
EPFL, Autumn 2024
Yoav Zemel
Guillaume Obozinski

Ho Yun
Shivang Sachar

Statistical Machine Learning

Exercise sheet 6

Exercise 6.1 (Multiclass Logistic Regression) In this exercise we derive a multiclass
generalization of logistic regression. We shall assume that the input variable X is a vector in
Rp as before, but the output variable Y is a vector of the form y = (y1, . . . , yK) ∈ {0, 1}K

with
∑K

k=1 yk = 1. Thus, the vector y such that yk = 1 for k = m and 0 otherwise,
corresponds to the class m. It follows that the probability of X being in class m given
X = x is P(Ym = 1|X = x), where Y = (Y1, . . . , YK).

(a) Let w1, . . . , wK ∈ Rp be K vectors of parameters each associated with the cor-
responding class. Construct a conditional model for Y = y|X = x such that
P(Yk = 1|X = x) ∝ exp(w⊤

kx). In particular, find P(Yk = 1|X = x).
Solution: If P(Yk = 1|X = x) = c exp(w⊤

kx), then we can work out c from

1 =
K∑

k=1
P(Yk = 1|X = x) = c

K∑
k=1

exp(w⊤
kx)

Thus,

P(Y = y|X = x) = exp
( ∑K

k=1 ykw⊤
kx

)∑K

j=1 exp(w⊤
jx)

and in particular,
P(Yk = 1|X = x) = exp(w⊤

kx)∑K

j=1 exp(w⊤
jx)

(b) Show that when K = 2, the proposed model is equivalent to logistic regression, except
that the model is over-parameterized, and therefore w1 and w2 are not identifiable.
Is this a problem?
Solution: If K = 2,

P(Y1 = 1|X = x) = exp(w⊤
1x)∑2

j=1 exp(w⊤
jx)

= σ((w1 − w2)⊤x)

which matches binary logistic regression for w = w1 − w2. The overparameterization
is not a problem because we don’t care about estimating the parameters themselves,
but just the predictive model here.

(c) Show that the model is still overparametrized if K > 2 and that one can impose the
constraint

∑K
k=1 wk = 0.

Solution: Let w = 1
K

∑K
k=1 wk and assume the original model then

P(Y = y|X = x, {wj}K
j=1) = exp

( ∑K

k=1 ykw⊤
kx

)
exp(−w⊤x)∑K

j=1 exp(w⊤
jx) exp(−w⊤x)

= exp
( ∑K

k=1 yk(wk−w)⊤x
)∑K

j=1 exp((wj−w)⊤x)
,
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because
∑K

k=1 yk = 1. In other words,

P(Y = y|X = x, {wj}K
j=1) = P(Y = y|X = x, {wj − w}K

j=1)

Thus, replacing every wj with w̃j = wj − w yields the same model.

(d) Express P(Yk = 1|Yk + Yj = 1, X = x), or alternatively, derive the log-odds between
two classes. What is the shape of {x | P(Yk = 1|X = x) = P(Yj = 1|X = x)}?
Deduce that the region of space where class k is most likely is a polyhedron.
Solution: Notice that,

P(Yk = 1|Yk + Yj = 1, X = x) = P(Yk=1|X=x)
P(Yk+Yj=1|X=x) = P(Yk=1|X=x)

P(Yk=1|X=x)+P(Yj=1|X=x)

= exp(w⊤
kx)

exp(w⊤
k

x)+exp(w⊤
jx) = σ((wk − wj)⊤x)

Therefore,

P(Yk = 1|X = x) ≥ P(Yj = 1|X = x) ⇔ (wk − wj)⊤x ≥ 0

so the region in which P(Yk = 1|X = x) ≥ P(Yj = 1|X = x) is the half-space
{x | w⊤

kx ≥ w⊤
jx}. Since, P(Yk = 1|X = x) ≥ maxj ̸=k P(Yj = 1|X = x) if and only

if P(Yk = 1|X = x) ≥ P(Yj = 1|X = x) for every j ̸= k the region where class k is
most likely is the set {x | w⊤

kx ≥ maxj ̸=k w⊤
jx} = ∩j ̸=k{x | w⊤

kx ≥ w⊤
jx} which is an

intersection of half-space and thus a polyhedron.

