Statistical Machine Learning

Exercise sheet 1

Exercise 1.1 Classification from a discrete input space. We consider a multiclass classification problem with 3 classes $\{1,2,3\}$ for data with only a single discrete descriptor in $\mathcal{X} = \{1,2,3,4\}$.

We assume that the joint probability distribution $\mathbb{P}(Y = y, X = x)$ with X taking values in \mathcal{X} and Y taking values in $\mathcal{Y} = \{1, 2, 3\}$ is specified by the following table:

	Y=1	Y = 2	Y = 3
X = 1	0,02	0,08	0,10
X=2	0,05	$0,\!40$	$0,\!15$
X = 3	0,02	0,02	$0,\!12$
X=4	0,02	0,01	0,01

(a) What is the target function f^* for the 0-1 loss?

Solution: For 0-1 loss function, the risk is minimized when the target function assigns every x to the most likely class.

$$f^*(x) = \operatorname*{argmax}_{y} \mathbb{P}[Y = y | X = x]$$

(b) What are the values of $f^*(x)$ for x = 1, 2, 3, 4.

Solution: Evaluating the above expression,

$$f^*(x) = \begin{cases} 3 & x = 1, 3 \\ 2 & x = 2 \\ 1 & x = 4 \end{cases}$$

(c) What is the value of the risk for the target function?

Solution: Evaluating the risk,

$$\mathcal{R}(f^*) = \mathbb{E}[1_{\{f^*(X) \neq Y\}}]$$

$$= \sum_{x=1}^{4} \sum_{y=1}^{3} 1_{\{f^*(x) \neq y\}} \mathbb{P}[X = x, Y = y]$$

$$= \sum_{(x,y):f^*(x) \neq y} \mathbb{P}[X = x, Y = y]$$

$$= 0,02 + 0,08 + 0,02 + 0,02 + 0,05 + 0,15 + 0,01 + 0,01 = 0,36$$

Exercise 1.2 Recap of linear models. Let $y = \mathbf{X}\beta + \varepsilon$, where $\mathbb{E}(\varepsilon) = \mathbf{0}$, $\operatorname{var}(\varepsilon) = \sigma^2 \mathbf{I}$ and \mathbf{X} is a non-random full rank matrix of size $n \times p$. This setup contains the Gauss-Markov assumptions of a linear model.

(a) Derive the least squares estimator $\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$.

Solution: The residual sum of squares is given by $RSS(\beta) = (y - X\beta)^{T}(y - X\beta)$. Differentiating with respect to β gives

$$\frac{\partial \text{RSS}}{\partial \boldsymbol{\beta}} = -2\mathbf{X}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}).$$

Setting the first derivative to zero gives

$$\mathbf{X}^{\mathsf{T}}(\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{0}.$$

Since **X** has full column rank, $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite and thus invertible. We obtain the unique solution $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\boldsymbol{y}$.

(b) Show that $\hat{\boldsymbol{\beta}}$ is unbiased and that the variance of $\hat{\boldsymbol{\beta}}$ is given by $\sigma^2(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}$.

Solution: The proof of unbiasedness is trivial. For the variance,

$$\begin{aligned} \operatorname{var}(\widehat{\boldsymbol{\beta}}) &= \operatorname{var}\{(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{y}\} \\ &= \operatorname{var}\{(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})\} \\ &= \mathbf{0} + \operatorname{var}\{(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{\varepsilon}\} \\ &= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\operatorname{var}(\boldsymbol{\varepsilon})\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} \\ &= \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1} \\ &= \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1}. \end{aligned}$$

Exercise 1.3 Linear regression for binary classification. Consider a binary classification problem with $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{Y} = \mathcal{A} = \{-1, 1\}$. We model the conditional expectation of Y given X by the linear model $\mathbb{E}(Y \mid X) = X^{\mathsf{T}}\beta$.

Let $\boldsymbol{x} \in \mathbb{R}^n$ be a new input. So, we estimate $\widehat{\mathbb{E}}(Y \mid \boldsymbol{X} = \boldsymbol{x}) = \boldsymbol{x}^{\top} \widehat{\boldsymbol{\beta}}$, where $\widehat{\boldsymbol{\beta}}$ is the least-square estimate of β . We wish to estimate its class $y = f^*(\boldsymbol{x})$, where f^* is the target function corresponding to 0 - 1 loss.

(a) Derive the linear model estimate of $\widehat{\mathbb{P}}(Y = 1 \mid \mathbf{X} = \mathbf{x})$.

Solution: Show that $\mathbb{E}(Y \mid X) = 2\mathbb{P}(Y = 1 \mid X) - 1$. Hence $\mathbb{P}(Y = 1 \mid X) = \{\mathbb{E}(Y \mid X) + 1\}/2$ and

$$\widehat{\mathbb{P}}(Y=1\mid \boldsymbol{X}=\boldsymbol{x}) = \frac{\boldsymbol{x}^{^{\top}}\widehat{\boldsymbol{\beta}}+1}{2}.$$

(b) Show that $\widehat{y} = \widehat{f}^*(\boldsymbol{x})$ is given by $2 \cdot 1\{\boldsymbol{x}^{\top}\widehat{\boldsymbol{\beta}} \geq 0\} - 1$, where \widehat{f}^* is the estimate of f^* given by plugging-in estimated values $\widehat{\mathbb{P}}(Y = y \mid \boldsymbol{X} = \boldsymbol{x})$ of the conditional p.m.f. $\mathbb{P}(Y = y \mid \boldsymbol{X} = \boldsymbol{x})$.

