Statistical Machine Learning

Exercise sheet 5

Exercise 5.1 (Leave-one-out cross-validation for *linear smoothers*) In this exercise we consider *linear smoothers*, i.e., learning scheme producing decision functions \hat{f} for which the fitted values $\hat{y}_i := \hat{f}(x_i)$ on the training set satisfy $\hat{y} = \mathbf{S}y$, where \mathbf{S} is an $n \times n$ matrix whose values only depend on the inputs x_1, \ldots, x_n and $\hat{y} = (y_i)_{i=1...n}$.

We consider the leave-one-out CV error

$$CV(\widehat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ y_i - \widehat{f}^{-i}(\boldsymbol{x}_i) \right\}^2,$$

where \hat{f}^{-i} denote the model fitted to the original training sample with the *i*th observation (y_i, \mathbf{x}_i) removed.

The goal of this exercise is to derive a fast way of computing the leave-one-out (or *n*-fold) cross-validation (CV) error for *linear smoothers* which produce leave-one-out decision functions with a particular form (given by Equation (1) below).

(a) Show that linear regression is a linear smoother in the sense that the obtained prediction function \hat{f} satisfies the property above. In particular specify **S**.

Solution: We have seen in the course that the identity holds for $\mathbf{S} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$ the so-called hat matrix.

(b) Assume that the leave-ith-out fit at x_i is given by

$$\widehat{f}^{-i}(\boldsymbol{x}_i) = \sum_{j \neq i} \frac{\mathbf{S}_{ij}}{1 - \mathbf{S}_{ii}} y_j. \tag{1}$$

With this regularity assumption, show that

$$y_i - \widehat{f}^{-i}(\boldsymbol{x}_i) = \frac{y_i - \widehat{f}(\boldsymbol{x}_i)}{1 - \mathbf{S}_{ii}}.$$
 (2)

Solution: Equation (2) holds because

$$y_i - \hat{f}^{-i}(\boldsymbol{x}_i) = y_i - \sum_{j \neq i} \frac{\mathbf{S}_{ij}}{1 - \mathbf{S}_{ii}} y_j$$

$$= \frac{1}{1 - \mathbf{S}_{ii}} \left\{ y_i (1 - \mathbf{S}_{ii}) - \sum_{j \neq i} \mathbf{S}_{ij} y_j \right\}$$

$$= \frac{1}{1 - \mathbf{S}_{ii}} \left\{ y_i - \sum_{j=1}^n \mathbf{S}_{ij} y_j \right\}$$

$$= \frac{y_i - \hat{f}(\boldsymbol{x}_i)}{1 - \mathbf{S}_{ii}}.$$

(c) Explain why (2) may be used to compute the CV error more efficiently.

Solution: We have that

$$CV(\widehat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ y_i - \widehat{f}^{-i}(\boldsymbol{x}_i) \right\}^2 = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{y_i - \widehat{f}(\boldsymbol{x}_i)}{1 - \mathbf{S}_{ii}} \right\}^2,$$

which allows fast computation given \hat{f} and the diagonal elements of **S**, removing the need to calculate each $\hat{f}^{-i}(\boldsymbol{x}_i)$ separately.

(d) Our goal in the rest of this exercise is to identify some conditions that imply that \hat{f}^{-i} is of the form (1). We consider the squared loss $\ell(a,y) = (a-y)^2$ and we focus on the decision function minimizing the empirical risk in a hypothesis class S, that is

$$\widehat{f} = \arg\min_{f \in S} \frac{1}{n} \sum_{i=1}^{n} (f(\boldsymbol{x}_i) - y_i)^2,$$

assuming that the latter is unique. Assume that \hat{f}^{-i} has been computed and that we define a new dataset $\tilde{D}_n = \{(\boldsymbol{x}_j, \tilde{y}_j)\}_{j=1...n}$ with $\tilde{y}_j = y_j$ for all $j \neq i$ and $\tilde{y}_i = \hat{f}^{-i}(\boldsymbol{x}_i)$. Show that the minimizer of the empirical risk on this new dataset is \hat{f}^{-i} .

