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Exercise 2.1 (Continuation of Ex 1.1) Let y = Xβ + ε, where E(ε) = 0, Cov(ε) = σ2I
and X is a non-random full rank matrix of size n×p. This setup contains the Gauss-Markov
assumptions of a linear model.

(a) Prove the Gauss-Markov theorem, i.e, β̂ is the best linear unbiased estimator
(BLUE) of β. “Best” in the sense that for all other linear unbiased estimators β̃ of
β, Cov(β̃) − Cov(β̂) is a positive semidefinite matrix.
Hints: Recall that an estimator β̃ is linear if β̃ = Ay, for some A ∈ Rp×n. Notice
that the matrix A can be decomposed as A = B + (X⊤X)−1X⊤.
Solution: There are many variants of the proof of the Gauss Markov theorem
given in different textbooks, many of which rely on elementary results from linear
algebra and some “tricks”. We give here one such proof. First, note that the fact
that we only consider estimators in the class of linear and unbiased estimators
imposes the condition that E(β̃) = E(Ay) = AXβ + E(Aε) = β. This implies
that AX = I, the p × p identity matrix. Let B = A − (X⊤X)−1X⊤. We see that
BX = AX − (X⊤X)−1X⊤X = I − I = 0, so

Cov(β̃) = Cov(Ay) = Cov(Aε) = σ2AA⊤ = σ2BB⊤ + σ2(X⊤X)−1,

where the last equality follows from BX = 0. Using the result from (b), we see that
Cov(β̃) − Cov(β̂) = σ2BB⊤, where BB⊤ is now a positive semidefinite matrix. The
matrix difference is the zero matrix if and only if B = 0, that is, when A = (X⊤X)−1X⊤.
So indeed, we have that β̂ gives the minimal variance in the class of all linear unbiased
estimators.

(b) Assume now that the errors ε are normally distributed. Prove that β̂ is the best
estimator among all unbiased estimators. β̂ is then a uniformly minimum variance
unbiased (UMVU) estimator.
Hint: Remember the Cramér–Rao bound.
Solution: We have

∂2RSS
∂β∂β⊤ = −2X⊤X.

The log-likelihood is ℓ(β) = − 1
2σ2 RSS + constant, hence the Fisher information

matrix is
I(β̂) = −E

(
∂2ℓ

∂β∂β⊤

)
= 1

σ2 X⊤X.
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Exercise 2.2 (The regression function) Recall that we are interested in the predictive
model f∗ : Rp → R that minimizes the expected error for the ℓ2 loss. i.e., we want to find
the function f∗ such that

E[ℓ{Y, f∗(X)}] = E[{Y − f∗(X)}2] = min
f :Rp→R

E[{Y − f(X)}2].

(a) Show that f∗(x) = E(Y |X = x).
Solution: There are many different ways to solve this exercise. We present here two
solutions.
1st Solution: Let m(x) = E(Y |X = x). We see that

E[L{Y, f(X)}] = E[{Y − f(X)}2]
= E[{Y − m(X) + m(X) − f(X)}2]
= E[{Y − m(X)}2] + E[{m(X) − f(X)}2] + 2E[{Y − m(X)}{m(X) − f(X)}]

= E[{Y − m(X)}2] +
∫
Rp

|m(x) − f(x)|2PX(dx),

where PX is the distribution of X and the last equality holds because

E[{Y − m(X)}{m(X) − f(X)}] = E(E[{Y − m(X)}{m(X) − f(X)}|X])
= E({m(X) − f(X)}{E(Y |X) − m(X)})
= 0.

Clearly, the L2 loss is minimized when f(x) = m(x), proving that indeed, f∗(x) =
E(Y |X = x).
2nd Solution: Write

E[{Y − f(X)}2] = E(E[{Y − f(X)}2 | X]) =
∫
Rp

E[{Y − f(X)}2 | X = x]PX(dx),

with E[{Y − f(X)}2 | X = x] ≥ 0 for any x ∈ Rp, thus it suffices to minimize
E[{Y − f(x)}2 | X = x] over f(x) (almost everywhere, with respect to the measure
P(X)). The problem is equivalent to finding the value of c = c(x) ∈ R that minimizes
E{(Y − c)2 | X = x} almost everywhere. Write

E{(Y − c)2 | X = x} = E(Y 2 − 2cY + c2 | X = x)
= E(Y 2 | X = x) − 2cE(Y | X = x) + c2.

