
EPFL, Autumn 2024
Yoav Zemel
Guillaume Obozinski

Ho Yun
Shivang Sachar

Statistical Machine Learning

Exercise sheet 5

Exercise 5.1 (Leave-one-out cross-validation for linear smoothers) In this exercise we
consider linear smoothers, i.e., learning scheme producing decision functions f̂ for which
the fitted values ŷi := f̂(xi) on the training set satisfy ŷ = Sy, where S is an n × n matrix
whose values only depend on the inputs x1, . . . , xn and ŷ = (yi)i=1...n.

We consider the leave-one-out CV error

CV(f̂) = 1
n

n∑
i=1

{
yi − f̂−i(xi)

}2
,

where f̂−i denote the model fitted to the original training sample with the ith observation
(yi, xi) removed.

The goal of this exercise is to derive a fast way of computing the leave-one-out (or n-
fold) cross-validation (CV) error for linear smoothers which produce leave-one-out decision
functions with a particular form (given by Equation (1) below).

(a) Show that linear regression is a linear smoother in the sense that the obtained
prediction function f̂ satisfies the property above. In particular specify S.

Solution: We have seen in the course that the identity holds for S = X(X⊤X)−1X⊤

the so-called hat matrix.

(b) Assume that the leave-ith-out fit at xi is given by

f̂−i(xi) =
∑
j ̸=i

Sij

1 − Sii
yj . (1)

With this regularity assumption, show that

yi − f̂−i(xi) = yi − f̂(xi)
1 − Sii

. (2)

Solution: Equation (2) holds because

yi − f̂−i(xi) = yi −
∑
j ̸=i

Sij

1 − Sii
yj

= 1
1 − Sii

{
yi(1 − Sii) −

∑
j ̸=i

Sijyj

}

= 1
1 − Sii

{
yi −

n∑
j=1

Sijyj

}

= yi − f̂(xi)
1 − Sii

.
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(c) Explain why (2) may be used to compute the CV error more efficiently.
Solution: We have that

CV(f̂) = 1
n

n∑
i=1

{
yi − f̂−i(xi)

}2
= 1

n

n∑
i=1

{
yi − f̂(xi)

1 − Sii

}2

,

which allows fast computation given f̂ and the diagonal elements of S, removing the
need to calculate each f̂−i(xi) separately.

(d) Our goal in the rest of this exercise is to identify some conditions that imply that
f̂−i is of the form (1). We consider the squared loss ℓ(a, y) = (a − y)2 and we focus
on the decision function minimizing the empirical risk in a hypothesis class S, that is

f̂ = arg min
f∈S

1
n

n∑
i=1

(f(xi) − yi)2,

assuming that the latter is unique. Assume that f̂−i has been computed and that we
define a new dataset D̃n = {(xj , ỹj)}j=1...n with ỹj = yj for all j ̸= i and ỹi = f̂−i(xi).
Show that the minimizer of the empirical risk on this new dataset is f̂−i.

Solution: Note that
n∑

j=1
(f(xj) − ỹj)2 =

∑
j ̸=i

(f(xj) − yj)2 + (f(xi) − ỹi)2

Given that the first terms is minimized over S at f = f̂−i by definition and that the
second term is equal to 0 at f = f̂−i by construction given that ỹi = f̂−i(xi), we
necessarily have that

f̂−i = arg min
f∈S

1
n

n∑
j=1

(f(xj) − ỹj)2.

(e) Given that the linear regression estimator is a linear smoother, there is a matrix S
such that ŷ = Sy. Use the previous question to show that (Sỹ)i = f̂−i(xi) and use
the form of ỹ to prove that f̂−i takes the form of (1).
Solution: Given that

ỹ = y −
{

yi − f̂−i(xi)
}

ei,

we have (
S

[
y −

{
yi − f̂−i(xi)

}
ei

])
i

= f̂−i(xi),

where (
S

[
y −

{
yi − f̂−i(xi)ei

}])
i

=
n∑

j=1
Sijyj −

{
yi − f̂−i(xi)

