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Exercise 9.1 (Linear kernel) Consider the function K : Rp ×Rp → R defined by K(x, y) 7→
x⊤y.

(a) Show that K is a symmetric positive-definite function, and by Aronszajn’s theorem,
a reproducing kernel.

(b) Let H be the RKHS with reproducing kernel K defined above. Show that f ∈ H if
and only if f is a linear function, that is, there exists f̃ ∈ Rp such that f(x) = x⊤̃f =
K(x, f̃).
(Hint: One direction is very easy. For the other, you can first show that all the
functions K(x, ·) live a finite dimensional space and therefore have a canonical basis
on which can we decompose them, and then use the kernel reproducing property to
extend this to all functions in H).

(c) Using only elementary linear algebra (that is, without using any facts about re-
producing kernels), show that H forms a Hilbert space under the inner product
⟨K(·, x), K(·, y)⟩ = K(x, y).

Exercise 9.2 (Squared loss regression in RKHS) Let H denote the RKHS associated to a
Mercer kernel K.

(a) Preliminary questions

(i) Let K be a positive semi definite matrix. Show that K and (K+λI)−1 commute.
(ii) Deduce from the previous question that if h ∈ ker(K) then so does (K + λI)−1h.
(iii) Let K =

(
K(xi, xj)

)
1≤i,j≤n

with K the above defined Mercer kernel. Show that
if h ∈ ker(K) then the function

∑n
i=1 hiK(xi, ·) is constant and equal to 0.

(b) Show that the solution to the regression problem

min
f∈H

1
n

n∑
i=1

{yi − f(xi)}2 + λ∥f∥2
H

is f̂(x) =
∑n

i=1 α̂iK(x, xi) with α̂ = (K + nλI)−1y, where K is the Gram matrix
associated to K.

(c) Using the above result show that the solution to the ridge regression problem with
no intercept,

β̂ = argmin
β

1
n

∥y − Xβ∥2 + λ∥β∥2
2,

where y ∈ Rn and the design matrix X is n × p is given by β̂ = X⊤(XX⊤ + nλI)−1y.
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Exercise 9.3 (Ridge regression and kernel trick) Consider again, the ridge regression
problem with no intercept,

β̂ = argmin
β

1
n

∥y − Xβ∥2 + λ∥β∥2
2,

where y ∈ Rn and the design matrix X is n × p.

(a) Using what you know about ridge regression and the identity, (X⊤X + λIp)X⊤ =
X⊤(XX⊤ + λIn), show that β̂ = X⊤(XX⊤ + nλIn)−1y as in the previous problem.

(b) Thus, there are two methods for computing β̂: X⊤(XX⊤ + nλIn)−1y and (X⊤X +
nλIn)−1X⊤y. What is the computational complexity of applying each method? When
should one be favored over the other?

Exercise 9.4 (RKHS and the representer theorem) Suppose that K has an eigen-expansion

K(x, y) =
∞∑

j=1
γjϕj(x)ϕj(y), (1)

where γj ≥ 0 are eigenvalues that satisfy
∑∞

j=1 |γj |2 < ∞ and {ϕj}∞
j=1 forms the orthogonal

basis of the function space H. The space H has the form

H =
{

f : Rp → R : f(x) =
∞∑

i=1
ciϕi(x) for all x and

∞∑
i=1

c2
i /γi < ∞

}

For f(x) =
∞∑

i=1
ciϕi(x) and g(x) =

∞∑
i=1

diϕi(x) in H, define

⟨f, g⟩H =
∞∑

i=1

cidi

γi
.

NOTE: In the following problems, do not use any results about reproducing kernels.

(a) Show that ⟨·, ·⟩H is an inner product.

(b) For any f ∈ H and x ∈ Rp, show that ⟨K(·, x), f⟩H = f(x).

(c) For any x, y ∈ Rp, show that ⟨K(·, x), K(·, y)⟩H = K(x, y).

(d) If f(x) =
∑m

i=1 αiK(x, xi) and g(x) =
∑k

j=1 βjK(x, xj), show that

⟨f, g⟩H =
m∑

i=1

k∑
j=1

αiβjK(xi, xj)

and in particular,

∥f∥2
H =

m∑
i=1

m∑
j=1

αiαjK(xi, xj).
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