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Exercise 11.1 (K-means as alternating minimization) In class, we have seen that the
problem that K-means tries to optimize is

min
(µk)k

n∑
i=1

min
1≤k≤K

∥xi − µk∥2

(a) Show that the optimization problem of K-means is equivalent to solving the following
optimization problem

min
(µk)k,(zik)i,k

n∑
i=1

K∑
k=1

zik ∥xi − µk∥2

s.t. zik ∈ {0, 1}, ∀i, k
K∑

k=1
zik = 1, ∀i.

In particular, prove that the partial minimization w.r.t. all zik recovers the objective
of K-means from the slides.
Solution: We can focus on the optimization problem

min
(zik)k

K∑
k=1

zik ∥xi − µk∥2

s.t. zik ∈ {0, 1}, ∀k
K∑

k=1
zik = 1.

where is clear that the minimizing zi picks the value of k such that ∥xi − µk∥2 is
minimum. The value of the objective after minimizing w.r.t. zi is thus equal to
min1≤k≤K ∥xi − µk∥2.

(b) Prove that if we let Ck = {i | zik = 1}, then minimizing w.r.t. all zik for fixed
µks corresponds to the cluster update step in K-means; symmetrically, show that
minimizing w.r.t. all µk for fixed zik produces the centroid update step in K-means.
After minimizing w.r.t. to the ziks , the set {i | zik = 1} is exactly the set of indices
of the points that are closer to µk than any other centroid. On the other hand
minimizing w.r.t. to µk yields

µk =
∑n

i=1 zikxi∑n

i=1 zik
= 1

|Ck|
∑

i∈Ck

xi,

which is indeed the centroid update.
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(c) Deduce from the last question that K-means can be interpreted as an alternating
optimization algorithm.
If we alternatingly minimize w.r.t. all the zs and then w.r.t. to all the µk, we recovers
the K-means algorithm

Exercise 11.2 (Variance decomposition in clustering) In this exercise, we consider a
situation in which data living in Rp has been partitioned in a number of clusters, and
where the clusters centroids are set to be the empirical means (or barycenters) of the data
in each cluster. The goal of the exercise is to show that there is a nice relationship between
the (co)variance of the data in each cluster, the total (co)variance of the data, and the
(co)variance of the centroids. More precisely, we shall show that the total (co)variance is
the sum of these two (co)variances.

Let {xi}N
i=1 denote i.i.d. samples of a Rd-valued random variable X. Let x and Σ̂

denote the empirical mean and empirical covariance of the sample, respectively. For each
k = 1, . . . , K, let Σ̂k denote the empirical covariance matrix of the kth cluster and π̂k

denote the proportion of the sample in the kth cluster.

(a) Show that

Σ̂ =
K∑

k=1
π̂kΣ̂k +

K∑
k=1

π̂k [µ̂k − x] [µ̂k − x]⊤

Solution: We proceed as follows:

Σ̂ = 1
n

n∑
i=1

[xi − x] [xi − x]⊤

= 1
n

K∑
k=1

∑
i∈Ck

[xi − µ̂k + µ̂k − x] [xi − µ̂k + µ̂k − x]⊤

= 1
n

K∑
k=1

∑
i∈Ck

[xi − µ̂k] [xi − µ̂k]⊤ + 1
n

K∑
k=1

∑
i∈Ck

[µ̂k − x] [µ̂k − x]⊤

+ 1
n

K∑
k=1

∑
i∈Ck

(
[xi − µ̂k] [µ̂k − x]⊤ + [µ̂k − x] [xi − µ̂k]⊤

)
= 1

n

K∑
k=1

|Ck|Σ̂k + 1
n

K∑
k=1

|Ck| [µ̂k − x] [µ̂k − x]⊤ + 0

=
K∑

k=1
π̂kΣ̂k +

K∑
k=1

π̂k [µ̂k − x] [µ̂k − x]⊤

since ∑
i∈Ck

[xi − µ̂k] = 0 and π̂k = |Ck|/n.