}
Sii

= Siif̂
−i(xi) +

∑
j ̸=i

Sijyj ,

so that f̂−i(xi) = Siif̂
−i(xi) +

∑
j ̸=i Sijyj and the result is obtained by isolating

f̂−i(xi) on the LHS.
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(f) Deduce from the previous questions the form of the LOO CV error for linear regression.
Solution: We have

CV(f̂) = 1
n

n∑
i=1

{
yi − f̂(xi)

1 − Sii

}2

,

= 1
n

(y − Sy)⊤diag
[
(1 − Sii)−2

]
(y − Sy)

= 1
n

y⊤(I − S)⊤diag
[
(1 − Sii)−2

]
(I − S)y

where S = X(X⊤X)−1X⊤ and diag
[
(1 − Sii)−2]

denotes the n × n diagonal matrix
with the iith entry given by (1 − Sii)−2.

(g) Can a similar approach be used to obtain an expression of the LOO CV error for
ridge regression?
Solution: No, because the form of the risk for ridge regression is different than the
one in (d).

(h) Show that all local averaging methods are linear smoothers.
Solution: Define Sij := ωj(xi), then ŷ = Sy, and this satisfies the definition of
linear smoothers. Therefore, all local averaging methods are linear smoothers.

(i) Show that (1) holds for the Nadaraya-Watson estimator, and deduce the LOO CV
error for it.
Solution: We have,

f̂−i(xi) =
∑
j ̸=i

ω−i
j (xi)yj

=
∑
j ̸=i

s̃−i(xi, xj)yj

=
∑
j ̸=i

s(xi, xj)∑
k ̸=i s(xi, xk)yj .

Now, we just have to show that s̃(xi, xj)
1 − s̃(xi, xi)

= s(xi, xj)∑
k ̸=i s(xi, xk) . We have,

s̃(xi, xj)
1 − s̃(xi, xi)

= s(xi, xj)∑n
k=1 s(xi, xk)

[
1 − s(xi, xi)∑n

k=1 s(xi, xk)

]−1

= s(xi, xj)∑n
k=1 s(xi, xk)

[∑n
k=1 s(xi, xk) − s(xi, xi)∑n

k=1 s(xi, xk)

]−1

= s(xi, xj)∑
k ̸=i s(xi, xk) .

Therefore, (1) holds for the Nadaraya-Watson estimator. Similarly, we also have

CV(f̂NW) = 1
n

y⊤(I − Ω)⊤diag(I − Ω)(I − Ω)y

where Ωij = ωi(xj) = s̃(xi, xj).
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(j) Does (1) hold for histogram estimators? For the k nearest-neighbors?
Solution: Yes, for histogram estimators because the similarity measure

s(x, y) =
K∑

k=1
1{x∈Ak}1{y∈Ak}

is exclusively a function of x and y because {Ak} are fixed. Thus, the similarity
measure does not depend on the dataset which is why the reasoning of the previous
subquestions applies. But not for k-nearest neighbours, where

s(x, y) = 1{x∈Vk(y)}

which means x has to be among of the k inputs xj which are closest to y, implying
that it depends on the data set and therefore 1 does not hold.

Exercise 5.2 (Fisher Discriminant) Logistic regression was introduced in class as an
optimization problem which is obtained by applying the maximum likelihood principle
to a model of p(y = 1|x) in which the log-odd ratio is an affine function of the input
feature vector. This type of model is often called conditional model or discriminative model
because it only models the conditional distribution of y given x and not the marginal
distribution of x. By contrast, we consider here what is called a generative model, a model
in which both a model of p(y) and p(x|y) are estimated and from which p(y|x) can be
deduced (and also p(x) of course). The particular models that we will consider are due
to Fisher and are called linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA). We will focus on the binary classification setting, although the method
generalizes immediately to the multiclass classification setting.