Solution: Note that

$$\sum_{j=1}^{n} (f(\boldsymbol{x}_{j}) - \tilde{y}_{j})^{2} = \sum_{j \neq i} (f(\boldsymbol{x}_{j}) - y_{j})^{2} + (f(\boldsymbol{x}_{i}) - \tilde{y}_{i})^{2}$$

Given that the first terms is minimized over S at $f = \hat{f}^{-i}$ by definition and that the second term is equal to 0 at $f = \hat{f}^{-i}$ by construction given that $\tilde{y}_i = \hat{f}^{-i}(\boldsymbol{x}_i)$, we necessarily have that

$$\hat{f}^{-i} = \arg\min_{f \in S} \frac{1}{n} \sum_{j=1}^{n} (f(x_j) - \tilde{y}_j)^2.$$

(e) Given that the linear regression estimator is a linear smoother, there is a matrix **S** such that $\hat{y} = \mathbf{S} y$. Use the previous question to show that $(\mathbf{S} \tilde{y})_i = \hat{f}^{-i}(x_i)$ and use the form of \tilde{y} to prove that \hat{f}^{-i} takes the form of (1).

Solution: Given that

$$\tilde{\boldsymbol{y}} = \boldsymbol{y} - \left\{ y_i - \hat{f}^{-i}(\boldsymbol{x}_i) \right\} \boldsymbol{e}_i,$$

we have

$$\left(\mathbf{S}\left[\mathbf{y} - \left\{y_i - \hat{f}^{-i}(\mathbf{x}_i)\right\}\mathbf{e}_i\right]\right)_i = \hat{f}^{-i}(\mathbf{x}_i),$$

where

$$\left(\mathbf{S}\left[\boldsymbol{y} - \left\{y_i - \widehat{f}^{-i}(\boldsymbol{x}_i)\boldsymbol{e}_i\right\}\right]\right)_i = \sum_{j=1}^n \mathbf{S}_{ij}y_j - \left\{y_i - \widehat{f}^{-i}(\boldsymbol{x}_i)\right\}\mathbf{S}_{ii}$$

$$= \mathbf{S}_{ii}\widehat{f}^{-i}(\boldsymbol{x}_i) + \sum_{j\neq i} \mathbf{S}_{ij}y_j,$$

so that $\hat{f}^{-i}(\boldsymbol{x}_i) = \mathbf{S}_{ii}\hat{f}^{-i}(\boldsymbol{x}_i) + \sum_{j\neq i} \mathbf{S}_{ij}y_j$ and the result is obtained by isolating $\hat{f}^{-i}(\boldsymbol{x}_i)$ on the LHS.

(f) Deduce from the previous questions the form of the LOO CV error for linear regression.

Solution: We have

$$CV(\widehat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{y_i - \widehat{f}(\mathbf{x}_i)}{1 - \mathbf{S}_{ii}} \right\}^2,$$

$$= \frac{1}{n} (\mathbf{y} - \mathbf{S} \mathbf{y})^{\mathsf{T}} \operatorname{diag} \left[(1 - \mathbf{S}_{ii})^{-2} \right] (\mathbf{y} - \mathbf{S} \mathbf{y})$$

$$= \frac{1}{n} \mathbf{y}^{\mathsf{T}} (\mathbf{I} - \mathbf{S})^{\mathsf{T}} \operatorname{diag} \left[(1 - \mathbf{S}_{ii})^{-2} \right] (\mathbf{I} - \mathbf{S}) \mathbf{y}$$

where $\mathbf{S} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$ and diag $[(1 - \mathbf{S}_{ii})^{-2}]$ denotes the $n \times n$ diagonal matrix with the *ii*th entry given by $(1 - \mathbf{S}_{ii})^{-2}$.

(g) Can a similar approach be used to obtain an expression of the LOO CV error for ridge regression?

Solution: No, because the form of the risk for ridge regression is different than the one in (d).

(h) Show that all local averaging methods are linear smoothers.

Solution: Define $S_{ij} := \omega_j(x_i)$, then $\hat{y} = Sy$, and this satisfies the definition of linear smoothers. Therefore, all local averaging methods are linear smoothers.

(i) Show that (1) holds for the Nadaraya-Watson estimator, and deduce the LOO CV error for it.