(b) Show that,

1
n

n∑
i=1

∥xi − x∥2 =
K∑

k=1
π̂k

 ∑
i∈Ck

∥xi − µ̂k∥2

 +
K∑

k=1
π̂k ∥µ̂k − x∥2

Solution: Simply take the trace of the equation in (a).
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(c) Why can Σ̂k and 1
|Ck|

∑
i∈Ck

∥xi − µ̂k∥2 be considered as a measure of intra-cluster
variance of the kth cluster?
Solution: By definition, Σ̂k is the covariance of the data if we only have the data
from the kth cluster and 1

|Ck|
∑

i∈Ck
∥xi − µ̂k∥2 is the average quadratic error made

by approximating xi with the cluster center µ̂k. The latter is also the sum of the
variances σ̂2

k,j = 1
|Ck|

∑
i∈Ck

(xij − µkj)2 of all coordinates inside of the kth cluster.

(d) Why can ∑K
k=1 π̂k [µ̂k − x] [µ̂k − x]⊤ and ∑K

k=1 π̂k ∥µ̂k − x∥2 be considered as mea-
sures of inter-cluster variance? What do they represent?
Solution: If we were to draw each µ̂k with probability π̂k, that is in proportion to the
data contained in the kth cluster, then the expectation of the resulting distribution
would be x = ∑K

k=1 π̂kµ̂k and therefore covariance matrix of the resulting distribution
would be ∑K

k=1 π̂k [µ̂k − x] [µ̂k − x]⊤. And ∑K
k=1 π̂k∥µ̂k −x∥2 is the average quadratic

error made by replacing µ̂k by x.

(e) Explain how the problem of clustering can be thought of as that of grouping the
data in such a way that the barycenters of the clusters are as spread out as possible
in space.
Solution: In clustering, Ck = {i | ∥xi − µ̂k∥ = minj ∥xi − µ̂j∥}.
Since the total variance is fixed, it follows that minimizing the intra-cluster variances∑K

k=1 π̂k

[∑
i∈Ck

∥xi − µ̂k∥2
]

= 1
n

∑n
i=1 mink ∥xi − µ̂k∥2 is equivalent to maximizing

the inter-cluster variance
∑K

k=1 π̂k ∥µ̂k − x∥2, and in this sense, the barycenters µ̂k

should be as spread out in space as possible.

(f) How are the results in (a) and (b) related to the variance decomposition formulas:

Var [Y ] = E [Var [Y |Z]] + Var [E [Y |Z]]

for a scalar-valued random variable Y and

Cov [Y ] = E [Cov [Y |Z]] + Cov [E [Y |Z]]

for a vector-valued random variable Y .
Solution: If Y = X and Z is the cluster index of X and moreover, the covariances
and expectations are evaluated according to the empirical distribution of X (not the
population distribution) then the above formula returns the results of (a) and (b)
depending on whether X is vector or scalar-valued respectively.
Here is a simple proof of the variance decomposition formula:

Cov[Y ] = E[(Y − E[Y |Z] + E[Y |Z] − E[Y ])(Y − E[Y |Z] + E[Y |Z] − E[Y ])⊤]
= E[(Y − E[Y |Z])(Y − E[Y |Z])⊤] + E[(E[Y |Z] − E[Y ])(E[Y |Z] − E[Y ])⊤]
+ 2E[(Y − E[Y |Z])(E[Y |Z] − E[Y ])⊤]

Now, notice that the first and the second terms can be written as:

E[(Y − E[Y |Z])(Y − E[Y |Z])⊤] = E [E[(Y − E[Y |Z])(Y − E[Y |Z])⊤|Z]]
= E[Cov(Y |Z)]

E[(E[Y |Z] − E[Y ])(E[Y |Z] − E[Y ])⊤] = Cov[E[Y |Z]]
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And the third term is zero:

E[(Y − E[Y |Z])(E[Y |Z] − E[Y ])⊤] = E [E[(Y − E[Y |Z])(E[Y |Z] − E[Y ])⊤|Z]]
= E [(E[Y |Z] − E[Y |Z])(E[Y |Z] − E[Y ])⊤] = 0

Exercise 11.3 (Properties of the EM algorithm) Prove the following properties of the EM
algorithm. We will use the same notation as the lecture.

