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Exercise 3.1 (Singular Value Decomposition.) Let X be a n x p matrix of rank r.

(a) Show that X = UDV', where U and V are n X r and p x r semi-orthogonal matrices
respectively, in that U'U = V'V = I, (while UUT and VVT are projections but
need not be identity matrices unless U or V are square matrices, in which case the
definition is equivalent to that of an orthogonal matrix.) and D is a r x r diagonal
matrix with r non-negative entries which we refer to as the singular values of X.
This is sometimes called a compact SVD.

Hint: For the special case r = p, consider the eigendecomposition of X'X = VAVT
and let U =XVA~Y2,

(b) Show that X = UDV" where U and V are n x n and p x p orthogonal matrices
respectively and D is a n x p diagonal matrix with r non-negative entries.

(c) To interpret the result from (b) we need to understand the orthonormal basis
(v1,...,vp) of RP. For each j =1,...,p, calculate the norm of Xv; and discuss the
implication of (b); note that Xwv; are the jth coordinates of each row vector of X in
the basis (v1,...,vp).

Note: The vectors v1,...,v, € RP are called the principal components directions of
X. The vectors uq,...,u, € R" are the normalized principal component scores. We
will go back to this in this class when discussing unsupervised learning (PCA).

(d) Use the compact singular value decomposition UDV" of X (full rank) to show that
applying the hat matrix H = X [XTX]_1 X' to a vector y projects it onto the subspace
spanned by the columns {u;} of U as in (a). In other words, H is a projection matrix.
Using this result, show that the fitted value of y from ordinary least squares can be
written in the following way:

-
7% = uuly.
—
Exercise 3.2 § (Geometric interpretation of linear ridge regression) In this question, we

will assume that the design matrix X is an n x p full-rank matrix.

(a) Show that
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B =argmin—|y — X8| + A 8113
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(b) Show that the fitted values from ridge regression can be written as

P

’\I‘ldge T
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g §+n/\ A

where the d; are the diagonal elements of the matrix D from (b). Discuss.

Exercise 3.3 (Artificial feature noising in linear regression) This exercise is inspired by
the paper Dropout Training as Adaptive Regularization, by S. Wager, S. Wang, and P.
Liang, published in Advances in Neural Information Processing Systems (NIPS), in 2013.
In this exercise we focus on the case of feature noising applied to linear regression.
Consider linear regression with no intercept (recall from Exercise 2.4(a) that the
intercept can always be estimated in a first step, so there is no loss of generality of assuming
it is zero). Let y € R™ denote the response vector, and X € R™"*P the design matrix with
centered columns. Recall the least-squares estimator of the regression parameter

~ol
B> —argmmz —x8)°.

BeRP 4

Consider the following artificial feature noising scheme: the features x; are replaced
by the artificial features &; = v(x;,€;) where v is a noising function and the &, are
independent random vectors from some distribution P¢. In practice, artificial features
noising is implemented as follows:

1. For I = 1,...,n, generate a large number L of independent &;; = v(x;,&;;), where
&1 ~ P¢ are independent copies of &;.

2. Estimate the regression parameter by

L
= argmin Z
BERP 1

- izlﬂ (1)

nL
=1

The goal of this exercise is to study the link between feature noising and regularization.

=L
In theory, we study the limiting behavior of 8 as L — oco. We will assume that

B~ = argmanEg { i — ~IB)Q}.

BERP

(a) Consider the following additive feature noising scheme: &; = v(xz;,§;) = i+ &
where &; ~ N(0, 021) for some 02 > 0. Show that the resultlng estimator B° is a

ridge estimator ,8 e()\) for some value of A in terms of o2.

(b) Consider the following dropout noising scheme: &; = v(x;,&;) = x; - €;, where the

operator - denotes the element-wise product of two vectors, and the components &;;
of the vectors &, are independent random variables with

0, with probability 9,
ij = 1
i 15 with probability 1 — 9,
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i.e., the &;; follow independent scaled Bernoulli distributions, for some parameter

9 € (0,1). Show that the resulting estimator BOO is a penalized least-squares estimator,

and express the regularization term in terms of §. What happens when the features

are normalized so that 1" ; x?j =1forj=1,...,p?

Practical exercise

Exercise 3.4 (Reading for next week’s practical) Read §§6.5,6.6 from ISL. This is to
familiarize yourself with the packages and the functions in R you will need for the purpose
of next week’s exercises.
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