Solution: We have,

$$\begin{split} \widehat{f}^{-i}(\boldsymbol{x}_i) &= \sum_{j \neq i} \omega_j^{-i}(\boldsymbol{x}_i) y_j \\ &= \sum_{j \neq i} \widetilde{s}^{-i}(\boldsymbol{x}_i, \boldsymbol{x}_j) \boldsymbol{y}_j \\ &= \sum_{j \neq i} \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sum_{k \neq i} s(\boldsymbol{x}_i, \boldsymbol{x}_k)} \boldsymbol{y}_j. \end{split}$$

Now, we just have to show that $\frac{\tilde{s}(\boldsymbol{x}_i, \boldsymbol{x}_j)}{1 - \tilde{s}(\boldsymbol{x}_i, \boldsymbol{x}_i)} = \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sum_{k \neq i} s(\boldsymbol{x}_i, \boldsymbol{x}_k)}$. We have,

$$\begin{split} \frac{\tilde{s}(\boldsymbol{x}_i, \boldsymbol{x}_j)}{1 - \tilde{s}(\boldsymbol{x}_i, \boldsymbol{x}_i)} &= \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sum_{k=1}^n s(\boldsymbol{x}_i, \boldsymbol{x}_k)} \left[1 - \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_i)}{\sum_{k=1}^n s(\boldsymbol{x}_i, \boldsymbol{x}_k)} \right]^{-1} \\ &= \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sum_{k=1}^n s(\boldsymbol{x}_i, \boldsymbol{x}_k)} \left[\frac{\sum_{k=1}^n s(\boldsymbol{x}_i, \boldsymbol{x}_k) - s(\boldsymbol{x}_i, \boldsymbol{x}_i)}{\sum_{k=1}^n s(\boldsymbol{x}_i, \boldsymbol{x}_k)} \right]^{-1} \\ &= \frac{s(\boldsymbol{x}_i, \boldsymbol{x}_j)}{\sum_{k \neq i} s(\boldsymbol{x}_i, \boldsymbol{x}_k)}. \end{split}$$

Therefore, (1) holds for the Nadaraya-Watson estimator. Similarly, we also have

$$\mathrm{CV}(\widehat{f}^{\mathrm{NW}}) = \frac{1}{n} \boldsymbol{y}^{\mathsf{T}} (I - \boldsymbol{\Omega})^{\mathsf{T}} \mathrm{diag}(I - \boldsymbol{\Omega}) (I - \boldsymbol{\Omega}) \boldsymbol{y}$$

where $\Omega_{ij} = \omega_i(\boldsymbol{x}_j) = \tilde{s}(\boldsymbol{x}_i, \boldsymbol{x}_j)$.

(j) Does (1) hold for histogram estimators? For the k nearest-neighbors?

Solution: Yes, for histogram estimators because the similarity measure

$$s(x,y) = \sum_{k=1}^{K} \mathbf{1}_{\{x \in A_k\}} \mathbf{1}_{\{y \in A_k\}}$$

is exclusively a function of x and y because $\{A_k\}$ are fixed. Thus, the similarity measure does not depend on the dataset which is why the reasoning of the previous subquestions applies. But **not** for k-nearest neighbours, where

$$s(x,y) = \mathbf{1}_{\{x \in V_k(y)\}}$$

which means x has to be among of the k inputs x_j which are closest to y, implying that it depends on the data set and therefore 1 does not hold.

Exercise 5.2 (Fisher Discriminant) Logistic regression was introduced in class as an optimization problem which is obtained by applying the maximum likelihood principle to a model of p(y = 1|x) in which the log-odd ratio is an affine function of the input feature vector. This type of model is often called conditional model or discriminative model because it only models the conditional distribution of y given x and not the marginal distribution of x. By contrast, we consider here what is called a generative model, a model in which both a model of p(y) and p(x|y) are estimated and from which p(y|x) can be deduced (and also p(x) of course). The particular models that we will consider are due to Fisher and are called linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). We will focus on the binary classification setting, although the method generalizes immediately to the multiclass classification setting.

(a) We first consider the QDA model. Given the class variable $y \in \{0, 1\}$, the data are assumed to be Gaussian with different means and different covariance matrices for the two different classes but with the same covariance matrix.

$$y \sim \text{Bernoulli}(\pi), \quad x|\{y=k\} \sim \text{Normal}(\mu_k, \Sigma_k),$$

with $x, \mu_k \in \mathbb{R}^p$ and $\Sigma_k \in \mathbb{R}^{p \times p}$. Derive the form of the maximum likelihood estimators for the parameters in this model, i.e. for $\pi, \mu_1, \mu_0, \Sigma_1$ and Σ_0 .

