Exercise set 3

Here is one more exercise that I forgot to add to the first set:

Exercise 1. Let X, Y be Riemann surfaces, and let f,g: X — Y be morphisms thereof.
Suppose that X is connected and that there is a nonempty open subset U C X such that
flv = glu. Prove that f = g. (You are free to use the fact that X is path-connected.)

Recall that a lattice A C C is a discrete and cocompact subgroup (of the additive group
of C). Every lattice is isomorphic to Z @ Z as an abelian group. Consider the quotient
E :=C/A and let m: C — FE be the projection. Recall that we defined the structure sheaf
OpF as follows:

Op(U)={f:U— C| fo(n|z—1)) is holomorphic }.
Riemann surfaces of the form £ = C/A are known as elliptic curves.

Exercise 2. (a) Let A,A’ C C be lattices and let £ := C/A and E' := C/A’ be the
corresponding quotients with the quotient maps 7 and 7’. Let f: F — E’ be a
continuous map such that f(0) = 0. Show that f is a morphism of Riemann surfaces
if and only if there is a (necessarily unique) complex number « such that the following
diagram commutes:

C Z— oz C
E ! E

Here the vertical arrows are the projections.

Hint: construct a continuous map f: C — C which makes this square commutative
(“lifts f”), and then use the compactness of the quotients to prove that f has the
desired form.

(b) Let E, E’ be as above, and let f: E'— E’ be a morphism of Riemann surfaces. Prove
that there is an automorphism ¢g: F' — E’ such that g o f maps 0 to 0.

The next exericse is of increased difficulty:

Exercise 3. Show that there are infinitely many lattices A C C such that the correspond-
ing quotients C/A are pairwise nonisomorphic as Riemann surfaces.

The compact topological space S x S! thus carries infinitely many distinct structures
of a Riemann surface. This contrasts with the case of S? where such a structure is unique
(as we will see later in the course).



Next, here are some exercises in category theory.

Exercise 4. Let k be a field. Consider the category A whose objects are integers n > 0,
whose Hom sets Hom(n, m) consist of all n x m-matrices with coefficients in %, and whose
composition rule is given by the matrix multiplication. Prove that A is equivalent to the
category of finite dimensional k-vector spaces.

Exercise 5. Let A be a category, and let B and C be small categories (i.e. categories
in which the collection of objects is a set). We then have the category of functors [A, B]
from A to B with natural transformations as morphisms. In the same manner we have the
category of functors [A, C].

Let also J: B — C be a functor. The composition with .J induces a functor

Jo—:]A B — [AC].
Assume that J is fully faithful.

(a) Prove that J o — is fully faithful.
(b) Let G,G" € [A, B] be functors such that Jo G = J o G'. Deduce that G = G'.

Let us move to additive and abelian categories. The following simple exercise is to check
your understanding of the basics:

Exercise 6. Let A be an additive catgeory. Show that every kernel in A is a monomorphism
and every cokernel in A is an epimorphism.

Here is a more elaborate exercise on kernels and cokernels:

Exercise 7. Let f: A — B be a morphism in an abelian category. The image Im(f) is
defined to be the kernel of the cokernel of f. Dually, the coimage Coim(f) is the cokernel
of the kernel of f.

(a) Show that there is a unique morphism f’: Coim(f) — Im(f) that makes the fol-
lowing square commutative:

A f B

l T

!

Coim(f) —— Im(f).

(b) Show that f’ is an isomorphism.

(¢) Conclude that f factorizes into a composite of an epimorphism followed by a monomor-
phism.