(a) We first consider the QDA model. Given the class variable y ∈ {0, 1}, the data are
assumed to be Gaussian with different means and different covariance matrices for
the two different classes but with the same covariance matrix.

y ∼ Bernoulli(π), x|{y = k} ∼ Normal(µk, Σk),

with x, µk ∈ Rp and Σk ∈ Rp×p. Derive the form of the maximum likelihood estimators
for the parameters in this model, i.e. for π, µ1, µ0, Σ1 and Σ0.
Solution: Of course, one can reason through conditional distributions and use the
well-known expressions for the MLE of a Gaussian distribution in Rn to solve the
problem in a jiffy. But we shall take this opportunity to work out the solution by
ourselves and in full. Note that this is extra material and you are only expected
to remember the MLE of the Gaussian distribution for the purpose of the exams.
We begin by writing the likelihood functions as follows:

p({(xj , yj)}n
j=1|π, µ0, µ1, Σ0, Σ1) =

n∏
j=1

[
πN (xj , µ1, Σ1)

]yj
[
(1 − π)N (xj , µ0, Σ2)

]1−yj
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Now, omitting all the irrelevant constant terms the log-likelihood function is given
by:

ℓ({(xj , yj)}n
j=1|π, µ0, µ1, Σ0, Σ1) =

 n∑
j=1

yj log π + (1 − yj) log(1 − π)


− 1

2

 n∑
j=1

yj log det Σ1 + (1 − yj) log det Σ0


− 1

2

n∑
j=1

yj
(
xj − µ1

)⊤Σ−1
1

(
xj − µ1

)
+ (1 − yj)

(
xj − µ0

)⊤Σ−1
0

(
xj − µ0

)
Let p =

∑n
j=1 yj and q = n −

∑n
j=1 yj . The first term is maximum when π is given by

π̂ = p/n = 1 − q/n

Differentiating with respect to µ1 and µ0 gives

0 =
n∑

j=1
yjΣ−1

1
(
xj − µ1

)
= pΣ−1

1

1
p

n∑
j=1

yjxj − µ1


0 =

n∑
j=1

(1 − yj)Σ−1
0

(
xj − µ0

)
= qΣ−1

0

1
q

n∑
j=1

(1 − yj)xj − µ0

 .

It follows that µ̂1 = 1
p

∑n
j=1 yjxj and µ̂0 = 1

q

∑n
j=1(1 − yj)xj .

Moreover, Λ0 = Σ0 and Λ1 = Σ1. Notice that for

P = 1
2

n∑
j=1

yj
(
xj − µ1

)(
xj − µ1

)⊤ and

Q = 1
2

n∑
j=1

(1 − yj)
(
xj − µ0

)(
xj − µ0

)⊤

we can write the previous expression simply as:

= p
2 log det Λ1 + q

2 log det Λ0 − tr(PΛ1) − tr(QΛ0)

Differentiating with respect to µ1, µ0, Λ1 and Λ0 gives (see section 0.1 for details),

−p
2Λ−1

1 + P = 0
− q

2Λ−1
0 + Q = 0.

Solving for Σ0 and Σ1 gives,

Σ̂1 = 1
p

n∑
j=1

yj
(
xj − µ̂1

)(
xj − µ̂1

)⊤

Σ̂0 = 1
q

n∑
j=1

(1 − yj)
(
xj − µ̂0

)(
xj − µ̂0

)⊤
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0.1 Differentiation of the log-likelihood.

To differentiate g(A) = tr(B⊤A), notice that

g(A + H) − g(A) = tr(B⊤H) = ⟨B, H⟩F

Therefore, ∇Ag(A) = B. And to differentiate the function f(A) = log det A, notice
that using the Laplace expansion of det A and the chain rule we can derive

∂
∂aij

[det A] = ∂
∂aij

[
n∑

k=1
(−1)i+jaijMij

]
= (−1)i+jMij

∂
∂aij

[log det A] = 1
det A(−1)i+jMij = (A−1)ij

where Mij denotes the ij-minor of A, that is, the determinant of the submatrix of A
formed by removing the ith row and the jth column. Using these partial derivatives,
we can write the gradient in the matrix formalism as follows:

∇Af =
[

∂f
∂aij

]n

i,j=1
= A−1.

Alternatively, using the total derivative we can write

f(A + H) − f(A) =
n∑

i,j=1

∂
∂aij

[log det A] hij + o(∥H∥F )

= ⟨A−1, H⟩F + o(∥H∥F )
= tr

[
(A−1)⊤H

]
+ o(∥H∥F )

= tr
[
(∇Af)⊤H

]
+ o(∥H∥F )

since
∑n

i,j=1 AijBij = tr(A⊤B). Either way, it follows that ∇Af(A) = A−1.

