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Exercise 3.1 (Singular Value Decomposition.) Let X be a n x p matrix of rank r.

(a) Show that X = UDV', where U and V are n x r and p x r semi-orthogonal matrices
respectively, in that U'U = V'V = I, (while UU" and VVT are projections but
need not be identity matrices unless U or V are square matrices, in which case the
definition is equivalent to that of an orthogonal matrix.) and D is a r x r diagonal
matrix with r non-negative entries which we refer to as the singular values of X.
This is sometimes called a compact SVD.

Hint: For the special case r = p, consider the eigendecomposition of X'X = VAVT
and let U =XVA~1/2,

Solution: We first assume that p = r. In that case X'X and A are positive
semi-definite matrices and we can let U := XVD™! with D := A'/2. We have
U'U=D'VXXVD ! =D 'V'VD2V'VD~! = Iso that U is a semi-orthogonal
matrix. Since r = p, V is a square semi-orthogonal matrix which entails that it is an
orthogonal matrix and we have UDVT := XVD~'DVT = X.

If » < p, then we consider again the eigenvalue decomposition of X'X which we write
this time X'X = VTAV. Since X is of rank r, we have A = Diag(A1, ..., Ar,0,...,0),
assuming that the diagonal of A is sorted in decreasing order. Still under that
assumption, if we let A = Diag(A1,...,\;) and V € RP*" be the semi-orthogonal
matrix obtained by extracting the r first columns of V, we get that X'X = VTAV.
By the previous reasoning, we have that U := XVD™! is again a semi-orthogonal
matrix. We also have that UDVT := XVVT = X and so we need to argue that
XVVT" = X in spite of the fact that we don’t have VV'™ = I, here. It is easy to see
that this is true using V'V = 1. as follows

(XVV - X)(XVV - X) = VVX'XVV - X'XVV - VV'X'X + XX
= V(VV)A(V V)V = VAVTV)VT = V(VIV)AV + VAV™
= VAV — VAV = VAV + VAV =0,,,

where 0,,,x,, denots the m x n matrix with all entries equal to zero. Thus, XVV'™ = X
and the conclusion follows.

(b) Show that X = UDV" where U and V are n x n and p x p orthogonal matrices
respectively and D is a n x p diagonal matrix with r non-negative entries.

Solution: Using the result in (a), we can write X = UDV'. Let {u;}7_; and
{v;}j=1 be the columns of U and V respectively and D = diag[dy, ..., d,] where d;
are corresponding singular values of X. Then we can complete {u;}’_; and {v;};_,
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to orthonormal bases {u;}?_; and {v;};_; of the spaces R"™ and RP respectively. Let
U; = [u---uyp], Dy = diag[dy, .. .,d,] where dj = 0 for j > r and V = [v1---v,)].
Then,

r p
IJD\/T = Zdjuj'v} = Z dej’U} = U1D1\7T
7=1 7j=1
Let INJ: - [~u1 -+~ uy,| and D= (D] Opxn—p|'. It follows that UD = U;D;. Therefore,
X = UDYV'. Hence proved.

(c) To interpret the result from (b) we need to understand the orthonormal basis
(v1,...,vp) of RP. For each j =1,...,p, calculate the norm of Xv; and discuss the
implication of (b); note that Xwv; are the jth coordinates of each row vector of X in
the basis (v1,...,vp).

Note: The vectors v1,...,v, € RP are called the principal components directions of
X. The vectors uq,...,u, € R" are the normalized principal component scores. We
will go back to this in this class when discussing unsupervised learning (PCA).

Solution: By noting that XV = UD, we have that Xv; = u;d;. Thus, the sample
variance of Xw; is simply given by

3 &

1 1 1
EHXUJHQ = gHujdeZ = ;diuguj =

(d) Use the compact singular value decomposition UDV" of X (full rank) to show that
applying the hat matrix H = X [XTXT1 X" to a vector y projects it onto the subspace
spanned by the columns {u;} of U as in (a). In other words, H is a projection matrix.
Using this result, show that the fitted value of y from ordinary least squares can be
written in the following way:

r

~ols T

vy :E u;u;y.
1

Solution: By substituting in X = UDV' into the least squares estimate, it is easy
~ols

to see that ° = X8~ = UU"y.
Exercise 3.2 § (Geometric interpretation of linear ridge regression) In this question, we
will assume that the design matrix X is an n x p full-rank matrix.