To minimize the previous expression, take the derivative with respect to c to find
that the minimum is attained at c = E(Y | X = x) = m(x).

(b) If we consider the ℓ1 loss instead, i.e., ℓ(y, ŷ) = |y − ŷ|, what is f∗? (For simplicity
suppose that P(Y | X) has a density.)
Solution: We want to find a function f∗ that minimizes the expected loss E{|Y −
f(X)|} over all functions f : Rp → R. First, notice that

E{|Y − f(X)|} = E[E{|Y − f(X)| | X}]
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Thus, using the same argument as in (a, 2nd solution), it suffices to find the constant
c that minimizes E(|Y − c| | X = x). Write

E(|Y − c| | X) = E{(Y − c)I(Y − c ≥ 0) + (c − Y )I(Y − c < 0) | X}
= E{Y I(Y − c ≥ 0) | X} − cP(Y ≥ c | X)

+ cP(Y < c | X) − E{Y I(Y − c < 0) | X}

=
∫ ∞

c
yg(y | X)dy − cP(Y ≥ c | X) + cP(Y < c | X) −

∫ c

−∞
yg(y | X)dy,

where g denotes the density of Y | X. Thus
∂

∂c
E(|Y − c| | X) = −cg(c | X) − P(Y ≥ c | X) + cg(c | X)

+ P(Y < c | X) + cg(c | X) − cg(c | X)
= −P(Y ≥ c | X) + P(Y < c | X),

and the zero of that derivative occurs when P(Y < c | X) = P(Y ≥ c | X) = 1/2,
i.e., for c equal to the conditional median c = f∗(x) = median(Y |X = x). Note: the
same result holds without assuming a density for Y | X, it is just more difficult to
prove.

Exercise 2.3 (Bias-variance tradeoff) In this exercise, we consider the expected ℓ2 error
of a random predictive model f̂n (depends on a training set Dn), defined as

E
[∫

Rp

{
f̂n(x) − f∗(x)

}2
PX(dx)

]
. (1)

(a) For any random predictive model f̂n and any fixed point x0 ∈ Rp, prove that

E
[{

f̂n(x0) − f∗(x0)
}2] =

[
bias{f̂n(x0)}

]2
+ var{f̂n(x0)}.

Solution: We have that

E
[{

f̂n(x0) − f∗(x0)
}2] = E

[{
f̂n(x0) − E

{
f̂n(x0)

}
+ E

{
f̂n(x0)

}
− f∗(x0)

}2]
=
[
bias{f̂n(x0)}

]2
+ var{f̂n(x0)}

because
E
[{

f̂n(x0) − E
{
f̂n(x0)

}}{
E
{
f̂n(x0)

}
− f∗(x0)

}]
= 0.

Note that in this expectation, E
{
f̂n(x0)

}
− f∗(x0) is non-random. Important: f∗(x0)

is just a constant here, it could be the conditional mean, as in Exercise 2.1(a), or the
conditional median, as in Exercise 2.1(b), or something else.

(b) Find a similar bias-variance decomposition for the expected ℓ2 error (1).
Solution: By Fubini or Tonelli’s theorem (where our function within the integrand
is positive and measurable), we have that the expected ℓ2 error is given by

E
[∫

Rp

{
f̂n(x) − f∗(x)

}2
PX(dx)

]
=
∫
Rp

E
[{

f̂n(x) − f∗(x)
}2]

PX(dx)

=
∫
Rp

[
bias{f̂n(x)}

]2
PX(dx) +

∫
Rp

var{f̂n(x)}PX(dx).
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We see that for the expected ℓ2 error the squared bias and the variance integrate
over the distribution of X.

Exercise 2.4 (Ridge regression)

(a) Consider the linear regression model

yi = β0 +
p∑

j=1
βjxij + εi, i = 1, . . . , n.

Define β = (β1, . . . , βp)⊤ and the residuals as

ri(β0, β) = yi − β0 −
p∑

j=1
βjxij , i = 1, . . . , n.

Show that the OLS estimator β̂0 = y −
∑p

j=1 βjx.j for any β, where x.j = 1
n

∑n
i=1 xij .

