leibler divergence
Definition Let X a finite (or countable) state space and p and q two distributions on X

KL(p ∥ q) =
∑
x

p(x) log
p(x)

q(x)
= EX∼p

[
log

p(X)

q(X)

]
Entropy: H(p) = −∑

x p(x) log p(x) ≥ 0

So KL(p ∥ q) = EX∼p

[
− log q(X)

]
−H(p).

Property: ∀p, q, KL(p ∥ q) ≥ 0 (could be infinite)
Proof:

KL(p∥q) =
∑
x

p(x) log
p(x)

q(x)
= EX∼p

[
log

p(X)

q(X)

]
= EX∼p

[
− log

q(X)

p(X)

]
=

The function f(y) = − log y is strictly convex so

≥ − logEX∼p

[
q(X)

p(X)

]
= − log

∑
x

p(x)
q(X)

p(X)
= − log

∑
x

q(x) = 0

with equality if and only if p = q almost surely
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Differential KL and entropies

Let P and Q two probability distributions with densities p and q
with respect to a measure µ. Then, we can define

KL(p ∥ q) =
∫
x

(
log

p(x)

q(x)

)
p(x)dµ(x) = EX∼P

[
log

p(X)

q(X)

]
Differential entropy

H(p) = −
∫
x
p(x) log p(x)dµ(x)

Caveats: the differential entropy is dangerous

H(p) ≱ 0

H depends on the choice of µ...!
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Gaussian mixture model
K components

z = (z1, . . . , zK)⊤ ∈ {0, 1}K indicator variable (one hot encoding)

z ∼M(1, (π1, . . . , πK))

p(z) =
K∏
k=1

πzk
k , so p(ek) = πk

p(x|z; (µk,Σk)k) =

K∑
k=1

zkN (x;µk,Σk)

p(x) =
∑
z

p(x|z)p(z) =
K∑
k=1

πkN (x;µk,Σk)

Estimation: argmax
µk,Σk

log

[
K∑
k=1

πkN (x;µk,Σk)

]
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Applying maximum likelihood to the Gaussian mixture
Let Z = {z ∈ {0, 1}K |∑K

k=1 zk = 1}

p(x) =
∑
z∈Z

p(x, z) =
∑
z∈Z

K∏
k=1

[
πkN (x;µk,Σk)

]zk
=

K∑
k=1

πkN (x;µk,Σk)

Issue

The marginal log-likelihood ℓ̃(θ) =
∑

i log(p(x
(i))) with θ =

(
π, (µk,Σk)1≤k≤K

)
is

now complicated

log p(x, z) =
∑

k log p(x, ek)1(z = ek) =
∑

k zk log(πkN (x;µk,Σk))

By contrast the complete log-likelihood has a rather simple form:

ℓ̃
(
θ) =

M∑
i=1

log p(x(i), z(i)) =
∑
i, k

z
(i)
k logN (x(i);µk,Σk) +

∑
i,k

z
(i)
k log(πk),
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Principle of the Expectation-Maximization Algorithm

log p(x;θ) = log
∑
z

p(x, z;θ) = log
∑
z

q(z)
p(x, z;θ)

q(z)

≥
∑
z

q(z) log
p(x, z;θ)

q(z)
= Eq[log p(x, z;θ)] +H(q) =: L(q,θ)

This shows that L(q,θ) ≤ log p(x;θ)

θ 7→ L(q,θ) is oftena concave or easy to maximize

It is possible to show that

L(q,θ) = log p(x;θ)−KL(q ∥ p(·|x;θ))

So that if we set q(z) = p(z | x;θ(t)) then

L(q,θ(t)) = log p(x;θ(t)).

aIt is concave if p(x,z;θ)}θ∈Θ is a canonical exponential family, with θ its natural
parameter, i.e., p(x,z;θ) = h(x,z) exp(ϕ(x,z)⊤θ −A(θ)).

θold θnew

L (q, θ)

ln p(X|θ)
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A graphical idea of the EM algorithm

θold θnew

L (q, θ)

ln p(X|θ)
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Expectation Maximization algorithm

Initialize θ = θ0

WHILE (Not converged)

Expectation step

1 q(z) = p(z | x;θ(t−1))

2 L(q,θ) = Eq

[
log p(x,Z;θ)

]
+H(q)

Maximization step

1 θ(t) = argmax
θ

Eq

[
log p(x,Z;θ)

]
ENDWHILE

θold θnew

L (q, θ)

ln p(X|θ)

θold = θ(t−1)

θnew = θ(t)
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Expected complete log-likelihood

With the notation: q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]
, we have

Eq(t)
[
ℓ̃(θ)

]
= Eq(t)

[
log p(X,Z; θ)

]
= Eq(t)

[ M∑
i=1

log p(x(i), z(i); θ)

]
= Eq(t)

[∑
i,k

z
(i)
k logN (x(i),µk,Σk) +

∑
i,k

z
(i)
k log(πk)

]
=

∑
i, k

E
q
(t)
i

[
z
(i)
k

]
logN (x(i),µk,Σk) +

∑
i,k

E
q
(t)
i

[
z
(i)
k

]
log(πk)

=
∑
i, k

q
(t)
ik logN (x(i),µk,Σk) +

∑
i,k

q
(t)
ik log(πk)
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Expectation step for the Gaussian mixture

We computed previously q
(t)
i (z(i)), which is a multinomial distribution

defined by

q
(t)
i (z(i)) = p(z(i)|x(i); θ(t−1))

Abusing notation we will denote (q
(t)
i1 , . . . , q

(t)
iK) the corresponding vector of probabilities

defined by

q
(t)
ik = P

q
(t)
i

(z
(i)
k = 1) = E

q
(t)
i

[
z
(i)
k

]
q
(t)
ik = p(z

(i)
k = 1 | x(i); θ(t−1)) =

π
(t−1)
k N (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j N (x(i),µ

(t−1)
j ,Σ

(t−1)
j )
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Maximization step for the Gaussian mixture

(
πt, (µ

(t)
k ,Σ

(t)
k )1≤k≤K

)
= argmax

θ
Eq(t)

[
ℓ̃(θ)

]

This yields the updates:

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)⊤
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′
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Final EM algorithm for the Gaussian mixture model
Initialize θ = θ0

WHILE (Not converged)

Expectation step

q
(t)
ik ←

π
(t−1)
k N (x(i),µ

(t−1)
k ,Σ

(t−1)
k )∑K

j=1 π
(t−1)
j N (x(i),µ

(t−1)
j ,Σ

(t−1)
j )

Maximization step

µ
(t)
k =

∑
i x

(i) q
(t)
ik∑

i q
(t)
ik

, Σ
(t)
k =

∑
i

(
x(i) − µ

(t)
k

)(
x(i) − µ

(t)
k

)⊤
q
(t)
ik∑

i q
(t)
ik

and π
(t)
k =

∑
i q

(t)
ik∑

i,k′ q
(t)
ik′

ENDWHILE
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