(e) Assume that we have a sample {(x(1), y(1)), . . . , (x(n), y(n))} with (x(i) ∈ Rp and y(i)

an indicator vector. Write the negative (conditional) log-likelihood of the sample and
show that it can be interpreted as the empirical risk associated with a loss function
that you will specify ℓ : RK × {0, 1}K → R applied to a predictor f(x) of the form
f(x) = (f1(x), . . . , fK(x)) with fk(x) = w⊤

kx.

Solution: The negative log-likelihood is equal to nR̂n(W ) with

R̂n(W ) = − 1
n

n∑
i=1

[ K∑
k=1

y
(i)
k w⊤

kx(i) − log
( K∑

k=1
exp(w⊤

kx(i))
)]

The corresponding loss is ℓ(a, y) = −y⊤a + log
(∑K

k=1 eak
)
. Note that −ℓ(a, y) is the

log-likelihood of multinomial variable y as a function of its canonical parameter.
We have thus parameterized the canonical parameter of the exponential family
corresponding to the multinomial model as a linear function of x.

(f) How would you apply Tikhonov regularization to the corresponding empirical risk?
Solution: Just solve

min
W

R̂n(W ) + λ
K∑

k=1
∥wk∥2

2

The bias induced by the regularization is to pull all vectors wk towards 0 which is
implicitly “pulling" the probabilities towards uniform probabilities over classes.
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(g) Since the model is over-parameterized, instead of using the strategy proposed in (c),
one could propose to just set wK = 0. Prove that this would yield an equivalent
model.
Solution: As in (c), notice that

P(Y = y|X = x, {wj}K
j=1) = P(Y = y|X = x, {wj − wK}K

j=1)

Thus, every model with the parameters W = {wj}K
j=1 is equivalent to one with the

parameters {w̃j}K
j=1, where w̃j = wj − wK and thus the last parameter w̃K = 0.

(h) Now, if we use Tikhonov regularization, why is the option to set wK = 0 not such a
good idea?
Solution: By (g) this would be equivalent to solving

min
W

R̂n(W ) + λ
K∑

k=1
∥wk − wK∥2

2

In that case the bias induced by the regularization brings all class vectors towards
class K which is likely to bias specifically towards that class, and there does not seem
that there should be any reason to do this in general.

(i) Why is the option proposed in (c) better? If we regularize with Tikhonov regulariza-
tion and don’t enforce the constraint

∑K
k=1 wk = 0, what happens?

Solution: The option proposed in (c) is more symmetric. If we regularize and don’t
enforce the constrain the regularization should implicitly leads to a set of parameters
with 0 mean, because of the decomposition of variance formula:

K∑
k=1

∥wk∥2
2 =

K∑
k=1

∥wk − w∥2
2 + K∥w∥2

2,

shows that decreasing ∥w∥2
2 decrease Tikhonov regularization. As a matter of fact

even without regularization, if the parameters wk are initial set to 0, and any first or
second order descent algorithms are used to minimize the empirical risk the iterates
will be such that w = 0 throughout because the partial gradient of the likelihood is
such that

∑K
k=1

∂R̂n(W )
wk

= 0.
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Practical exercises

Exercise 6.2 (Implementation of the LDA and QDA algorithms and comparison with
logistic regression) The files classificationA.train, classificationB.train and

classificationC.train contain samples of data (xi, yi) where xi ∈ R2 and yi ∈ {0, 1}
(each line of each file contains the 2 components of xi then yi.). The goal of this exercise is
to implement linear classification methods and to test them on the three data sets.

