Statistical Machine Learning

Exercise sheet 7

Practical exercise

Exercise 7.1 (Nadaraya-Watson and LOO CV) In this exercise we consider using the Nadaraya-Watson (NW) estimator for regression.

- (a) Express the Nadaraya-Watson estimator as $\hat{y} = \mathbf{S}y$, where **S** is an $n \times n$ matrix whose values only depend on the inputs x_1, \ldots, x_n and you should write down explicitly.
- (b) Generate n simulated data $\{(y_1, x_1), \dots, (y_n, x_n)\}$ based on the relationship

$$y = x^2 \cos(x) + \epsilon,$$

where x is a normally distributed random variable with mean 0 and variance 4 and ϵ is a normally distributed random variable with mean 0 and variance 0.25.

(c) Code up the NW estimator in a function, fit it on the simulated data, plot the data on a grid of x's from -10 to 10, and experiment with different values of bandwidth. Here is a template to get you started:

```
nw <- function(x, X, Y, h, K) {
    # Arguments
    # x: evaluation points
    # X: vector (size n) with the predictors
    # Y: vector (size n) with the response variable
    # h: bandwidth
    # K: kernel

# << Insert code here >> }
```

(d) What is \hat{f}^{-i} for the NW estimator? Code this up and verify with part (a) that indeed,

$$y_i - \widehat{f}^{-i}(\boldsymbol{x}_i) = \frac{y_i - \widehat{f}(\boldsymbol{x}_i)}{1 - \mathbf{S}_{ii}}.$$

- (e) How would you propose to choose the bandwidth h for this estimation problem?
- (f) With your chosen bandwidth h, plot your predictions and verify graphically that your chosen bandwidth is reasonable.

Exercise 7.2 (Nadaraya-Watson, ROC, Precision, Recall) In this exercise we consider using the NW estimator for classification. Load the R script R solution template.R to get you started. If you have any questions (especially coding related), please do not hesitate to ask during the session.

- (a) Explain how you can adapt your estimator in Exercise 7.2 to perform binary classification.
- (b) Based on the data you simulated in Exercise 7.2(b), generate n simulated data pairs $\{(x_1, z_1), \ldots, (x_n, z_n)\}$ where x_i is simulated as before and $z_i = 1/(1 + \exp(-y_i)) > 0.5 \in \{0, 1\}, i = 1, \ldots, n$.
- (c) Set h=0.2 in your NW estimator. Calculate the confusion matrix for your classifier.
- (d) Calculate the misclassification rate, precision and recall of your classifier.
- (e) Plot the ROC curve and calculate the AUC of your classifier using the auc function from the pROC library.
- (f) Suppose that you want to your classifier to achieve a false positive rate of 20%, what should you do?
- (g) Suppose now that the cost of a false positive is 4 times that of a false negative. Can you think of a classification setting where this is the case? Does it still make sense to use the misclassification rate (0-1 loss) for your cost function? Suggest a sensible cost function and suggest how you could adapt your classifier to achieve the minimum cost.
- (h) BONUS question: In practice, we also have to vary the bandwidth. Suggest how you would do this given your new loss function given in part (g). Hint: Look back at Exercise 7.2(f)!