
Overfitting, regularization, and complexity

MATH-412 - Statistical Machine Learning
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Polynomial regression and overfitting
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Polynomial regression : an instance of linear regression
Model of the form Y = w0 + w1X + w2X
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Overfitting : symptoms and characteristics
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Overfitting and generalization

In ML/stats we care about the generalization ability of the predictor

Fitting perfectly the data does not always entail lack of generalization...

e.g., deep neural networks in computer vision.

But fitting perfectly the data is a problem if

the data is noisy and the model “fits the noise” or

to be able to fit the data training the model learned is too “complex”.

How do we measure complexity ?...
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Regularization
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Tikhonov regularization

Andrey N. Tikhonov

(1906 - 1993)

min
f∈S
R̂n(f) + λ‖f‖2

λ is the regularization coefficient or hyperparameter

Is the problem now well-posed ?

If R̂n is convex

⇒ The objective is strongly convex and coercive for any λ > 0

⇒ The solution exists and is unique.
⇒ λ 7→ f̂λ is a continuous function

If R̂n is bounded below

⇒ The objective is coercive for any λ > 0

⇒ At least a solution exists
If R̂n is C2 with bounded curvature
⇒ Regularization eliminates small local minima.
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

min
w∈Rp

1

2n
‖y −Xw‖22 +

λ

2
‖w‖22

Normal equation (
1
nX

>X + λI
)
w = 1

nX
>y

Thus with unique solution :

ŵ(ridge) = 1
n(

1
nX

>X + λI)−1X>y

Shrinkage effect
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Linear vs affine regression and regularization

fw(x) = w>x vs fw,b(x) = w>x+ b = w̃>x̃

With

w̃ =

[
w
b

]
and x̃ =

[
x
1

]

... an affine model in dimension p is a linear model in dimension p+ 1

Working with (w, b) vs w̃ is equivalent when we don’t regularize and otherwise not,
because usually b is not regularized :

min
w∈Rp

1

2n
‖y −Xw + b1‖22 +

λ

2
‖w‖22
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Polynomial regression with ridge
No regularization 10−8 ≤ λ ≤ 10−7
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Complexity
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Controlling the complexity of the hypothesis space

Explicit control

number of variables

max degree for polynomial functions

degree and # of knots for spline functions

max resolution in wavelet approximations.

bandwidth in RKHS

Implicit control

with regularization,

using Bayesian formulations

via the learning/optimization
algorithm

randomization

...

The complexity of the predictor often results from a compromise between fitting and
increasing complexity.

Problem of model selection : How to choose the right level of complexity ?
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Risk decomposition : approximation-estimation trade-off

f∗ = target function

f∗S = argminf∈SR(f)
f̂S = predictor/estimator in S

R(f̂S)−R(f∗)︸ ︷︷ ︸
excess risk

= R(f̂S)−R(f∗S)︸ ︷︷ ︸
estimation error

+R(f∗S)−R(f∗)︸ ︷︷ ︸
approximation error

Sometimes also called “bias-variance tradeoff”
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Approximation-estimation tradeoff

The view that there is a
necessarily a compromise

between
fitting well

the training data
and

learning a too complex
model to generalize

has been challenged by

neural networks...
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