Take-home assignment

You are supposed to hand over solutions by 12:00 of November 21 to Max or Ilaria. You can either hand over written or printed solutions, or send them in the PDF format by e-mail to Max.

Every exercise is assigned a number of points. You need to gain 7 points to get the full grade. The choice of exercises is up to you; it is not necessary to do all of them. The result of the take home assignment constitutes $\frac{1}{6}$ -th of the final grade.

As in the lectures we denote by Ab the category of abelian groups, by Ab_X the category of sheaves (of abelian groups) on a topological space X, and by PAb_X the category of presheaves of abelian groups on X. For each topological space X and each abelian group A we denote by $H^i(X,A)$ the i-th sheaf cohomology of X with coefficients in the constant sheaf A_X .

The first exercise did not appear in the homework before, and thus carries extra points.

Exercise 1. (6 points) For each $n \ge 1$ let S^n be the topological n-dimensional sphere, so that S^1 is the disjoint union of 2 points, and S^2 is the topological Riemann sphere. Following the example in the lectures calculate the sheaf cohomology $H^i(S^n, \mathbf{Z})$ for all $n \ge 2$ and $i \ge 0$:

- Decompose S^n into a suitable union of contractible closed subsets.
- Construct an appropriate short exact sequence of sheaves (and prove that it is short exact!). Use the resulting long exact sequence of cohomology to compute the cohomology groups $H^i(S^n, \mathbf{Z})$ by induction on n.

The case n=1 was done in the lectures. You are free to invoke it without proof.

The remaining exercises have appeared in the homework before.

Exercise 2. (2 points) Let A be an abelian group and let X be a topological space. Consider a presheaf $P_{A,X}$ defined by the formula $P_{A,X}(U) := A$. Consider also the constant sheaf \underline{A}_X defined by the formula

$$\underline{A}_X(U) := \{ \text{ locally constant maps } f : U \to A \}.$$

(Recall that a map is *locally constant* if it is continuous w.r.t. the discrete topology on A.) Construct an isomorphism of sheaves

$$P_{AX}^{\#} \xrightarrow{\sim} \underline{A}_{X}.$$

Exercise 3. (1 point) Let X be the closed unit interval [0, 1]. Consider a presheaf \mathcal{F} on X defined by the formula

$$\mathcal{F}(U) := \{ \text{ bounded continuous functions } f \colon U \to \mathbf{C} \}.$$

Is this presheaf a sheaf? Prove your answer.

Exercise 4. (2 points) Let X be the closed interval [0,1].

- (a) Show that up to isomorphism there is a unique sheaf \mathcal{F} on X with stalks $\mathcal{F}_0 = \mathcal{F}_1 = \mathbf{Z}$ and $\mathcal{F}_x = 0$ for all $x \in (0, 1)$.
- (b) For each abelian group A calculate the Hom groups

$$\operatorname{Hom}(\mathcal{F}, \underline{A}_X)$$
 and $\operatorname{Hom}(\underline{A}_X, \mathcal{F})$.

Exercise 5. (2 points) Let \mathcal{A} be an abelian category, and let I^{\bullet} be a complex of injective objects of \mathcal{A} . Suppose that the complex I^{\bullet} is

- bounded below, i.e. $I^n = 0$ for all $n \ll 0$, and is
- exact, i.e. $H^n(I^{\bullet}) = 0$ for all n.

Show that in the homotopy category K(A) we have

$$I^{\bullet} = 0$$
.

i.e. the complex I^{\bullet} is a zero object.

Exercise 6. (2 points) Let n > 1 be a positive integer, and consider the functor $F: Ab \to Ab$ that sends an abelian group A to the subgroup nA.

- (a) Show that the functor F transforms monomorphisms to monomorphisms, and epimorphisms to epimorphisms.
- (b) Show that the functor F is neither left nor right exact.

Exercise 7. (2 points) Let \mathcal{A} and \mathcal{B} be abelian categories and let $F: \mathcal{A} \to \mathcal{B}$ be an equivalence of categories. We do not assume a priori that F is additive.

- (a) Show that the functor F is additive.
- (b) Show that the functor F is exact, i.e. transforms short exact sequences to short exact sequences. Hint: Deduce separately that F preserves kernels and cokernels.

Exercise 8. (3 points) Let X be a topological space. Let $U \subset X$ be an open subset, and let $\mathbf{Z}_{X,U}$ be the sheafification of the presheaf

$$P_{X,U} \colon V \longmapsto \begin{cases} \mathbf{Z}, & V \subset U, \\ 0, & V \not\subset U. \end{cases}$$

(a) For each sheaf \mathcal{F} on X construct a natural isomorphism

$$\mathcal{F}(U) \cong \operatorname{Hom}(\underline{\mathbf{Z}}_{X,U}, \mathcal{F}).$$

- (b) Let $\mu: P_{X,U} \to P_{X,X}$ be the morphism of presheaves such that $\mu_V = 1$ when $V \subset U$ and $\mu_V = 0$ otherwise. Show that the induced morphism of sheaves $\underline{\mathbf{Z}}_{X,U} \to \underline{\mathbf{Z}}_X$ is a monomorphism.
- (c) Show that we have a commutative square

$$\operatorname{Hom}(\underline{\mathbf{Z}}_{X}, \mathcal{F}) \xrightarrow{(b)} \operatorname{Hom}(\underline{\mathbf{Z}}_{X,U}, \mathcal{F})$$

$$\downarrow^{(a)} \qquad \qquad \downarrow^{(a)}$$

$$\mathcal{F}(X) \xrightarrow{\operatorname{restriction}} \mathcal{F}(U).$$

(d) Now let \mathcal{I} be an injective sheaf. Deduce that for every open $U \subset X$ the morphism $\mathcal{I}(X) \to \mathcal{I}(U)$ is surjective, and concude that \mathcal{I} is flasque.