Hence deduce that

ri(β̂0, β) = yi − y −
p∑

j=1
βj(xij − x.j), i = 1, . . . , n.

Discuss the implications of this result.
Solution: The OLS estimator β̂0 is found by minimizing the residual sum of squares
with respect to β0, keeping β fixed:

RSS = (y − β01 − Xβ)⊤(y − β01 − Xβ),

so ∂
∂β0

RSS = 2 × 1⊤(y − β01 − Xβ), and finding the root of the previous derivative
gives β̂0 = y −

∑p
j=1 βjx.j . The form of ri(β̂0, β) is then trivial. Note that this result

also follows from the Frisch–Waugh–Lovell (FWL) theorem. We now discuss the
significance of this result. Note that in both residuals formulations, the vector β is the
same. Hence, by centering the response and predictor variables it is always possible
to get rid of the intercept β0 in the first equation. The least squares estimation
of β is the same in both the model with an intercept and in the model without it
but with centered response and covariates. Thus β can first be estimated from the
centered response and covariates (using OLS or another method) and β0 will then
be estimated by β̂0 = y −

∑p
j=1 β̂jx.j . This motivates the definition of the ridge

estimator in the next equation (equation (2)), compared to the definition with an
unconstrained intercept: as β0 in unconstrained we know β̂0 = y −

∑p
j=1 β̂jx.j and β̂

is found solving equation (2), thus the two formulations of ridge will give the same
estimates of β and β0.

(b) Define the ridge regression estimator as a minimizer of the penalized residual sum of
squares,

β̂(λ) = argmin
β

1
n

∥y − Xβ∥2 + λβ⊤β, (2)
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where λ ≥ 0 is a parameter that controls the amount of shrinkage. Show that the
ridge regression solution always exists, even if X does not have full rank, and is given
by

β̂(λ) = (X⊤X + nλI)−1X⊤y.

Note that the ridge estimator is still linearly depending on the response y, as for
ordinary least squares.
Solution: Taking gradient of 1

n∥y − Xβ∥2 + λβ⊤β with respect to β, setting it to 0,
and rearranging the terms, gives the normal equations

(X⊤X + nλI)β̂(λ) = X⊤y.

Now note that the matrix X⊤X+nλI is always invertible: X⊤X is positive semidefinite
(since x⊤X⊤Xx = ∥Xx∥ ≥ 0) hence its eigenvalues αi ≥ 0, and the eigenvalues of
X⊤X + nλI are αi + nλ > 0 for any λ > 0. Hence the ridge estimator always exists
and is uniquely defined as

β̂(λ) = (X⊤X + nλI)−1X⊤y.

(c) Show that the ridge regression estimator defined in (2) equals

β̂(t) = argmin
∥β∥2≤t

∥y − Xβ∥2 (3)

for a given t = t(λ). Hint: Use the Karush–Kuhn–Tucker (KKT) method.
Solution: The constrained optimization problem in (3) can be solved by means of the
Karush–Kuhn–Tucker (KKT) multiplier method, which minimizes a function subject
to inequality constraints. The KKT multiplier method states that, under some
regularity conditions (here satisfied), there exists a unique λ, called the multiplier,
such that the solution β̂ of the constrained minimization problem (3) satisfies the
so-called KKT conditions. Define the Lagrangian of the problem as

ℓ(β, λ) = ∥y − Xβ∥2 + λ
(
∥β∥2 − t

)
.

The KKT conditions are:

1. ∂ℓ

∂β
(β̂, λ) = 0.

2. λ ≥ 0.
3. λ(∥β̂∥2 − t) = 0.
4. ∥β̂∥2 − t ≤ 0.

Now, suppose that the solution that minimizes the minimization problem in (2)
is given by the ridge estimate β̂(λ/n). For t = ∥β̂(λ/n)∥2 it is clear that β̂(λ/n)
satisfies all KKT conditions. Hence, both the constrained optimization problem in
(3) and the minimization problem in (2) have the same solution when t = ∥β̂(λ/n)∥2.
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Exercise 2.5 The Gauss-Markov Theorem makes the assumption that the training data
is generated as y = Xβ + ε, X is a non-random full rank matrix of size n × p, where
E[ε] = 0, Cov(ε) = σ2I.

