Other regularizations, sparsity and the Lasso
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A diverse set of regularization approaches

Regularizers are not necessarily quadratic and not necessarily norms :

min R(f) + AQ(f) with e.g. Q(f) = /(f”(x))zdx or /]f'(x)\dx

fes

It is possible to couple the regularization of different tasks :
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Even when the predictor has a linear parameterisation, there are various options

min R(w) + AQ(w) with Qw) = ...
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Best subset selection

The number of effectively used variables is often denoted

[wllo :=

Best subset selection formulation

P
#{j | wj # 0} = Liuz0)

j=1

in R A
nin R(w) + Allwlo

@ Compromise between fitting and # of variables in the model

@ The problem is NP-hard to solve in general

@ Can be solved by exhaustive search amongst 2P models for p small
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Lasso (Least Absolute Shrinkage and Selection Operator)

min R(w) + Ajw]
weRP

@ No closed form solution

@ Convex but non-differentiable optimization problem

@ Can nonetheless be solved by efficient algorithms

The general approach extends to ¢ < 1 with quasi-norms but then the problem is not convex anymore.
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(2) £o-ball. (b) £o.5-ball. (¢) £1-ball. (d) £2-ball.
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Lasso regression

VS

VS

Proposition

: Constrained vs regularized problem

— X A
min oy~ Xuwl§ + Al

X .t. <C
min Ly - Xwl} st uwl <

min f(w)+ Ag(w)

weRP

mmin f(w) st g(w)<C

If f and g are convex, then for any value of A there is a value of C' such that both problem
have the same solution and vice versa.
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Geometric intuition for the Lasso
Consider the constrained problem
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Lasso regression has piecewise linear paths
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Lasso regression with orthogonal design

@ Assume %XTX =1

@ Then solving the Lasso is equivalent to solving
min%”é — 'wH% + A|w|y for ¢= %XTy
w

0 ¢ =1yTxl) 1 STA(2)

@ Equivalent to solve Vj
- _ . 1,2 AL /
w; = argmin v — v+ Ay ‘

veER Z\ )\ t
= ST\(¢)) /

with the soft-thresholding operator :

STA(t) = ([t =A)+ sign(?)
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Best subset selection with orthogonal design

@ Assume 1 XX =1

n
@ Then solving the Lasso is equivalent to solving

n

min 3lle — wl + Awlo for ¢~ LX Ty

@ Equivalent to solve Vj
N . 2 ~
w; = arg rvn€1]§ %v —v¢+ Al -~ )\ ’
= HT\()

with the hard-thresholding operator :

HT)\(t) =t 1{|t\>/\}
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Tackling the ¢y constrained problem for p large...

1
in —|ly — Xwl? s.t. wllo <k
nin 2nlly w3 lwllo <

@ The problem is NP-hard : what if p is large?

Greedy methods
Principle : w is estimated by increasing the support greedily. At each iteration
© Selection step : A new coordinate is included in the support of w

@ Fitting step : The new coefficient and possibly old ones are re-optimized
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Forward selection (regression)
Initialization :

e S=0 (estimate of support)

Repeat :
O Selection Step :
. . . 2 A A .
o j<argmin min [y — Xg 1 We .3 S+ SuU{y
n min [y = X, w50 {1}

@ Fitting Step :
N . 2
° w3<—arg1{1”1§n||y—X§w§||2
Backward selection :

@ Symmetric by removing variables one by one

@ Not recommended if the number of variables is large, because starting from an
overfitted situation.
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Orthogonal Matching Pursuit (regression)
Initialization :

e S=0 (estimate of support)
°er+uy (residuals)

Repeat :
O Selection Step :

° j<—argm_§xx|<x(j/),’r>|a S+ Su{j}
J
@ Fitting Step :

° wgeargrzlv%qnlly—X§w§||§ ’I“(—y—XS’lfJg
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Comparing Lasso and other strategies for linear regression

Comparing :

A
. . ) -1 _ 2, A 2
Ridge regression : Inin, slly — Xwl; + 5 lwll3

: 1 2
Lasso : qlgélélp?||y—Xw]|;+A||w|]1
OMP/FS - min Ly~ X} + Aluw]o

o Each method builds a path of solutions from 0 to ordinary least-squares solution

@ Regularization parameters selected on the test set
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Simulation results

e X = i.i.d. Gaussian design, n = 64, p € [2,256],
°o y=Xw*+e, [[wo =14 w;e{-1,0,1}, o2 =1.
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