(a) Show that

~ridge

B = argmin |y - X1 + A3
BERP T
=V(D? +n\I)"'DUy.
Solution: We minimize the error as in Exercise 1.2 (a), to get
B =[nA+X'X] ' XTy.

Note that the inversion of nAI + XX is trivial for A > 0, so the ridge solution always
exists. Then we apply SVD by substituting X = UDV'.
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(b) Show that the fitted values from ridge regression can be written as

/\rldge T
U Uy
;d?—i-n/\ A

where the d; are the diagonal elements of the matrix D from (b). Discuss.

~ id . . .
Solution: We see that gdee = Xﬁm 8 = = UAU"y, where A is diagonal with
d2
Ajj = d2+n)\

Exercise 3.3 (Artificial feature noising in linear regression) This exercise is inspired by
the paper Dropout Training as Adaptive Regularization, by S. Wager, S. Wang, and P.
Liang, published in Advances in Neural Information Processing Systems (NIPS), in 2013.
In this exercise we focus on the case of feature noising applied to linear regression.
Consider linear regression with no intercept (recall from Exercise 2.4(a) that the
intercept can always be estimated in a first step, so there is no loss of generality of assuming
it is zero). Let y € R™ denote the response vector, and X € R™"*P the design matrix with
centered columns. Recall the least-squares estimator of the regression parameter

~

,BOIS = argmmz —z8)%
BERP 5
Consider the following artificial feature noising scheme: the features x; are replaced
by the artificial features &; = v(x;,€;) where v is a noising function and the &, are
independent random vectors from some distribution P¢. In practice, artificial features
noising is implemented as follows:

1. For I =1,...,n, generate a large number L of independent &; = v(x;,&;;), where
&1 ~ P¢ are independent copies of &;.

2. Estimate the regression parameter by

L
= argmin Z
BERP 1

- izlﬁ (1)

nL
:1

The goal of this exercise is to study the link between feature noising and regularization.

=~
In theory, we study the limiting behavior of 8 as L — oco. We will assume that

00

B = argmmZEs { - ~If)’)2}.

BeRP

(a) Consider the following additive feature noising scheme: &; = v(x;,§;) = x; + &,
where &; ~ N (0, 021) for some o > 0. Show that the resultmg estimator B is a

ridge estimator ﬁ ()\) for some value of X in terms of 2.

Solution: Write

Ee, { (v — 28)°} = {Ee, (i — 218)}” + vare, (vi — #18)
= (yi =, 8)° + varg, (2, 8)
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where we used the fact that E¢ @; = x;, i.e., the noising scheme is unbiased. Tt
follows that

B” = argmin { D (i — B+ vare, (] 8) } (2)
i=1

BERP i=1

=RSS =Regularization

We now explicit the regularization term in the case of the additive noising scheme.
We have varg, (2] 8) = Bvare, (&;)8 = 0?88 = 02|83, thus the regularization term
~ridge (0_2)

in is no?|| 8|2, which shows that 8~ = 3

(b) Consider the following dropout noising scheme: &; = v(x;,&;) = x; - €;, where the
operator - denotes the element-wise product of two vectors, and the components &;;
of the vectors &, are independent random variables with

0, with probability 9,
i 15 with probability 1 — 4,
i.e., the &;; follow independent scaled Bernoulli distributions, for some parameter
d € (0,1). Show that the resulting estimator Boo is a penalized least-squares estimator,
and express the regularization term in terms of §. What happens when the features

are normalized so that > ;22 =1for j =1,...,p?

iy

Solution: Note that the variables &;; have expectation 1, hence the dropout noising
scheme is unbiased and the same argument as in (b) leads to (2). Now, vare, (Z;) =
varg, (745&ij) = w?j%, thus vare (2[8) = 25 > 2747 and the regularization

term in equals

p n

) 202 6 2 2

25 > wBi =125 ) 67 ) i,
=1 =1

n
=1 7j=1

(2

which is also a ridge regularization when Y ' ; az?j = 1 (but not otherwise). Note:
Dropout regularization is very popular in machine learning (it is widely used in
fitting deep neural network models). Feature noising methods are equivalent to
regularization but in general (for non-linear models) the regularization term has no

closed-form (see the paper of Wager et al. if you want to know more).

Practical exercise

Exercise 3.4 (Reading for next week’s practical) Read §§6.5,6.6 from ISL. This is to
familiarize yourself with the packages and the functions in R you will need for the purpose
of next week’s exercises.
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