(a) Explain why the Gauss-Markov Theorem still holds for any random design matrix X
(in particular without assuming that the rows of X are i.i.d.) provided we change
the assumptions and assume that y = Xβ + ε with E[ε|X] = 0, Cov(ε|X) = σ2I.

Solution: Recall that when the design matrix X is non-random, the Gauss-Markov
theorem indicates that for any unbiased linear estimator β̃, there exists KX positive
semi-definite such that

Cov(β̃|X) = Cov(β̂|X) + KX, (⋆)

where the covariances are conditional covariances and KX does not only depend
on the choice of the estimator β̃ but also on X. To obtain a statement which is
again expressed in terms of the marginal covariance of the estimators, we can use the
variance decomposition formula

Cov(β̃) = E[Cov(β̃|X)] + Cov(E[β̃|X]),

so taking expectation in (⋆), we get

Cov(β̃) = E[Cov(β̂|X)] + E[KX] + Cov(E[β̃|X])
= Cov(β̂) + E[KX] + Cov(E[β̃|X]),

where we use the fact that E[β̂|X] = β thus Cov(E[β̂|X]) = 0. Finally, both E[KX]
and Cov(E[β̃|X]) are also positive semi-definite, which yields the Gauss-Markov
theorem.

(b) Let β̃ be any linear unbiased estimator and let β̂ be the linear regression estimator
(aka ordinary least squares estimator). Show that as a consequence of the Gauss-
Markov theorem:

∀x ∈ Rp, Var(x⊤β̂) ≤ Var(x⊤β̃).

Solution: By the previous question, we have that

Cov(β̃) = Cov(β̂) + K,

with K = E[KX]. But this entails that, for any fixed x ∈ Rp, we have

x⊤Cov(β̃)x = x⊤Cov(β̂)x + x⊤Kx;

now since K is positive semi-definite, we must have x⊤Kx ≥ 0 and it is easy to check
that Var(x⊤β̃) = x⊤Cov(β̃)x using the definitions of variance and covariance. Hence
the result.

(c) Consider now i.i.d. data (Xi, Yi) with Yi = X⊤
i β+εi, E[εi|Xi] = 0 and Var(εi|Xi) = σ2.

For data following this distribution, express the target function for the quadratic risk
as a function of β.
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Solution: We know that for the quadratic risk f∗(x) = E[Y |X = x] and

f∗(Xi) = E[Yi|Xi] = E[X⊤
i β + εi|Xi] = X⊤

i β + E[εi|Xi] = X⊤
i β.

So f∗(x) = β⊤x.

(d) Let f̂ : x 7→ x⊤β̂ and f̃ : x 7→ x⊤β̃ for β̃ some unbiased linear estimator based on
X and y. Show that for any such f̃ , if R denotes the quadratic risk (i.e. the risk
associated with the square loss), then we necessarily have E[R(f̂)] ≤ E[R(f̃)]. Show
that the same inequality actually holds conditionally on the value of any new X = x.

Solution: Note first that since β̃ is unbiased then, for any fixed x.

E[f̃(x)] = E[β̃⊤
x] = E[β̃]⊤x = β⊤x = f∗(x),

and, since β̂ is itself unbiased, E[f̂(x)] = f∗(x). Now, this entails that

Var(f̃(x)) = E[(f̃(x) − f∗(x))2].

To connect this with the risk, we denote by Dn = {(Xi, Yi)}i=1..n the training set
and we use the result established on the quadratic risk in class:

E[(f̃(x) − Y )2|X = x, Dn] = (f̃(x) − f∗(x))2 + E[(f∗(x) − Y )2|X = x, Dn]

that we can also write

R(f̃(x)|x) = (f̃(x) − f∗(x))2 + R(f∗(x)|x),

by identifying the conditional risks of f̃ and f∗. Now taking expectations w.r.t. to
Dn on both sides we get

E[R(f̃(x)|x)] = Var(f̃(x)) + R(f∗(x)|x),

where E[R(f̃(x)|x)] is the expected conditional risk at x, with an expectation taken
over the choice of the training data Dn only. Given that we have the same formula
hold for f̂ and given that Var(x⊤β̂) ≤ Var(x⊤β̃) we have established that

E[R(f̂(x)|x)] ≤ E[R(f̃(x)|x)].

By taking expectations over the choice of X = x, we get

E[R(f̂)] ≤ E[R(f̃)].
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