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Exercise 5.1 (Leave-one-out cross-validation for linear smoothers) In this exercise we
consider linear smoothers, i.e., learning scheme producing decision functions f̂ for which
the fitted values ŷi := f̂(xi) on the training set satisfy ŷ = Sy, where S is an n × n matrix
whose values only depend on the inputs x1, . . . , xn and ŷ = (yi)i=1...n.

We consider the leave-one-out CV error

CV(f̂) = 1
n

n∑
i=1

{
yi − f̂−i(xi)

}2
,

where f̂−i denote the model fitted to the original training sample with the ith observation
(yi, xi) removed.

The goal of this exercise is to derive a fast way of computing the leave-one-out (or n-
fold) cross-validation (CV) error for linear smoothers which produce leave-one-out decision
functions with a particular form (given by Equation (1) below).

(a) Show that linear regression is a linear smoother in the sense that the obtained
prediction function f̂ satisfies the property above. In particular specify S.

(b) Assume that the leave-ith-out fit at xi is given by

f̂−i(xi) =
∑
j ̸=i

Sij

1 − Sii
yj . (1)

With this regularity assumption, show that

yi − f̂−i(xi) = yi − f̂(xi)
1 − Sii

. (2)

(c) Explain why (2) may be used to compute the CV error more efficiently.

(d) Our goal in the rest of this exercise is to identify some conditions that imply that
f̂−i is of the form (1). We consider the squared loss ℓ(a, y) = (a − y)2 and we focus
on the decision function minimizing the empirical risk in a hypothesis class S, that is

f̂ = arg min
f∈S

1
n

n∑
i=1

(f(xi) − yi)2,

assuming that the latter is unique. Assume that f̂−i has been computed and that we
define a new dataset D̃n = {(xj , ỹj)}j=1...n with ỹj = yj for all j ̸= i and ỹi = f̂−i(xi).
Show that the minimizer of the empirical risk on this new dataset is f̂−i.
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(e) Given that the linear regression estimator is a linear smoother, there is a matrix S
such that ŷ = Sy. Use the previous question to show that (Sỹ)i = f̂−i(xi) and use
the form of ỹ to prove that f̂−i takes the form of (1).

(f) Deduce from the previous questions the form of the LOO CV error for linear regression.

(g) Can a similar approach be used to obtain an expression of the LOO CV error for
ridge regression?

(h) Show that all local averaging methods are linear smoothers.

(i) Show that (1) holds for the Nadaraya-Watson estimator, and deduce the LOO CV
error for it.

(j) Does (1) hold for histogram estimators? For the k nearest-neighbors?

Exercise 5.2 (Fisher Discriminant) Logistic regression was introduced in class as an
optimization problem which is obtained by applying the maximum likelihood principle
to a model of p(y = 1|x) in which the log-odd ratio is an affine function of the input
feature vector. This type of model is often called conditional model or discriminative model
because it only models the conditional distribution of y given x and not the marginal
distribution of x. By contrast, we consider here what is called a generative model, a model
in which both a model of p(y) and p(x|y) are estimated and from which p(y|x) can be
deduced (and also p(x) of course). The particular models that we will consider are due
to Fisher and are called linear discriminant analysis (LDA) and quadratic discriminant
analysis (QDA). We will focus on the binary classification setting, although the method
generalizes immediately to the multiclass classification setting.

(a) We first consider the QDA model. Given the class variable y ∈ {0, 1}, the data are
assumed to be Gaussian with different means and different covariance matrices for
the two different classes but with the same covariance matrix.

y ∼ Bernoulli(π), x|{y = k} ∼ Normal(µk, Σk),

with x, µk ∈ Rp and Σk ∈ Rp×p. Derive the form of the maximum likelihood estimators
for the parameters in this model, i.e. for π, µ1, µ0, Σ1 and Σ0.

(b) Give an expression of the conditional distribution p(y = 1|x) as a function of
π, µ1, µ2, Σ1 and Σ2.

(c) What is the equation of the classification boundary, i.e., of the set of points for which
p(y = 1|x) = 0.5?

(d) LDA model. Given the class variable y ∈ {0, 1}, the data is now assumed to be
Gaussian with different means for different classes but with the same covariance
matrix.

y ∼ Bernoulli(π), x|{y = i} ∼ Normal(µk, Σ)

What is the maximum likelihood estimator for Σ now?
.
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(e) What is the equation of the classification boundary, i.e., of the set of points for which
p(y = 1|x) = 0.5? Compare the obtained predictor with the form of the logistic
regression predictor.
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