Solution: Of course, one can reason through conditional distributions and use the well-known expressions for the MLE of a Gaussian distribution in \mathbb{R}^n to solve the problem in a jiffy. But we shall take this opportunity to work out the solution by ourselves and in full. Note that **this is extra material** and you are only expected to remember the MLE of the Gaussian distribution for the purpose of the exams.

We begin by writing the likelihood functions as follows:

$$p(\{(\mathbf{x}_j, y_j)\}_{j=1}^n | \pi, \mu_0, \mu_1, \Sigma_0, \Sigma_1) = \prod_{j=1}^n \left[\pi \mathcal{N}(\mathbf{x}_j, \mu_1, \Sigma_1) \right]^{y_j} \left[(1 - \pi) \mathcal{N}(\mathbf{x}_j, \mu_0, \Sigma_2) \right]^{1 - y_j}$$

Now, omitting all the irrelevant constant terms the log-likelihood function is given by:

$$\ell(\{(\mathbf{x}_{j}, y_{j})\}_{j=1}^{n} | \pi, \mu_{0}, \mu_{1}, \Sigma_{0}, \Sigma_{1}) = \left[\sum_{j=1}^{n} y_{j} \log \pi + (1 - y_{j}) \log(1 - \pi) \right]$$
$$- \frac{1}{2} \left[\sum_{j=1}^{n} y_{j} \log \det \Sigma_{1} + (1 - y_{j}) \log \det \Sigma_{0} \right]$$
$$- \frac{1}{2} \sum_{j=1}^{n} y_{j} (\mathbf{x}_{j} - \mu_{1})^{\mathsf{T}} \Sigma_{1}^{-1} (\mathbf{x}_{j} - \mu_{1}) + (1 - y_{j}) (\mathbf{x}_{j} - \mu_{0})^{\mathsf{T}} \Sigma_{0}^{-1} (\mathbf{x}_{j} - \mu_{0})$$

Let $p = \sum_{j=1}^{n} y_j$ and $q = n - \sum_{j=1}^{n} y_j$. The first term is maximum when π is given by $\widehat{\pi} = p/n = 1 - q/n$

Differentiating with respect to μ_1 and μ_0 gives

$$0 = \sum_{j=1}^{n} y_j \Sigma_1^{-1} (\mathbf{x}_j - \mu_1) = p \Sigma_1^{-1} \left[\frac{1}{p} \sum_{j=1}^{n} y_j \mathbf{x}_j - \mu_1 \right]$$
$$0 = \sum_{j=1}^{n} (1 - y_j) \Sigma_0^{-1} (\mathbf{x}_j - \mu_0) = q \Sigma_0^{-1} \left[\frac{1}{q} \sum_{j=1}^{n} (1 - y_j) \mathbf{x}_j - \mu_0 \right].$$

It follows that $\widehat{\mu}_1 = \frac{1}{p} \sum_{j=1}^n y_j \mathbf{x}_j$ and $\widehat{\mu}_0 = \frac{1}{q} \sum_{j=1}^n (1 - y_j) \mathbf{x}_j$. Moreover, $\Lambda_0 = \Sigma_0$ and $\Lambda_1 = \Sigma_1$. Notice that for

$$P = \frac{1}{2} \sum_{j=1}^{n} y_j (\mathbf{x}_j - \mu_1) (\mathbf{x}_j - \mu_1)^{\mathsf{T}}$$
 and
$$Q = \frac{1}{2} \sum_{j=1}^{n} (1 - y_j) (\mathbf{x}_j - \mu_0) (\mathbf{x}_j - \mu_0)^{\mathsf{T}}$$

we can write the previous expression simply as:

$$= \frac{p}{2} \log \det \Lambda_1 + \frac{q}{2} \log \det \Lambda_0 - \operatorname{tr}(P\Lambda_1) - \operatorname{tr}(Q\Lambda_0)$$

