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Exercise 1.1 Classification from a discrete input space. We consider a multiclass
classification problem with 3 classes {1, 2, 3} for data with only a single discrete descriptor
in X = {1, 2, 3, 4}.

We assume that the joint probability distribution P(Y = y, X = x) with X taking
values in X and Y taking values in Y = {1, 2, 3} is specified by the following table:

Y = 1 Y = 2 Y = 3
X = 1 0,02 0,08 0,10
X = 2 0,05 0,40 0,15
X = 3 0,02 0,02 0,12
X = 4 0,02 0,01 0,01

(a) What is the target function f∗ for the 0-1 loss?

(b) What are the values of f∗(x) for x = 1, 2, 3, 4.

(c) What is the value of the risk for the target function?

Exercise 1.2 Recap of linear models. Let y = Xβ + ε, where E(ε) = 0, var(ε) = σ2I
and X is a non-random full rank matrix of size n×p. This setup contains the Gauss-Markov
assumptions of a linear model.

(a) Derive the least squares estimator β̂ = (X⊤X)−1X⊤y.

(b) Show that β̂ is unbiased and that the variance of β̂ is given by σ2(X⊤X)−1.

Exercise 1.3 Linear regression for binary classification. Consider a binary classifi-
cation problem with X = Rn and Y = A = {−1, 1}. We model the conditional expectation
of Y given X by the linear model E(Y | X) = X⊤β.

Let x ∈ Rn be a new input. So, we estimate Ê(Y | X = x) = x
⊤
β̂, where β̂ is the

least-square estimate of β. We wish to estimate its class y = f∗(x), where f∗ is the target
function corresponding to 0 − 1 loss.

(a) Derive the linear model estimate of P̂(Y = 1 | X = x).

(b) Show that ŷ = f̂∗(x) is given by 2 · 1{x
⊤
β̂ ≥ 0} − 1, where f̂∗ is the estimate of f∗

given by plugging-in estimated values P̂(Y = y | X = x) of the conditional p.m.f.
P(Y = y | X = x).
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Exercise 1.4 Pinball loss and quantile regression. For τ ∈]0, 1[, the pinball function
with parameter τ is the function hτ given by,

hτ (z) = −τ z 1{z≤0} + (1 − τ) z 1{z>0}.

We consider a decision problem for which inputs, outputs and actions are all real-valued,
that is X = Y = A = R. For a, y ∈ R, we define the pinball loss by ℓτ (a, y) = hτ (a − y).

We assume further that

(a) E[|Y ||X = x] < ∞ a.e. x ∈ R,

(b) and the conditional law of Y given X is absolutely continuous with respect to the
Lebesgue measure. Thus the function y 7→ P(Y ≤ y | X = x) is continuous, a.e. x ∈ R.

Recall that for a real-valued random variable Y whose law is absolutely continuous, we
define the quantile of order α or α-quantile as the unique qα ∈ R such that P(Y ≤ qα) = α.
Similarly, the conditional quantile of order α of Y at X = x is, under the above continuity
hypothesis the unique qα(x) ∈ R such that

P(Y ≤ qα(x) | X = x) = α.

(a) Plot the pinball function in R. Play around with different values of τ . Why do you
think the function is called that way?

(b) Compute the expression for the conditional risk associated with the pinball loss in
terms of qα.

(c) Prove that the target function of that risk is qτ (x).

(d) We call ℓ1-regression or least absolute deviation regression, the regression with loss
function ℓ(a, y) = |a − y|. Deduce from the previous question what is the target
function for ℓ1-regression.

Practical exercises

Exercise 1.5 Polynomial regression. In this exercise, we will fit a linear model to data
from simreg1train.csv. In R, use the read.csv("...") function to import the data.

(a) Using results from Exercise 1.2, compute the least squares estimates for this dataset
using your statistical software and plot the fitted values. Is the model appropriate?

(b) Calculate the empirical risk on the training set (also called training error) for this
dataset, given by

R̂(f̂) = 1
n

n∑
i=1

ℓ(yi, f̂(xi)), (1)

where {(xi, yi)}n
i=1 is the training set, ℓ is the squared error loss and f̂ is the fitted

function.
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(c) For the same loss function, calculate the empirical risk on the testing set (also called
testing error) which is also given by (1) but here {(xi, yi)}n

i=1 is the testing set given
in simreg1test.csv.

(d) We now make the model more flexible by adding features to the design matrix X.
Add the feature x2 into your regression model, i.e., our design matrix becomes
X = (1 x x2). Compute the empirical risks on the training and testing sets for this
model. Discuss.

(e) Add features up to xk into your regression model, for k = 3, 4, . . . , 10. Calculate the
the empirical risks on the training and testing sets for each k = 1, . . . , 10. Make a
plot of the empirical risks against k. Discuss. What happens when k > 10?
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