
Other regularizations, sparsity and the Lasso

MATH-412 - Statistical Machine Learning
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A diverse set of regularization approaches

Regularizers are not necessarily quadratic and not necessarily norms :

min
f∈S
R̂(f) + λΩ(f) with e.g. Ω(f) =

∫
(f ′′(x))2dx or

∫
|f ′(x)|dx

It is possible to couple the regularization of different tasks :

min
f1,f2,...,fK∈S

∑
k

R̂(k)(fk) + λ
∑
k

‖fk − f̄‖2 + µ‖f̄‖2

Even when the predictor has a linear parameterisation, there are various options

min
w∈Rp

R̂(w) + λΩ(w) with Ω(w) = ...

‖w‖q , ‖w‖1 , ‖w‖1 + η‖w‖22 ,

p−1∑
j=1

(wj+1 − wj)2 ,

p−1∑
j=1

|wj+1 − wj | , etc.
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Best subset selection

The number of effectively used variables is often denoted

‖w‖0 := #{j | wj 6= 0} =

p∑
j=1

1{wj 6=0}

Best subset selection formulation

min
w∈Rp

R̂(w) + λ‖w‖0

Compromise between fitting and # of variables in the model

The problem is NP-hard to solve in general

Can be solved by exhaustive search amongst 2p models for p small
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Lasso (Least Absolute Shrinkage and Selection Operator)

min
w∈Rp

R̂(w) + λ‖w‖1

No closed form solution

Convex but non-differentiable optimization problem

Can nonetheless be solved by efficient algorithms

The general approach extends to q < 1 with quasi-norms but then the problem is not convex anymore.
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Lasso regression : Constrained vs regularized problem

min
w∈Rp

1

2n
‖y −Xw‖22 + λ‖w‖1

vs

min
w∈Rp

1

2n
‖y −Xw‖22 s.t. ‖w‖1 ≤ C

min
w∈Rp

f(w) + λ g(w)

vs
min
w∈Rp

f(w) s.t. g(w) ≤ C

Proposition

If f and g are convex, then for any value of λ there is a value of C such that both problem
have the same solution and vice versa.
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Geometric intuition for the Lasso
Consider the constrained problem

min
w∈Rp

1

2n
‖y −Xw‖22 s.t. ‖w‖1 ≤ C

1
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w
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2
w
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Lasso regression has piecewise linear paths
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Lasso regression with orthogonal design

Assume 1
nX

>X = I

Then solving the Lasso is equivalent to solving

min
w

1
2‖ĉ−w‖22 + λ‖w‖1 for ĉ = 1

nX
>y

ĉj = 1
ny
>x(j)

Equivalent to solve ∀j

ŵj = arg min
v∈R

1
2v

2 − v ĉj + λ|v|

= STλ(ĉj)

with the soft-thresholding operator :

STλ(t) := (|t|−λ)+ sign(t)

t

STλ(t)

λ−λ
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Best subset selection with orthogonal design

Assume 1
nX

>X = I

Then solving the Lasso is equivalent to solving

min
w

1
2‖ĉ−w‖22 + λ‖w‖0 for ĉ = 1

nX
>y

ĉj = 1
ny
>x(j)

Equivalent to solve ∀j

ŵj = arg min
v∈R

1
2v

2 − v ĉj + λ 1{v 6=0}

= HTλ(ĉj)

with the hard-thresholding operator :

HTλ(t) := t 1{|t|>λ}

t

HTλ(t)

λ−λ

Math-412 Overfitting, regularization, and complexity 9/14



Tackling the `0 constrained problem for p large...

min
w∈Rp

1

2n
‖y −Xw‖22 s.t. ‖w‖0 ≤ k

The problem is NP-hard : what if p is large ?

Greedy methods

Principle : w is estimated by increasing the support greedily. At each iteration

1 Selection step : A new coordinate is included in the support of w

2 Fitting step : The new coefficient and possibly old ones are re-optimized
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Forward selection (regression)
Initialization :

Ŝ = ∅ (estimate of support)

r ← y (residuals)

Repeat :
1 Selection Step :

j ← arg min
j′

min
wŜ∪{j′}

‖y −XŜ∪{j′}wŜ∪{j′}‖
2
2, Ŝ ← Ŝ ∪ {j}

2 Fitting Step :

ŵŜ ← arg min
wŜ

‖y −XŜ wŜ‖
2
2

r ← y −XŜ ŵŜ

Backward selection :

Symmetric by removing variables one by one

Not recommended if the number of variables is large, because starting from an
overfitted situation.
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Orthogonal Matching Pursuit (regression)
Initialization :

Ŝ = ∅ (estimate of support)

r ← y (residuals)

Repeat :
1 Selection Step :

j ← arg max
j′
|〈x(j′), r〉|, Ŝ ← Ŝ ∪ {j}

2 Fitting Step :

ŵŜ ← arg min
wŜ

‖y −XŜ wŜ‖
2
2 r ← y −XŜ ŵŜ

Backward selection :

Symmetric by removing variables one by one

Not recommended if the number of variables is large, because starting from an
overfitted situation.
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Comparing Lasso and other strategies for linear regression

Comparing :

Ridge regression : min
w∈Rp

1
2‖y −Xw‖22 +

λ

2
‖w‖22

Lasso : min
w∈Rp

1
2‖y −Xw‖22 + λ‖w‖1

OMP/FS : min
w∈Rp

1
2‖y −Xw‖22 + λ‖w‖0

Each method builds a path of solutions from 0 to ordinary least-squares solution

Regularization parameters selected on the test set
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Simulation results
X = i.i.d. Gaussian design, n = 64, p ∈ [2, 256],
y = Xw∗ + ε, ‖w∗‖0 = 4, w∗j ∈ {−1, 0, 1}, σ2 = 1.
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