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Exercise 11.1 (K-means as alternating minimization) In class, we have seen that the
problem that K-means tries to optimize is

min
(µk)k

n∑
i=1

min
1≤k≤K

∥xi − µk∥2

(a) Show that the optimization problem of K-means is equivalent to solving the following
optimization problem

min
(µk)k,(zik)i,k

n∑
i=1

K∑
k=1

zik ∥xi − µk∥2

s.t. zik ∈ {0, 1}, ∀i, k
K∑

k=1
zik = 1, ∀i.

In particular, prove that the partial minimization w.r.t. all zik recovers the objective
of K-means from the slides.

(b) Prove that if we let Ck = {i | zik = 1}, then minimizing w.r.t. all zik for fixed
µks corresponds to the cluster update step in K-means; symmetrically, show that
minimizing w.r.t. all µk for fixed zik produces the centroid update step in K-means.

(c) Deduce from the last question that K-means can be interpreted as an alternating
optimization algorithm.

Exercise 11.2 (Variance decomposition in clustering) In this exercise, we consider a
situation in which data living in Rp has been partitioned in a number of clusters, and
where the clusters centroids are set to be the empirical means (or barycenters) of the data
in each cluster. The goal of the exercise is to show that there is a nice relationship between
the (co)variance of the data in each cluster, the total (co)variance of the data, and the
(co)variance of the centroids. More precisely, we shall show that the total (co)variance is
the sum of these two (co)variances.

Let {xi}N
i=1 denote i.i.d. samples of a Rd-valued random variable X. Let x and Σ̂

denote the empirical mean and empirical covariance of the sample, respectively. For each
k = 1, . . . , K, let Σ̂k denote the empirical covariance matrix of the kth cluster and π̂k

denote the proportion of the sample in the kth cluster.

(a) Show that

Σ̂ =
K∑

k=1
π̂kΣ̂k +

K∑
k=1

π̂k [µ̂k − x] [µ̂k − x]⊤
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(b) Show that,

1
n

n∑
i=1

∥xi − x∥2 =
K∑

k=1
π̂k

 ∑
i∈Ck

∥xi − µ̂k∥2

 +
K∑

k=1
π̂k ∥µ̂k − x∥2

(c) Why can Σ̂k and 1
|Ck|

∑
i∈Ck

∥xi − µ̂k∥2 be considered as a measure of intra-cluster
variance of the kth cluster?

(d) Why can
∑K

k=1 π̂k [µ̂k − x] [µ̂k − x]⊤ and
∑K

k=1 π̂k ∥µ̂k − x∥2 be considered as mea-
sures of inter-cluster variance? What do they represent?

(e) Explain how the problem of clustering can be thought of as that of grouping the
data in such a way that the barycenters of the clusters are as spread out as possible
in space.

(f) How are the results in (a) and (b) related to the variance decomposition formulas:

Var [Y ] = E [Var [Y |Z]] + Var [E [Y |Z]]

for a scalar-valued random variable Y and

Cov [Y ] = E [Cov [Y |Z]] + Cov [E [Y |Z]]

for a vector-valued random variable Y .

Exercise 11.3 (Properties of the EM algorithm) Prove the following properties of the EM
algorithm. We will use the same notation as the lecture.

(a) Show that L(q, θ) = log p(x; θ) − KL(q(z) ∥ p(z | x; θ)).

(b) In the E step of the EM algorithm, show that log p(x; θt−1) = L(q, θt−1) when
q(z) = p(z | x; θt−1).

(c) Show that the EM algorithm never decreases the likelihood.

Exercise 11.4 (K-means as isotropic Gaussian mixtures with zero variance)

(a) Using results from the lecture slides, derive the form of the EM algorithm for a
Gaussian mixture model in Rp with K classes and with equal covariance matrices
Σ1 = · · · = ΣK = σ2Iq for the K classes (you don’t need to do all calculations, just
try to understand the formulas).

(b) Show that the K-means algorithm is a limiting case of the EM algorithm of question (a)
when σ2 → 0.
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