Differentiating with respect to μ_1 , μ_0 , Λ_1 and Λ_0 gives (see section 0.1 for details),

$$-\frac{p}{2}\Lambda_1^{-1} + P = 0$$
$$-\frac{q}{2}\Lambda_0^{-1} + Q = 0.$$

Solving for Σ_0 and Σ_1 gives,

$$\widehat{\Sigma}_1 = \frac{1}{p} \sum_{j=1}^n y_j (\mathbf{x}_j - \widehat{\mu}_1) (\mathbf{x}_j - \widehat{\mu}_1)^{\mathsf{T}}$$

$$\widehat{\Sigma}_0 = \frac{1}{q} \sum_{j=1}^n (1 - y_j) (\mathbf{x}_j - \widehat{\mu}_0) (\mathbf{x}_j - \widehat{\mu}_0)^{\mathsf{T}}$$

0.1 Differentiation of the log-likelihood.

To differentiate $g(A) = \operatorname{tr}(B^{\mathsf{T}}A)$, notice that

$$g(A+H)-g(A)=\operatorname{tr}(B^{\mathsf{T}}H)=\langle B,H\rangle_F$$

Therefore, $\nabla_A g(A) = B$. And to differentiate the function $f(A) = \log \det A$, notice that using the Laplace expansion of det A and the chain rule we can derive

$$\frac{\partial}{\partial a_{ij}} \left[\det A \right] = \frac{\partial}{\partial a_{ij}} \left[\sum_{k=1}^{n} (-1)^{i+j} a_{ij} M_{ij} \right] = (-1)^{i+j} M_{ij}$$

$$\frac{\partial}{\partial a_{ij}} \left[\log \det A \right] = \frac{1}{\det A} (-1)^{i+j} M_{ij} = (A^{-1})_{ij}$$

where M_{ij} denotes the ij-minor of A, that is, the determinant of the submatrix of A formed by removing the ith row and the jth column. Using these partial derivatives, we can write the gradient in the matrix formalism as follows:

$$\nabla_A f = \left[\frac{\partial f}{\partial a_{ij}}\right]_{i,j=1}^n = A^{-1}.$$

Alternatively, using the total derivative we can write

$$f(A+H) - f(A) = \sum_{i,j=1}^{n} \frac{\partial}{\partial a_{ij}} [\log \det A] h_{ij} + o(\|H\|_F)$$
$$= \langle A^{-1}, H \rangle_F + o(\|H\|_F)$$
$$= \operatorname{tr}[(A^{-1})^{\mathsf{T}}H] + o(\|H\|_F)$$
$$= \operatorname{tr}[(\nabla_A f)^{\mathsf{T}}H] + o(\|H\|_F)$$

since $\sum_{i,j=1}^n A_{ij}B_{ij} = \operatorname{tr}(A^{\mathsf{T}}B)$. Either way, it follows that $\nabla_A f(A) = A^{-1}$.

(b) Give an expression of the conditional distribution p(y=1|x) as a function of $\pi, \mu_1, \mu_2, \Sigma_1$ and Σ_2 .

Solution:

$$\mathbb{P}(Y=1\mid X=\mathbf{x}) = \left(1 + \frac{f_{X\mid Y}(\mathbf{x}\mid Y=0)\mathbb{P}(Y=0)}{f_{X\mid Y}(\mathbf{x}\mid Y=1)\mathbb{P}(Y=1)}\right)^{-1} = \left(1 + \frac{1-\pi}{\pi}\sqrt{\frac{|\Sigma_1|}{|\Sigma_0|}} \frac{\exp\left((\mathbf{x}-\mu_1)^\top \Sigma_1^{-1}(\mathbf{x}-\mu_1)\right)}{\exp\left((\mathbf{x}-\mu_0)^\top \Sigma_0^{-1}(\mathbf{x}-\mu_0)\right)}\right)^{-1}$$

(c) What is the equation of the classification boundary, i.e., of the set of points for which p(y=1|x)=0.5?

Solution: The conic with equation

$$(\mathbf{x} - \mu_1)^{\mathsf{T}} \Sigma_1^{-1} (\mathbf{x} - \mu_1) - (\mathbf{x} - \mu_0)^{\mathsf{T}} \Sigma_0^{-1} (\mathbf{x} - \mu_0) = 2 \log \frac{\pi}{1 - \pi} + \log \frac{|\Sigma_0|}{|\Sigma_1|}$$

(d) LDA model. Given the class variable $y \in \{0,1\}$, the data is now assumed to be Gaussian with different means for different classes but with the same covariance matrix.

$$y \sim \text{Bernoulli}(\pi), \quad x|\{y=i\} \sim \text{Normal}(\mu_k, \Sigma)$$

What is the maximum likelihood estimator for Σ now?