Solution: We will predict $\widehat{y} = 1$ when $\widehat{\mathbb{P}}(Y = 1 \mid \boldsymbol{X} = \boldsymbol{x}) \ge 1/2$, and $\widehat{y} = -1$ when $\widehat{\mathbb{P}}(Y = 1 \mid \boldsymbol{X} = \boldsymbol{x}) < 1/2$. This gives the result.

Exercise 1.4 Pinball loss and quantile regression. For $\tau \in]0,1[$, the pinball function with parameter τ is the function h_{τ} given by,

$$h_{\tau}(z) = -\tau z \, 1_{\{z < 0\}} + (1 - \tau) z \, 1_{\{z > 0\}}.$$

We consider a decision problem for which inputs, outputs and actions are all real-valued, that is $\mathcal{X} = \mathcal{Y} = \mathcal{A} = \mathbb{R}$. For $a, y \in \mathbb{R}$, we define the pinball loss by $\ell_{\tau}(a, y) = h_{\tau}(a - y)$. We assume further that

- (a) $\mathbb{E}[|Y||X = x] < \infty$ a.e. $x \in \mathbb{R}$,
- (b) and the conditional law of Y given X is absolutely continuous with respect to the Lebesgue measure. Thus the function $y \mapsto \mathbb{P}(Y \le y \mid X = x)$ is continuous, a.e. $x \in \mathbb{R}$.

Recall that for a real-valued random variable Y whose law is absolutely continuous, we define the quantile of order α or α -quantile as the unique $q_{\alpha} \in \mathbb{R}$ such that $\mathbb{P}(Y \leq q_{\alpha}) = \alpha$. Similarly, the conditional quantile of order α of Y at X = x is, under the above continuity hypothesis the unique $q_{\alpha}(x) \in \mathbb{R}$ such that

$$\mathbb{P}(Y \le q_{\alpha}(x) \mid X = x) = \alpha.$$

- (a) Plot the pinball function in R. Play around with different values of τ . Why do you think the function is called that way?
- (b) Compute the expression for the conditional risk associated with the pinball loss in terms of q_{α} .

Solution: Let F_x denote the c.d.f. of Y conditional on X = x. Then,

$$\mathcal{R}(a|x) = \mathbb{E}\left[h_{\tau}(a-Y) \mid X=x\right]$$
$$= \int_{\mathbb{R}} h_{\tau}(a-y)dF_x(y)$$
$$= \int_0^1 h_{\tau}(a-q_{\alpha}(x))d\alpha$$

by the substitution $y \mapsto q_{\alpha}(x)$.

(c) Prove that the target function of that risk is $q_{\tau}(x)$.

Solution: Notice that for $z \neq 0$, $h'_{\tau}(z) = 1_{\{z>0\}} - \tau$. Thus,

$$\frac{d}{da}\mathcal{R}(a|x) = \int_{\mathbb{R}} h'_{\tau}(a-y)dF_{x}(y)$$
$$= \int_{\mathbb{R}} (1_{\{a>Y\}} - \tau)dF_{x}(y)$$
$$= F_{x}(a) - \tau$$

Updated: September 10, 2024

Clearly, for $a < q_{\tau}(x)$, the conditional risk is decreasing while for $a > q_{\tau}(x)$ it is increasing, so it is minimum at $a = q_{\tau}(x)$. Thus the target function is $q_{\tau}(x)$.

(d) We call ℓ_1 -regression or least absolute deviation regression, the regression with loss function $\ell(a,y) = |a-y|$. Deduce from the previous question what is the target function for ℓ_1 -regression.

Solution: Clearly, $|z| = 2h_{1/2}(z)$. It follows that the target function is $q_{1/2}(x)$.

Practical exercises

Exercise 1.5 Polynomial regression. In this exercise, we will fit a linear model to data from simreg1train.csv. In R, use the read.csv("...") function to import the data.

- (a) Using results from Exercise 1.2, compute the least squares estimates for this dataset using your statistical software and plot the fitted values. Is the model appropriate?
- (b) Calculate the empirical risk on the training set (also called *training error*) for this dataset, given by

$$\widehat{\mathcal{R}}(\widehat{f}) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \widehat{f}(x_i)), \tag{1}$$

where $\{(x_i, y_i)\}_{i=1}^n$ is the training set, ℓ is the squared error loss and \widehat{f} is the fitted function.

- (c) For the same loss function, calculate the empirical risk on the testing set (also called testing error) which is also given by (1) but here $\{(x_i, y_i)\}_{i=1}^n$ is the testing set given in simregltest.csv.
- (d) We now make the model more flexible by adding features to the design matrix \mathbf{X} . Add the feature \mathbf{x}^2 into your regression model, i.e., our design matrix becomes $\mathbf{X} = (\mathbf{1} \ \mathbf{x} \ \mathbf{x}^2)$. Compute the empirical risks on the training and testing sets for this model. Discuss.

Solution [(a)-(d)]: See the R-code uploaded on moodle.

(e) Add features up to x^k into your regression model, for k = 3, 4, ..., 10. Calculate the the empirical risks on the training and testing sets for each k = 1, ..., 10. Make a plot of the empirical risks against k. Discuss. What happens when k > 10?

Solution: See Figure 1. We see that the training error decreases with increasing k. However, the test error decreases initially but increases again after a certain k.

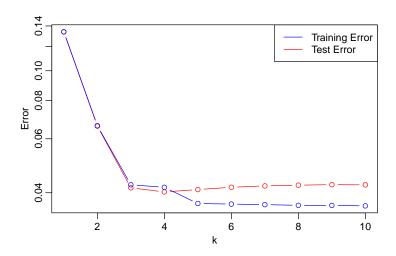


Figure 1: Training and test errors over k. Note the log scale on the y-axis.