Statistical Machine Learning

Exercise sheet 8

Exercise 8.1 (Basis for Cubic Splines)

(a) It turns out that the derivative of a B-Spline is another B-Spline of lower order.

$$\frac{d}{dx}B_{j,d}(x) = d\left[\frac{B_{j,d-1}(x)}{\tau_{j+d} - \tau_j} - \frac{B_{j+1,d-1}(x)}{\tau_{j+d+1} - \tau_{j+1}}\right]$$

Using this fact, show that a cubic spline f with K interior knots, say ξ_1, \ldots, ξ_K can be uniquely represented as a truncated power series as follows:

$$f(x) = \sum_{j=0}^{3} \beta_j x^j + \sum_{k=1}^{K} \theta_k (x - \xi_k)_+^3$$

Hint: And to prove linear independence, try differentiation.

(b) Spline predictors often have high variance in the outer range. For this reason, it is desirable to require that the spline be linear before the first and after the last boundary point. This additional constraint brings down the variance. Such splines are known as natural splines. Show that the cubic spline f is a natural spline if and only if the corresponding coefficients satisfy the following condition:

$$\beta_2 = 0, \beta_3 = 0, \sum_{k=1}^K \theta_k = 0 \text{ and } \sum_{k=1}^K \xi_k \theta_k = 0.$$

(c) An alternative to fitting splines under these additional constraints is to use a basis for natural cubic splines. Show that the following functions form a basis for natural cubic splines:

$$\nu_1(x) = 1, \nu_2(x) = x \text{ and } \nu_{k+2}(x) = d_k(x) - d_{K-1}(x)$$

where,

$$d_k(x) = \frac{(x-\xi_k)_+^3 - (x-\xi_K)_+^3}{\xi_K - \xi_k}$$

Hint: To prove linear independence, try differentiation.

Practical exercise

Exercise 8.2 (Smoothing spline practical exercise) In this exercise we will use some well known R package to apply smoothing splines to a real data problem.

Updated: September 10, 2024

- (a) Read Chapters 7.5, 7.8.1 and 7.8.2 in [ISL] on smoothing splines to familiarize yourself with the packages in R that you will need for this exercise.
- (b) Load the *triceps* data which is available in the MultiKink package. The data contains the measurement of the triceps skin fold of 892 females (variable triceps) and we want to model its association with age.
- (c) Plot the scatter for triceps and age.
- (d) Fit a piecewise linear regression with knots at 5,10,20,30 and 40. Use the fitted function to give fitted lines from your model fit.
- (e) Using the same knots as above, fit a quadratic piecewise regression
- (f) Fit a cubic polynomial spline and a natural cubic spline for your problem with the same knots.
 - Hint: The function bs() in the splines package generates the B-spline basis matrix for a polynomial spline, and the function ns() in the same library generates the B-spline basis matrix matrix for a natural cubic spline.
- (g) Compare the number of regression parameters for the natural spline with that of the polynomial spline. Which is larger, and why?
- (h) Fit a natural spline with 6 degrees of freedom and compare it with the natural spline using knots = c(5, 10, 20, 30, 40). What is the difference?
- (i) Calculate the MSE (or the root mean squared error) for the models using natural cubic splines with degrees of freedom from 2 (linear model) up to 20. You can use the library caret.
- (j) Fit a natural cubic smoothing spline (with knots at all the datapoints). Suggest a way to choose the penalization parameter λ for your natural cubic smoothing spline.

Exercise 8.3 (Thin Plate Splines) In this exercise we will work with the RMprecip dataset in the fields package. Fit a thin plate spline with the x and y covariate on elevation using the Tps() function and plot your surface using the surface(, drop.z=TRUE) function. Hint: this is a very easy exercise with just one line of code.

Updated: September 10, 2024