Solution: The solution is a little tricky. If one works out the pdf of \mathbf{x} and then tries applying MLE, things do not work out. So instead, we shall work with the joint pdf of \mathbf{x} and y. We write the likelihood as:

$$p(\{(\mathbf{x}_j, y_j)\}_{j=1}^n | \pi, \mu_0, \mu_1, \Sigma) = \prod_{j=1}^n \left[\pi \mathcal{N}(\mathbf{x}_j, \mu_1, \Sigma) \right]^{y_j} \left[(1 - \pi) \mathcal{N}(\mathbf{x}_j, \mu_0, \Sigma) \right]^{1 - y_j}$$

And therein lies the trick. Now, for Σ the relevant terms in the log-likelihood $\ell(\{(\mathbf{x}_j, y_j)\}_{j=1}^n | \pi, \mu_0, \mu_1, \Sigma)$ are:

$$= \left[\sum_{j=1}^{n} y_j \log \pi + (1 - y_j) \log(1 - \pi) \right]$$
$$- \frac{n}{2} \log \det \Sigma$$
$$- \frac{1}{2} \sum_{j=1}^{n} y_j (\mathbf{x}_j - \mu_1)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x}_j - \mu_1) + (1 - y_j) (\mathbf{x}_j - \mu_0)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x}_j - \mu_0)$$

The terms μ_0 , μ_1 and π can be dealt with in the usual way. So let $\Lambda = \Sigma^{-1}$. Maximizing with respect to Σ is equivalent to maximizing with respect to Λ . We can write the last two terms of the above expression as

$$= \frac{n}{2} \log \det \Lambda - \operatorname{tr}(M\Lambda)$$

for

$$M = \frac{1}{2} \sum_{j=1}^{n} y_j (\mathbf{x}_j - \mu_1) (\mathbf{x}_j - \mu_1)^{\mathsf{T}} + (1 - y_j) (\mathbf{x}_j - \mu_0) (\mathbf{x}_j - \mu_0)^{\mathsf{T}}$$

Differentiating with respect to Λ gives:

$$-\frac{n}{2}\Lambda^{-1} + M = 0$$

Solving for Σ gives:

$$\Sigma = \frac{1}{n} \sum_{j=1}^{n} y_j (\mathbf{x}_j - \mu_1)^{\mathsf{T}} (\mathbf{x}_j - \mu_1) + (1 - y_j) (\mathbf{x}_j - \mu_0)^{\mathsf{T}} (\mathbf{x}_j - \mu_0)$$

And thus, $\widehat{\Sigma} = (1 - \widehat{\pi})\widehat{\Sigma}_0 + \widehat{\pi}\widehat{\Sigma}_1$.

(e) What is the equation of the classification boundary, i.e., of the set of points for which p(y=1|x)=0.5? Compare the obtained predictor with the form of the logistic regression predictor.

Solution: From (b), we have

$$\mathbb{P}(Y = 1 \mid X = \mathbf{x}) = \left(1 + \frac{1-\pi}{\pi} \sqrt{\frac{\exp\left((\mathbf{x} - \mu_1)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu_1)\right)}{\exp\left((\mathbf{x} - \mu_0)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu_0)\right)}}\right)^{-1}$$
$$= \left(1 + \exp\left((\mu_0 - \mu_1)^{\mathsf{T}} \Sigma^{-1} \mathbf{x} + b\right)\right)^{-1}$$
$$= \sigma(w^{\mathsf{T}} \mathbf{x} + b)$$

where $w = \Sigma^{-1}(\mu_0 - \mu_1)$ and $b = \log \frac{1-\pi}{\pi} + \frac{1}{2}\mu_1^{\mathsf{T}}\Sigma^{-1}\mu_1 - \frac{1}{2}\mu_0^{\mathsf{T}}\Sigma^{-1}\mu_0$. Now, $\sigma(w^{\mathsf{T}}\mathbf{x} + b) = 1/2$, implies that $w^{\mathsf{T}}x + b = 0$. Thus the classification boundary is given by the hyperplane of equation

$$(\mu_0 - \mu_1)^{\mathsf{T}} \Sigma^{-1} \mathbf{x} + b = 0$$

Notice, by the way, that Fisher's linear discriminant has the same logistic function form as in linear regression.