(a) Show that L(q, θ) = log p(x; θ) − KL(q(z) ∥ p(z | x; θ)).
This is straightforward to show with the definition of the Kullback-Leibler divergence.

L(q, θ) =
∫

q(z) log p(x,z; θ)
q(z) dz

=
∫

q(z) log p(z | x; θ)p(x; θ)
q(z)

= log p(x; θ)
∫

q(z)dz +
∫

q(z) log p(z | x; θ)
q(z) dz

= log p(x; θ) − KL(q(z) ∥ p(z | x; θ))

(b) In the E step of the EM algorithm, show that log p(x; θt−1) = L(q, θt−1) when
q(z) = p(z | x; θt−1).
When q(z) = p(z | x; θt−1), KL(q(z) ∥ p(z | x; θt−1)) = 0 and so log p(x; θt−1) =
L(q, θt−1). In other words, the E step brings the variational bound L to "touch" the
likelihood for θ = θt−1.

(c) Show that the EM algorithm never decreases the likelihood.
We have

log p(x; θ(k−1)) = L(q(k), θ(k−1)) ≤ L(q(k), θ(k)) ≤ log p(x; θ(k)).

Indeed,

• The first equality holds because of the E step, which brings the variational
bound L to the likelihood.

• The second inequality holds because of the M step, where L(q(k), ·) is maximized
with respect to θ.

• Finally, the last inequality holds because of the main result shown in class using
Jensen’s inequality, i.e. that L(q(k), θ) ≤ log p(x; θ) is true for any θ (this can
also be viewed as a consequence of the non-negativity of the Kullback-Leibler
divergence in the previous question).

Exercise 11.4 (K-means as isotropic Gaussian mixtures with zero variance)
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(a) Using results from the lecture slides, derive the form of the EM algorithm for a
Gaussian mixture model in Rp with K classes and with equal covariance matrices
Σ1 = · · · = ΣK = σ2Iq for the K classes (you don’t need to do all calculations, just
try to understand the formulas).
Solution: The expectation step is given by:

q
(t)
ik = π

(t−1)
k

exp(−∥x(i)−µ
(t−1)
k

∥2/2σ2)∑K

j=1 π
(t−1)
j exp(−∥x(i)−µ

(t−1)
j ∥2/2σ2)

and the maximization step is given by:

µ
(t)
k =

∑
i

x(i)q
(t)
ik∑

i
q

(t)
ik

Σ(t)
k =

∑
i
[x(i)−µ

(t)
k

][x(i)−µ
(t)
k

]⊤q
(t)
ik∑

i
q

(t)
ik

π
(t)
k =

∑
i

q
(t)
ik∑

i,k′ q
(t)
ik′

(b) Show that the K-means algorithm is a limiting case of the EM algorithm of question (a)
when σ2 → 0.

Comparison of the K-means algorithm with the EM algorithm for Gaussian mixtures
shows that there is a close similarity. Whereas the K-means algorithm performs a hard
assignment of data points to clusters, in which each observation is associated uniquely with
one cluster, the EM algorithm makes a soft assignment based on the posterior probabilities
(also known as the responsibilities).

In the setup of (a), we have that

N (x; µk, Σk) = 1
(2πσ2)1/2 exp

{
− 1

2σ2 ∥x − µk∥2
}

,

so that for a particular point xi, the responsibilities are given by

qik =
πk exp

{
− 1

2σ2 ∥xi − µk∥2
}

∑
j πj exp

{
− 1

2σ2 ∥xi − µj∥2
} .

If we consider the limit σ2 → 0, we see that in the denominator the term for which
∥xi − µk∥2 is smallest will go to zero most slowly, and hence the responsibilities qik for
the data point xi all go to zero except for term j, for which the responsibility qij will go to
unity. Note that this holds independently of the values of the πk, so long as none of the πk

is zero. Thus, in this limit, we obtain a hard assignment of data points to clusters, just as
in the K-means algorithm, so that each data point is assigned to the cluster having the
closest mean.
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