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Exercise 3.1 (Singular Value Decomposition.) Let X be a n × p matrix of rank r.

(a) Show that X = UDV⊤, where U and V are n × r and p × r semi-orthogonal matrices
respectively, in that U⊤U = V⊤V = Ir (while UU⊤ and VV⊤ are projections but
need not be identity matrices unless U or V are square matrices, in which case the
definition is equivalent to that of an orthogonal matrix.) and D is a r × r diagonal
matrix with r non-negative entries which we refer to as the singular values of X.
This is sometimes called a compact SVD.
Hint: For the special case r = p, consider the eigendecomposition of X⊤X = VΛV⊤

and let U = XVΛ−1/2.
Solution: We first assume that p = r. In that case X⊤X and Λ are positive
semi-definite matrices and we can let U := XVD−1 with D := Λ1/2. We have
U⊤U = D−1V⊤X⊤XVD−1 = D−1V⊤VD2V⊤VD−1 = I so that U is a semi-orthogonal
matrix. Since r = p, V is a square semi-orthogonal matrix which entails that it is an
orthogonal matrix and we have UDV⊤ := XVD−1DV⊤ = X.

If r < p, then we consider again the eigenvalue decomposition of X⊤X which we write
this time X⊤X = Ṽ⊤Λ̃Ṽ. Since X is of rank r, we have Λ̃ = Diag(λ1, . . . , λr, 0, . . . , 0),
assuming that the diagonal of Λ̃ is sorted in decreasing order. Still under that
assumption, if we let Λ = Diag(λ1, . . . , λr) and V ∈ Rp×r be the semi-orthogonal
matrix obtained by extracting the r first columns of Ṽ, we get that X⊤X = V⊤ΛV.
By the previous reasoning, we have that U := XVD−1 is again a semi-orthogonal
matrix. We also have that UDV⊤ := XVV⊤ = X and so we need to argue that
XVV⊤ = X in spite of the fact that we don’t have VV⊤ = Ip here. It is easy to see
that this is true using V⊤V = Ir as follows

(XVV⊤ − X)⊤(XVV⊤ − X) = VV⊤X⊤XVV⊤ − X⊤XVV⊤ − VV⊤X⊤X + X⊤X
= V(V⊤V)Λ(V⊤V)V⊤ − VΛ(V⊤V)V⊤ − V(V⊤V)ΛV⊤ + VΛV⊤

= VΛV⊤ − VΛV⊤ − VΛV⊤ + VΛV⊤ = 0p×p

where 0m×n denots the m×n matrix with all entries equal to zero. Thus, XVV⊤ = X
and the conclusion follows.

(b) Show that X = ŨD̃Ṽ⊤ where Ũ and Ṽ are n × n and p × p orthogonal matrices
respectively and D̃ is a n × p diagonal matrix with r non-negative entries.
Solution: Using the result in (a), we can write X = UDV⊤. Let {uj}r

j=1 and
{vj}r

j=1 be the columns of U and V respectively and D = diag[d1, . . . , dr] where dj

are corresponding singular values of X. Then we can complete {uj}r
j=1 and {vj}r

j=1
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to orthonormal bases {uj}n
j=1 and {vj}p

j=1 of the spaces Rn and Rp respectively. Let
U1 = [u1 · · · up], D1 = diag[d1, . . . , dp] where dj = 0 for j > r and Ṽ = [v1 · · · vp].
Then,

UDV⊤ =
r∑

j=1
djujv⊤

j =
p∑

j=1
djujv⊤

j = U1D1Ṽ⊤

Let Ũ = [u1 · · · un] and D̃ = [D⊤
1 0p×n−p]⊤. It follows that ŨD̃ = U1D1. Therefore,

X = ŨD̃Ṽ⊤. Hence proved.

(c) To interpret the result from (b) we need to understand the orthonormal basis
(v1, . . . , vp) of Rp. For each j = 1, . . . , p, calculate the norm of Xvj and discuss the
implication of (b); note that Xvj are the jth coordinates of each row vector of X in
the basis (v1, . . . , vp).
Note: The vectors v1, . . . , vp ∈ Rp are called the principal components directions of
X. The vectors u1, . . . , up ∈ Rn are the normalized principal component scores. We
will go back to this in this class when discussing unsupervised learning (PCA).
Solution: By noting that XV = UD, we have that Xvj = ujdj . Thus, the sample
variance of Xvj is simply given by

1
n

∥Xvj∥2 = 1
n

∥ujdj∥2 = 1
n

d2
ju⊤

juj =
d2

j

n
.

(d) Use the compact singular value decomposition UDV⊤ of X (full rank) to show that
applying the hat matrix H = X [X⊤X]−1 X⊤ to a vector y projects it onto the subspace
spanned by the columns {uj} of U as in (a). In other words, H is a projection matrix.
Using this result, show that the fitted value of y from ordinary least squares can be
written in the following way:

ŷols =
r∑

j=1
uju⊤

jy.

Solution: By substituting in X = UDV⊤ into the least squares estimate, it is easy
to see that ŷols = Xβ̂

ols = UU⊤y.

Exercise 3.2 § (Geometric interpretation of linear ridge regression) In this question, we
will assume that the design matrix X is an n × p full-rank matrix.

(a) Show that

β̂
ridge = argmin

β∈Rp

1
n

∥y − Xβ∥2 + λ∥β∥2
2

= V(D2 + nλI)−1DU⊤y.