(a) For each data set (A,B,C) represent graphically the training data as a point cloud in
R2 using different markers for the two classes using ggplot,

#Input
inp <- scan(" classificationA .train", list(x1=0,x2=0,y=0))
inp <- data.frame(x1=inp$x1 ,x2=inp$x2 ,y=inp$y)
#Base Plot
G <- ggplot (data = inp , mapping = aes(x = x1 , y = x2 ,

color = as. factor (y)))+ geom_point ()

(b) Apply LDA and compute the MLE estimates for all the parameters. Plot the
classification boundary for LDA for each data set by completing the following R code
by entering correct values for b and S which are determined by the fact that the
boundary is given by w[1]x1 + w[2]x2 + b = 0.

#LDA Boundary Parameters
b <- << ENTER b HERE >>
w <- << ENTER w HERE >>

#LDA Boundary Function : x2 = (- x1*w[1] + b)/w[2]
LDAcurve <- function (x) {

(- x*w[1] + b)/w[2]
}
#Plot with LDA boundary
Graph_LDA <- G

+ stat_ function (fun = LDAcurve , color = "black")

(c) On a separate figure, plot the classification boundary for QDA, on top of the data
for each data set by completing the following code. Because we do not have a handy
expression for the graph of the boundary, say f(x1, x2) = 0, we shall draw it as a
contour of f(x1, x2) = z. Enter the expression from f(x1, x2) below.

#QDA Contour
cont_QDA <- curve3d (<< ENTER FUNCTION f(x1 ,x2) HERE >>,
from = c(-6,-6), to = c(6,6), n=c(100 ,100) ,
sys3d="none")
dimnames (cont_QDA$z) <- list(cont_QDA$x,cont_QDA$y)
M_QDA <- reshape2 :: melt(cont_QDA$z)
#Plot with QDA boundary
Graph_QDA <- G
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+ geom_ contour (data=M_QDA ,
aes(x=Var1 ,y=Var2 ,z=value),
breaks =0, linejoin = "round",colour ="black")

(d) Run logistic regression using the glm function in R, and make again a similar plot
with the data and the decision boundary using stat_function in ggplot.

# Logistic Regression
logres <- glm(y ~ x1 + x2 , data = inp , family = binomial )
summary ( logres )$coef

# Logistic Regression Coefficients
m1 <- summary ( logres )$coef [[2 ,1]] # Coefficient of x1
m2 <- summary ( logres )$coef [[3 ,1]] # Coefficient of x2
mc <- summary ( logres )$coef [[1 ,1]] # Constant term

# Logistic Regression Boundary Function : f(x) = -(mc + m1 * x1)/m2
logcurve <- function (x) {
<< ENTER CODE HERE >>
}

Are the coefficients very large? If so, why?
Solution: The coefficients are large when the data is linearly separable, because
under such conditions, the values of parameters w and b given by maximum likelihood
estimation are infinity.

(e) Do the same visualizations on the three testing data sets.

(f) Compute the misclassification error of all three methods on all the three training
sets and their corresponding testing sets. Which method performs better and why?
Solution:

Percentage Misclassification Error
Method Train

A
Test
A

Train
B

Test
B

Train
C

Test
C

LDA 1.3 2 3 4.1 5.5 4.2
QDA 0.6 2 1.3 2 5.25 3.8
Log. Reg. 0 3.4 2 4.3 4 2.3

Notice that logistic regression overfits in the case of dataset A. This is because the
data is linearly separable.
Case A: Both the LDA and QDA perform better than logistic regression. This is
sobecause the data has been generated by a LDA model. Additionally, the training
error of QDA is less than that of LDA because every LDA is also a QDA.
Case B: QDA beats the other two methods. This is because the data has been
generated by the a QDA model.
Case C: On visulizing the data, one notices that there are three clusters of points
instead of just two. This can not happen for a QDA or LDA. For this reason, the
logistic regression model performs the best.
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