
Exercise set 3

Here is one more exercise that I forgot to add to the first set:

Exercise 1. Let X, Y be Riemann surfaces, and let f, g : X → Y be morphisms thereof.
Suppose that X is connected and that there is a nonempty open subset U ⊂ X such that
f |U = g|U . Prove that f = g. (You are free to use the fact that X is path-connected.)

Recall that a lattice Λ ⊂ C is a discrete and cocompact subgroup (of the additive group
of C). Every lattice is isomorphic to Z ⊕ Z as an abelian group. Consider the quotient
E := C/Λ and let π : C ↠ E be the projection. Recall that we defined the structure sheaf
OE as follows:

OE(U) = { f : U −→ C | f ◦ (π|π−1(U)) is holomorphic }.

Riemann surfaces of the form E = C/Λ are known as elliptic curves.

Exercise 2. (a) Let Λ,Λ′ ⊂ C be lattices and let E := C/Λ and E ′ := C/Λ′ be the
corresponding quotients with the quotient maps π and π′. Let f : E → E ′ be a
continuous map such that f(0) = 0. Show that f is a morphism of Riemann surfaces
if and only if there is a (necessarily unique) complex number α such that the following
diagram commutes:

C C

E E ′.

π

z 7→αz

π′

f

Here the vertical arrows are the projections.

Hint: construct a continuous map f̃ : C → C which makes this square commutative
(“lifts f”), and then use the compactness of the quotients to prove that f̃ has the
desired form.

(b) Let E, E ′ be as above, and let f : E → E ′ be a morphism of Riemann surfaces. Prove
that there is an automorphism g : E ′ → E ′ such that g ◦ f maps 0 to 0.

The next exericse is of increased difficulty:

Exercise 3. Show that there are infinitely many lattices Λ ⊂ C such that the correspond-
ing quotients C/Λ are pairwise nonisomorphic as Riemann surfaces.

The compact topological space S1 × S1 thus carries infinitely many distinct structures
of a Riemann surface. This contrasts with the case of S2 where such a structure is unique
(as we will see later in the course).
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Next, here are some exercises in category theory.

Exercise 4. Let k be a field. Consider the category A whose objects are integers n ⩾ 0,
whose Hom sets Hom(n,m) consist of all n×m-matrices with coefficients in k, and whose
composition rule is given by the matrix multiplication. Prove that A is equivalent to the
category of finite dimensional k-vector spaces.

Exercise 5. Let A be a category, and let B and C be small categories (i.e. categories
in which the collection of objects is a set). We then have the category of functors [A,B]
from A to B with natural transformations as morphisms. In the same manner we have the
category of functors [A, C].

Let also J : B → C be a functor. The composition with J induces a functor

J ◦ − : [A,B] −→ [A, C].

Assume that J is fully faithful.

(a) Prove that J ◦ − is fully faithful.

(b) Let G,G′ ∈ [A,B] be functors such that J ◦G ∼= J ◦G′. Deduce that G ∼= G′.

Let us move to additive and abelian categories. The following simple exercise is to check
your understanding of the basics:

Exercise 6. LetA be an additive catgeory. Show that every kernel inA is a monomorphism
and every cokernel in A is an epimorphism.

Here is a more elaborate exercise on kernels and cokernels:

Exercise 7. Let f : A → B be a morphism in an abelian category. The image Im(f) is
defined to be the kernel of the cokernel of f . Dually, the coimage Coim(f) is the cokernel
of the kernel of f .

(a) Show that there is a unique morphism f ′ : Coim(f) −→ Im(f) that makes the fol-
lowing square commutative:

A B

Coim(f) Im(f).

f

f ′

(b) Show that f ′ is an isomorphism.

(c) Conclude that f factorizes into a composite of an epimorphism followed by a monomor-
phism.

2


