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Exercise 3.1 (Singular Value Decomposition.) Let X be a n × p matrix of rank r.

(a) Show that X = UDV⊤, where U and V are n × r and p × r semi-orthogonal matrices
respectively, in that U⊤U = V⊤V = Ir (while UU⊤ and VV⊤ are projections but
need not be identity matrices unless U or V are square matrices, in which case the
definition is equivalent to that of an orthogonal matrix.) and D is a r × r diagonal
matrix with r non-negative entries which we refer to as the singular values of X.
This is sometimes called a compact SVD.
Hint: For the special case r = p, consider the eigendecomposition of X⊤X = VΛV⊤

and let U = XVΛ−1/2.

(b) Show that X = ŨD̃Ṽ⊤ where Ũ and Ṽ are n × n and p × p orthogonal matrices
respectively and D̃ is a n × p diagonal matrix with r non-negative entries.

(c) To interpret the result from (b) we need to understand the orthonormal basis
(v1, . . . , vp) of Rp. For each j = 1, . . . , p, calculate the norm of Xvj and discuss the
implication of (b); note that Xvj are the jth coordinates of each row vector of X in
the basis (v1, . . . , vp).
Note: The vectors v1, . . . , vp ∈ Rp are called the principal components directions of
X. The vectors u1, . . . , up ∈ Rn are the normalized principal component scores. We
will go back to this in this class when discussing unsupervised learning (PCA).

(d) Use the compact singular value decomposition UDV⊤ of X (full rank) to show that
applying the hat matrix H = X [X⊤X]−1 X⊤ to a vector y projects it onto the subspace
spanned by the columns {uj} of U as in (a). In other words, H is a projection matrix.
Using this result, show that the fitted value of y from ordinary least squares can be
written in the following way:

ŷols =
r∑

j=1
uju⊤

jy.

Exercise 3.2 § (Geometric interpretation of linear ridge regression) In this question, we
will assume that the design matrix X is an n × p full-rank matrix.

(a) Show that

β̂
ridge = argmin

β∈Rp

1
n

∥y − Xβ∥2 + λ∥β∥2
2

= V(D2 + nλI)−1DU⊤y.
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(b) Show that the fitted values from ridge regression can be written as

ŷridge(λ) =
p∑

j=1

d2
j

d2
j + nλ

uju⊤
jy,

where the dj are the diagonal elements of the matrix D from (b). Discuss.

Exercise 3.3 (Artificial feature noising in linear regression) This exercise is inspired by
the paper Dropout Training as Adaptive Regularization, by S. Wager, S. Wang, and P.
Liang, published in Advances in Neural Information Processing Systems (NIPS), in 2013.
In this exercise we focus on the case of feature noising applied to linear regression.

Consider linear regression with no intercept (recall from Exercise 2.4(a) that the
intercept can always be estimated in a first step, so there is no loss of generality of assuming
it is zero). Let y ∈ Rn denote the response vector, and X ∈ Rn×p the design matrix with
centered columns. Recall the least-squares estimator of the regression parameter

β̂
ols = argmin

β∈Rp

n∑
i=1

(yi − x⊤
iβ)2.

Consider the following artificial feature noising scheme: the features xi are replaced
by the artificial features x̃i = ν(xi, ξi) where ν is a noising function and the ξi are
independent random vectors from some distribution Pξ. In practice, artificial features
noising is implemented as follows:

1. For l = 1, . . . , n, generate a large number L of independent x̃il = ν(xi, ξil), where
ξil ∼ Pξ are independent copies of ξi.

2. Estimate the regression parameter by

β̂
L = argmin

β∈Rp

n∑
i=1

L∑
l=1

(yi − x̃⊤
ilβ)2. (1)

The goal of this exercise is to study the link between feature noising and regularization.
In theory, we study the limiting behavior of β̂

L as L → ∞. We will assume that

β̂
∞ = argmin

β∈Rp

n∑
i=1

Eξi

{
(yi − x̃⊤

iβ)2
}

.

(a) Consider the following additive feature noising scheme: x̃i = ν(xi, ξi) = xi + ξi

where ξi ∼ N (0, σ2I) for some σ2 > 0. Show that the resulting estimator β̂
∞ is a

ridge estimator β̂
ridge(λ) for some value of λ in terms of σ2.

(b) Consider the following dropout noising scheme: x̃i = ν(xi, ξi) = xi · ξi, where the
operator · denotes the element-wise product of two vectors, and the components ξij

of the vectors ξi are independent random variables with

ξij =

0, with probability δ,
1

1 − δ
, with probability 1 − δ,
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i.e., the ξij follow independent scaled Bernoulli distributions, for some parameter
δ ∈ (0, 1). Show that the resulting estimator β̂

∞ is a penalized least-squares estimator,
and express the regularization term in terms of δ. What happens when the features
are normalized so that

∑n
i=1 x2

ij = 1 for j = 1, . . . , p?

Practical exercise

Exercise 3.4 (Reading for next week’s practical) Read §§6.5,6.6 from ISL. This is to
familiarize yourself with the packages and the functions in R you will need for the purpose
of next week’s exercises.
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