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Exercise 2.1 (Continuation of Ex 1.1) Let y = X3 + &, where E(¢) = 0, Cov(e) = o’I
and X is a non-random full rank matrix of size n x p. This setup contains the Gauss-Markov
assumptions of a linear model.

(a) Prove the Gauss-Markov theorem, i.e, B is the best linear unbiased estimator
(BLUE) of B. “Best” in the sense that for all other linear unbiased estimators 3 of
B, Cov(B) — Cov(p) is a positive semidefinite matrix.

Hints: Recall that an estimator B is linear szl = Ay, for some A € RP*". Notice
that the matriz A can be decomposed as A = B + (X'X)71X".

(b) Assume now that the errors € are normally distributed. Prove that B is the best
estimator among all unbiased estimators. 3 is then a uniformly minimum variance
unbiased (UMVU) estimator.

Hint: Remember the Cramér—Rao bound.
Exercise 2.2 (The regression function) Recall that we are interested in the predictive

model f*:RP — R that minimizes the expected error for the ¢2 loss. i.e., we want to find
the function f* such that

By, £ (O) = BIY - /*())) = min BI{Y - J(X)P),
(a) Show that f*(x) =E(Y|X = x).

(b) If we consider the ¢! loss instead, i.e., £(y, ) = |y — 73|, what is f*? (For simplicity
suppose that P(Y | X) has a density.)

Exercise 2.3 (Bias-variance tradeoff) In this exercise, we consider the expected /% error
of a random predictive model f,, (depends on a training set D,,), defined as

~ % 2
B| [ {fue) - 1(@))Px(da)|. (1
(a) For any random predictive model fn and any fixed point xg € RP, prove that
. . 9 PN 2 ~
E[{fa(@o) — f*(@0)}*] = [bias{Fu(xo)}|” + var{fu(zo)}.
(b) Find a similar bias-variance decomposition for the expected £? error (1.
Exercise 2.4 (Ridge regression)
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(a) Consider the linear regression model

P
yizﬁo“‘Zﬁjwij-i-Ei, 1=1,...,n.
j=1

Define 8 = (f1,...,0p)" and the residuals as
P
ri(Bos B) = yi — Bo — Z/ijij, 1=1,...,n.
j=1

Show that the OLS estimator Bo =7 — Z§:1 Bjx.; for any B, where z.; = % i T
Hence deduce that

N p
rl(ﬁﬂvlg):yz_y_ZB](iU”—ZL’J)a Zzl,,n
j=1

Discuss the implications of this result.

(b) Define the ridge regression estimator as a minimizer of the penalized residual sum of
squares,

BN = angmin _ly ~ XBI* + AT, )

where A > 0 is a parameter that controls the amount of shrinkage. Show that the
ridge regression solution always exists, even if X does not have full rank, and is given
by

BN = (XX + nAI) ' XTy.

Note that the ridge estimator is still linearly depending on the response y, as for
ordinary least squares.

(c) Show that the ridge regression estimator defined in equals

B(t) = argmin ||y — X8| (3)
Ill2<t

for a given t = t(\). Hint: Use the Karush-Kuhn—Tucker (KKT) method.

Exercise 2.5 The Gauss-Markov Theorem makes the assumption that the training data
is generated as y = X3 + €, X is a non-random full rank matrix of size n X p, where
Ele] = 0, Cov(e) = oI

(a) Explain why the Gauss-Markov Theorem still holds for any random design matrix X
(in particular without assuming that the rows of X are i.i.d.) provided we change
the assumptions and assume that y = X8 + € with E[¢|X] = 0, Cov(g|X) = 021

(b) Let B be any linear unbiased estimator and let B be the linear regression estimator
(aka ordinary least squares estimator). Show that as a consequence of the Gauss-
Markov theorem:

Va € RP, Var(z'B) < Var(z'B).
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(c) Consider now i.i.d. data (X;,Y;) with Y; = X]B+¢;, E[g;|X;] = 0 and Var(e;| X;) = o2
For data following this distribution, express the target function for the quadratic risk
as a function of 3.

(d) Let f: T a:TB and f:xz— 2’8 for B some unbiased linear estimator based on
X and y. Show that for any such f, if R denotes the quadratic risk (i.e.Nthe risk

associated with the square loss), then we necessarily have E[R(f)] < E[R(f)]. Show
that the same inequality actually holds conditionally on the value of any new X = .
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