Exercise set 4

Exercise 1. Let \mathcal{A} and \mathcal{B} be additive categories, and let $F: \mathcal{A} \to \mathcal{B}$ be a functor.

(a) For each pair of objects $A, A' \in \mathcal{A}$ construct a morphism

$$F(A \oplus A') \longrightarrow F(A) \oplus F(A')$$

that is natural in A and A'.

(b) Show that the morphism in (a) is an isomorphism if and only if the functor F is additive, i.e. preserves sums of morphisms.

Next, here are some exercises with sheaves. Let us begin with sheaves on a general topological space X.

Exercise 2. Show that, as was claimed in the lecture, the sheafification $\mathcal{F}^{\#}$ is a sheaf.

Exercise 3. Let A be an abelian group and let X be a topological space. Consider a presheaf $P_{A,X}$ defined by the formula $P_{A,X}(U) := A$. Consider also a sheaf \underline{A}_X defined by the formula

$$\underline{A}_X(U) := \{ \text{ locally constant maps } f : U \to A \}.$$

(Recall that a map is *locally constant* if it is continuous w.r.t. the discrete topology on A.) Construct an isomorphism of sheaves

$$P_{A,X}^{\#} \xrightarrow{\sim} \underline{A}_X.$$

Remark. The sheaf \underline{A}_X is called the *constant sheaf* with values in A.

Exercise 4. Let $\phi \colon \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves on a topological space X. Consider a presheaf \mathcal{H} defined by the formula

$$\mathcal{H}(U) := \operatorname{Image}(\phi_U \colon \mathcal{F}(U) \longrightarrow \mathcal{G}(U)).$$

Show that the sheafification $\mathcal{H}^{\#}$ is naturally isomorphic to $\ker(\operatorname{coker}(\phi))$. Hint: Construct a natural isomorphism $\operatorname{coker}(\ker(\phi)) \xrightarrow{\sim} \mathcal{H}^{\#}$ and use Exercise 7 (a) of Exercise set 3.

Now we consider sheaves on the closed unit interval [0, 1].

Exercise 5. Let X be the closed unit interval [0,1]. Consider a presheaf \mathcal{F} on X defined by the formula

$$\mathcal{F}(U) := \{ \text{ bounded continuous functions } f \colon U \to \mathbf{C} \}.$$

Is this presheaf a sheaf?

Exercise 6. Let X be the closed interval [0, 1].

- (a) Show that up to isomorphism there is a unique sheaf \mathcal{F} on X with stalks $\mathcal{F}_0 = \mathcal{F}_1 = \mathbf{Z}$ and $\mathcal{F}_x = 0$ for all $x \in (0, 1)$.
- (b) For each abelian group A calculate the Hom groups

$$\operatorname{Hom}(\mathcal{F}, \underline{A}_X)$$
 and $\operatorname{Hom}(\underline{A}_X, \mathcal{F})$.

The next exercise may be somewhat hard at this stage:

Exercise 7. Let X be the closed unit interval [0, 1]. Does there exist a sheaf \mathcal{F} on X such that $\mathcal{F}_x = 0$ at $x = \frac{1}{2}$ but $\mathcal{F}_x \neq 0$ at all other points x?

Finally, let us return to Riemann surfaces.

Exercise 8. Let X be a Riemann surface. Recall that \mathcal{O}_X denotes the *structure sheaf* of X, i.e. the sheaf of holomorphic functions. Pick a point $x \in X$, and consider the stalk $\mathcal{O}_{X,x}$. Since \mathcal{O}_X is a sheaf of commutative rings, the stalk $\mathcal{O}_{X,x}$ is naturally a commutative ring.

Now pick a local coordinate z at x such that z(x) = 0.

- (a) Let $\mathbf{C}[[z]]$ be the ring of formal power series in z. Show that the power series expansion with respect to z induces an injective homomorphism of rings $\mathcal{O}_{X,x} \hookrightarrow \mathbf{C}[[z]]$.
- (b) Prove that $\mathcal{O}_{X,x}$ is a discrete valuation ring with uniformizer z and residue field C.
- (c) (Extra) Show that the image of $\mathcal{O}_{X,x}$ in $\mathbf{C}[[z]]$ does not depend on the choices of z and x. Hint: You need to characterize the image in terms of coefficients of the power series expansion.