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Exercise 2.1 (Continuation of Ex 1.1) Let y = Xβ + ε, where E(ε) = 0, Cov(ε) = σ2I
and X is a non-random full rank matrix of size n×p. This setup contains the Gauss-Markov
assumptions of a linear model.

(a) Prove the Gauss-Markov theorem, i.e, β̂ is the best linear unbiased estimator
(BLUE) of β. “Best” in the sense that for all other linear unbiased estimators β̃ of
β, Cov(β̃) − Cov(β̂) is a positive semidefinite matrix.
Hints: Recall that an estimator β̃ is linear if β̃ = Ay, for some A ∈ Rp×n. Notice
that the matrix A can be decomposed as A = B + (X⊤X)−1X⊤.

(b) Assume now that the errors ε are normally distributed. Prove that β̂ is the best
estimator among all unbiased estimators. β̂ is then a uniformly minimum variance
unbiased (UMVU) estimator.
Hint: Remember the Cramér–Rao bound.

Exercise 2.2 (The regression function) Recall that we are interested in the predictive
model f∗ : Rp → R that minimizes the expected error for the ℓ2 loss. i.e., we want to find
the function f∗ such that

E[ℓ{Y, f∗(X)}] = E[{Y − f∗(X)}2] = min
f :Rp→R

E[{Y − f(X)}2].

(a) Show that f∗(x) = E(Y |X = x).

(b) If we consider the ℓ1 loss instead, i.e., ℓ(y, ŷ) = |y − ŷ|, what is f∗? (For simplicity
suppose that P(Y | X) has a density.)

Exercise 2.3 (Bias-variance tradeoff) In this exercise, we consider the expected ℓ2 error
of a random predictive model f̂n (depends on a training set Dn), defined as

E
[∫

Rp

{
f̂n(x) − f∗(x)

}2
PX(dx)

]
. (1)

(a) For any random predictive model f̂n and any fixed point x0 ∈ Rp, prove that

E
[{

f̂n(x0) − f∗(x0)
}2]

=
[
bias{f̂n(x0)}

]2
+ var{f̂n(x0)}.

(b) Find a similar bias-variance decomposition for the expected ℓ2 error (1).

Exercise 2.4 (Ridge regression)
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(a) Consider the linear regression model

yi = β0 +
p∑

j=1
βjxij + εi, i = 1, . . . , n.

Define β = (β1, . . . , βp)⊤ and the residuals as

ri(β0, β) = yi − β0 −
p∑

j=1
βjxij , i = 1, . . . , n.

Show that the OLS estimator β̂0 = y −
∑p

j=1 βjx.j for any β, where x.j = 1
n

∑n
i=1 xij .

Hence deduce that

ri(β̂0, β) = yi − y −
p∑

j=1
βj(xij − x.j), i = 1, . . . , n.

Discuss the implications of this result.

(b) Define the ridge regression estimator as a minimizer of the penalized residual sum of
squares,

β̂(λ) = argmin
β

1
n

∥y − Xβ∥2 + λβ⊤β, (2)

where λ ≥ 0 is a parameter that controls the amount of shrinkage. Show that the
ridge regression solution always exists, even if X does not have full rank, and is given
by

β̂(λ) = (X⊤X + nλI)−1X⊤y.

Note that the ridge estimator is still linearly depending on the response y, as for
ordinary least squares.

(c) Show that the ridge regression estimator defined in (2) equals

β̂(t) = argmin
∥β∥2≤t

∥y − Xβ∥2 (3)

for a given t = t(λ). Hint: Use the Karush–Kuhn–Tucker (KKT) method.

Exercise 2.5 The Gauss-Markov Theorem makes the assumption that the training data
is generated as y = Xβ + ε, X is a non-random full rank matrix of size n × p, where
E[ε] = 0, Cov(ε) = σ2I.

(a) Explain why the Gauss-Markov Theorem still holds for any random design matrix X
(in particular without assuming that the rows of X are i.i.d.) provided we change
the assumptions and assume that y = Xβ + ε with E[ε|X] = 0, Cov(ε|X) = σ2I.

(b) Let β̃ be any linear unbiased estimator and let β̂ be the linear regression estimator
(aka ordinary least squares estimator). Show that as a consequence of the Gauss-
Markov theorem:

∀x ∈ Rp, Var(x⊤β̂) ≤ Var(x⊤β̃).
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(c) Consider now i.i.d. data (Xi, Yi) with Yi = X⊤
i β+εi, E[εi|Xi] = 0 and Var(εi|Xi) = σ2.

For data following this distribution, express the target function for the quadratic risk
as a function of β.

(d) Let f̂ : x 7→ x⊤β̂ and f̃ : x 7→ x⊤β̃ for β̃ some unbiased linear estimator based on
X and y. Show that for any such f̃ , if R denotes the quadratic risk (i.e. the risk
associated with the square loss), then we necessarily have E[R(f̂)] ≤ E[R(f̃)]. Show
that the same inequality actually holds conditionally on the value of any new X = x.
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