(b) Give an expression of the conditional distribution p(y = 1|x) as a function of
π, µ1, µ2, Σ1 and Σ2.
Solution:

P(Y = 1 | X = x) =
(

1+fX|Y (x|Y =0)P(Y =0)
fX|Y (x|Y =1)P(Y =1)

)−1
=

(
1+1−π

π

√
|Σ1|
|Σ0|

exp
(

(x−µ1)⊤Σ−1
1 (x−µ1)

)
exp

(
(x−µ0)⊤Σ−1

0 (x−µ0)
))−1

(c) What is the equation of the classification boundary, i.e., of the set of points for which
p(y = 1|x) = 0.5?
Solution: The conic with equation

(x − µ1)⊤Σ−1
1 (x − µ1) − (x − µ0)⊤Σ−1

0 (x − µ0) = 2 log π
1−π + log |Σ0|

|Σ1| .
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(d) LDA model. Given the class variable y ∈ {0, 1}, the data is now assumed to be
Gaussian with different means for different classes but with the same covariance
matrix.

y ∼ Bernoulli(π), x|{y = i} ∼ Normal(µk, Σ)

What is the maximum likelihood estimator for Σ now?
Solution: The solution is a little tricky. If one works out the pdf of x and then tries
applying MLE, things do not work out. So instead, we shall work with the joint pdf
of x and y. We write the likelihood as:

p({(xj , yj)}n
j=1|π, µ0, µ1, Σ) =

n∏
j=1

[
πN (xj , µ1, Σ)

]yj
[
(1 − π)N (xj , µ0, Σ)

]1−yj

And therein lies the trick. Now, for Σ the relevant terms in the log-likelihood
ℓ({(xj , yj)}n

j=1|π, µ0, µ1, Σ) are:

=

 n∑
j=1

yj log π + (1 − yj) log(1 − π)


− n

2 log det Σ

− 1
2

n∑
j=1

yj
(
xj − µ1

)⊤Σ−1(
xj − µ1

)
+ (1 − yj)

(
xj − µ0

)⊤Σ−1(
xj − µ0

)
The terms µ0, µ1 and π can be dealt with in the usual way. So let Λ = Σ−1.
Maximizing with respect to Σ is equivalent to maximizing with respect to Λ. We can
write the last two terms of the above expression as

= n
2 log det Λ − tr(MΛ)

for
M = 1

2

n∑
j=1

yj
(
xj − µ1

)(
xj − µ1

)⊤ + (1 − yj)
(
xj − µ0

)(
xj − µ0

)⊤

Differentiating with respect to Λ gives:

−n
2 Λ−1 + M = 0

Solving for Σ gives:

Σ = 1
n

n∑
j=1

yj
(
xj − µ1

)⊤(
xj − µ1

)
+ (1 − yj)

(
xj − µ0

)⊤(
xj − µ0

)
And thus, Σ̂ = (1 − π̂)Σ̂0 + π̂Σ̂1.

(e) What is the equation of the classification boundary, i.e., of the set of points for which
p(y = 1|x) = 0.5? Compare the obtained predictor with the form of the logistic
regression predictor.
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Solution: From (b), we have

P(Y = 1 | X = x) =
(

1 + 1−π
π

√
exp

(
(x−µ1)⊤Σ−1(x−µ1)

)
exp

(
(x−µ0)⊤Σ−1(x−µ0)

))−1

=
(
1 + exp

(
(µ0 − µ1)⊤Σ−1x + b

))−1

= σ(w⊤x + b)

where w = Σ−1(µ0−µ1) and b = log 1−π
π + 1

2µ⊤
1Σ−1µ1− 1

2µ⊤
0Σ−1µ0. Now, σ(w⊤x+b) =

1/2, implies that w⊤x + b = 0. Thus the classification boundary is given by the
hyperplane of equation

(µ0 − µ1)⊤Σ−1x + b = 0

Notice, by the way, that Fisher’s linear discriminant has the same logistic function
form as in linear regression.
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