Exercise 9. (2 points) Consider the open subset

$$U := \{ x + iy \in \mathbf{C} \mid x, y \in \mathbf{R}, \ y > 0 \}.$$

Show that U is isomorphic as a Riemann surface to the open unit disk Δ .

Exercise 10. (2 points for the case n = 1, or 3 points for arbitrary $n \ge 1$)

Let V be a \mathbb{C} -vector space of dimension $n+1 \ge 1$. Recall that we defined $\mathbb{P}(V)$ to be the set of 1-dimensional \mathbb{C} -vector subspaces of V equipped with the quotient topology via the surjection

$$V \setminus \{0\} \longrightarrow \mathbf{P}(V), \quad v \mapsto \mathbf{C}v.$$

Next, for each hyperplane $H \subset V$, i.e. a C-vector subspace of codimension 1, we set

$$\mathbf{P}(V \setminus H) := \{ L \in \mathbf{P}(V) \mid L \not\subset H \}.$$

- (a) Show that each $P(V \setminus H)$ is open in P(V).
- (b) Find a set of n+1 hyperplanes H such that $\mathbf{P}(V \setminus H)$ cover $\mathbf{P}(V)$.

Pick a splitting $s: V \to H$, i.e. a C-linear map such that $s|_H = 1_H$. Pick also an isomorphism $t: V/H \cong \mathbb{C}$. Given such a triple (H, s, t) consider a map of sets

$$V \setminus H \longrightarrow H, \quad v \mapsto \frac{s(v)}{t([v])}.$$

- (c) Show that this map induces a homeomorphism $\mathbf{P}(V \setminus H) \xrightarrow{\sim} H$.
- (d) Prove that the collection of maps $\mathbf{P}(V \setminus H) \cong H$ defined by all possible triples (H, s, t) forms a complex manifold atlas on $\mathbf{P}(V)$. In view of (a) and (b) it remains to show that all the transition maps are biholomorphic.

Exercise 11. (2 points) Show that the Riemann surfaces S^2 and $\mathbf{P}(\mathbf{C} \oplus \mathbf{C})$ are isomorphic.

Exercise 12. (1 point) Consider the complex manifold $\mathbb{C}^2 := \mathbb{C} \times \mathbb{C}$ and let U be the open subset $\mathbb{C}^2 \setminus \{0\}$. Let $f: U \to \mathbb{C}$ be a holomorphic function such that for every $\alpha \in \mathbb{C}^\times$ and every $z \in U$ we have $f(\alpha z) = f(z)$. Prove that f is constant.

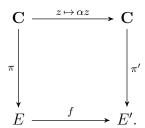
Recall that a lattice $\Lambda \subset \mathbf{C}$ is a discrete and cocompact subgroup (of the additive group of \mathbf{C}). Every lattice is isomorphic to $\mathbf{Z} \oplus \mathbf{Z}$ as an abelian group. Consider the quotient $E := \mathbf{C}/\Lambda$ and let $\pi \colon \mathbf{C} \twoheadrightarrow E$ be the projection. Recall that we defined the structure sheaf \mathcal{O}_E as follows:

$$\mathcal{O}_E(U) = \{ f : U \longrightarrow \mathbf{C} \mid f \circ (\pi|_{\pi^{-1}(U)}) \text{ is holomorphic } \}.$$

Riemann surfaces of the form $E = \mathbf{C}/\Lambda$ are known as *elliptic curves*.

Exercise 13. (2 points for parts (a) and (b), and 2 more points for part (c))

(a) Let $\Lambda, \Lambda' \subset \mathbf{C}$ be lattices and let $E := \mathbf{C}/\Lambda$ and $E' := \mathbf{C}/\Lambda'$ be the corresponding quotients with the quotient maps π and π' . Let $f : E \to E'$ be a continuous map such that f(0) = 0. Show that f is a morphism of Riemann surfaces if and only if there is a (necessarily unique) complex number α such that the following diagram commutes:



Here the vertical arrows are the projections.

Hint: construct a continuous map $\tilde{f}: \mathbf{C} \to \mathbf{C}$ which makes this square commutative ("lifts f"), and then use the compactness of the quotients to prove that \tilde{f} has the desired form.

- (b) Let E, E' be as above, and let $f: E \to E'$ be a morphism of Riemann surfaces. Prove that there is an automorphism $g: E' \to E'$ such that $g \circ f$ maps 0 to 0.
- (c) Show that there are infinitely many lattices $\Lambda \subset \mathbf{C}$ such that the corresponding quotients \mathbf{C}/Λ are pairwise nonisomorphic as Riemann surfaces.