Solution: We minimize the error as in Exercise 1.2 (a), to get

β = [nλI + X⊤X]−1 X⊤y.

Note that the inversion of nλI + X⊤X is trivial for λ > 0, so the ridge solution always
exists. Then we apply SVD by substituting X = UDV⊤.
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(b) Show that the fitted values from ridge regression can be written as

ŷridge(λ) =
p∑

j=1

d2
j

d2
j + nλ

uju⊤
jy,

where the dj are the diagonal elements of the matrix D from (b). Discuss.

Solution: We see that ŷridge = Xβ̂
ridge = U∆U⊤y, where ∆ is diagonal with

∆jj = d2
j

d2
j +nλ

.

Exercise 3.3 (Artificial feature noising in linear regression) This exercise is inspired by
the paper Dropout Training as Adaptive Regularization, by S. Wager, S. Wang, and P.
Liang, published in Advances in Neural Information Processing Systems (NIPS), in 2013.
In this exercise we focus on the case of feature noising applied to linear regression.

Consider linear regression with no intercept (recall from Exercise 2.4(a) that the
intercept can always be estimated in a first step, so there is no loss of generality of assuming
it is zero). Let y ∈ Rn denote the response vector, and X ∈ Rn×p the design matrix with
centered columns. Recall the least-squares estimator of the regression parameter

β̂
ols = argmin

β∈Rp

n∑
i=1

(yi − x⊤
iβ)2.

Consider the following artificial feature noising scheme: the features xi are replaced
by the artificial features x̃i = ν(xi, ξi) where ν is a noising function and the ξi are
independent random vectors from some distribution Pξ. In practice, artificial features
noising is implemented as follows:

1. For l = 1, . . . , n, generate a large number L of independent x̃il = ν(xi, ξil), where
ξil ∼ Pξ are independent copies of ξi.

2. Estimate the regression parameter by

β̂
L = argmin

β∈Rp

n∑
i=1

L∑
l=1

(yi − x̃⊤
ilβ)2. (1)

The goal of this exercise is to study the link between feature noising and regularization.
In theory, we study the limiting behavior of β̂

L as L → ∞. We will assume that

β̂
∞ = argmin

β∈Rp

n∑
i=1

Eξi

{
(yi − x̃⊤

iβ)2
}

.

(a) Consider the following additive feature noising scheme: x̃i = ν(xi, ξi) = xi + ξi

where ξi ∼ N (0, σ2I) for some σ2 > 0. Show that the resulting estimator β̂
∞ is a

ridge estimator β̂
ridge(λ) for some value of λ in terms of σ2.

Solution: Write

Eξi

{
(yi − x̃⊤

iβ)2
}

=
{
Eξi

(yi − x̃⊤
iβ)

}2 + varξi
(yi − x̃⊤

iβ)

= (yi − x⊤
iβ)2 + varξi

(x̃⊤
iβ)
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where we used the fact that Eξi
x̃i = xi, i.e., the noising scheme is unbiased. It

follows that

β̂
∞ = argmin

β∈Rp

{
n∑

i=1
(yi − x⊤

iβ)2

︸ ︷︷ ︸
=RSS

+
n∑

i=1
varξi

(x̃⊤
iβ)︸ ︷︷ ︸

=Regularization

}
. (2)

We now explicit the regularization term in the case of the additive noising scheme.
We have varξi

(x̃⊤
iβ) = β⊤varξi

(x̃i)β = σ2β⊤β = σ2∥β∥2
2, thus the regularization term

in (2) is nσ2∥β∥2
2, which shows that β̂

∞ = β̂
ridge(σ2).

(b) Consider the following dropout noising scheme: x̃i = ν(xi, ξi) = xi · ξi, where the
operator · denotes the element-wise product of two vectors, and the components ξij

of the vectors ξi are independent random variables with

ξij =

0, with probability δ,
1

1 − δ
, with probability 1 − δ,

i.e., the ξij follow independent scaled Bernoulli distributions, for some parameter
δ ∈ (0, 1). Show that the resulting estimator β̂

∞ is a penalized least-squares estimator,
and express the regularization term in terms of δ. What happens when the features
are normalized so that

∑n
i=1 x2

ij = 1 for j = 1, . . . , p?
Solution: Note that the variables ξij have expectation 1, hence the dropout noising
scheme is unbiased and the same argument as in (b) leads to (2). Now, varξij

(x̃ij) =
varξij

(xijξij) = x2
ij

δ
1−δ , thus varξi

(x̃⊤
iβ) = δ

1−δ

∑p
j=1 x2

ijβ2
j and the regularization

term in (2) equals
n∑

i=1

δ
1−δ

p∑
j=1

x2
ijβ2

j = δ
1−δ

p∑
j=1

β2
j

n∑
i=1

x2
ij ,

which is also a ridge regularization when
∑n

i=1 x2
ij = 1 (but not otherwise). Note:

Dropout regularization is very popular in machine learning (it is widely used in
fitting deep neural network models). Feature noising methods are equivalent to
regularization but in general (for non-linear models) the regularization term has no
closed-form (see the paper of Wager et al. if you want to know more).

Practical exercise

Exercise 3.4 (Reading for next week’s practical) Read §§6.5,6.6 from ISL. This is to
familiarize yourself with the packages and the functions in R you will need for the purpose
of next week’s exercises.
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