Exercise set 3

Here is one more exercise that I forgot to add to the first set:

Exercise 1. Let X, Y be Riemann surfaces, and let $f, g: X \to Y$ be morphisms thereof. Suppose that X is connected and that there is a nonempty open subset $U \subset X$ such that $f|_U = g|_U$. Prove that f = g. (You are free to use the fact that X is path-connected.)

Recall that a lattice $\Lambda \subset \mathbf{C}$ is a discrete and cocompact subgroup (of the additive group of \mathbf{C}). Every lattice is isomorphic to $\mathbf{Z} \oplus \mathbf{Z}$ as an abelian group. Consider the quotient $E := \mathbf{C}/\Lambda$ and let $\pi \colon \mathbf{C} \twoheadrightarrow E$ be the projection. Recall that we defined the structure sheaf \mathcal{O}_E as follows:

$$\mathcal{O}_E(U) = \{ f : U \longrightarrow \mathbf{C} \mid f \circ (\pi|_{\pi^{-1}(U)}) \text{ is holomorphic } \}.$$

Riemann surfaces of the form $E = \mathbf{C}/\Lambda$ are known as *elliptic curves*.

Exercise 2. (a) Let $\Lambda, \Lambda' \subset \mathbf{C}$ be lattices and let $E := \mathbf{C}/\Lambda$ and $E' := \mathbf{C}/\Lambda'$ be the corresponding quotients with the quotient maps π and π' . Let $f : E \to E'$ be a continuous map such that f(0) = 0. Show that f is a morphism of Riemann surfaces if and only if there is a (necessarily unique) complex number α such that the following diagram commutes:

$$\begin{array}{ccc}
\mathbf{C} & \xrightarrow{z \mapsto \alpha z} & \mathbf{C} \\
\downarrow^{\pi} & & \downarrow^{\pi'} \\
E & \xrightarrow{f} & E'.
\end{array}$$

Here the vertical arrows are the projections.

Hint: construct a continuous map $\tilde{f} : \mathbf{C} \to \mathbf{C}$ which makes this square commutative ("lifts f"), and then use the compactness of the quotients to prove that \tilde{f} has the desired form.

(b) Let E, E' be as above, and let $f: E \to E'$ be a morphism of Riemann surfaces. Prove that there is an automorphism $g: E' \to E'$ such that $g \circ f$ maps 0 to 0.

The next exericse is of increased difficulty:

Exercise 3. Show that there are infinitely many lattices $\Lambda \subset \mathbf{C}$ such that the corresponding quotients \mathbf{C}/Λ are pairwise nonisomorphic as Riemann surfaces.

The compact topological space $S^1 \times S^1$ thus carries infinitely many distinct structures of a Riemann surface. This contrasts with the case of S^2 where such a structure is unique (as we will see later in the course).

Next, here are some exercises in category theory.

Exercise 4. Let k be a field. Consider the category \mathcal{A} whose objects are integers $n \geq 0$, whose Hom sets Hom(n,m) consist of all $n \times m$ -matrices with coefficients in k, and whose composition rule is given by the matrix multiplication. Prove that \mathcal{A} is equivalent to the category of finite dimensional k-vector spaces.

Exercise 5. Let \mathcal{A} be a category, and let \mathcal{B} and \mathcal{C} be small categories (i.e. categories in which the collection of objects is a set). We then have the category of functors $[\mathcal{A}, \mathcal{B}]$ from \mathcal{A} to \mathcal{B} with natural transformations as morphisms. In the same manner we have the category of functors $[\mathcal{A}, \mathcal{C}]$.

Let also $J: \mathcal{B} \to \mathcal{C}$ be a functor. The composition with J induces a functor

$$J \circ -: [\mathcal{A}, \mathcal{B}] \longrightarrow [\mathcal{A}, \mathcal{C}].$$

Assume that J is fully faithful.

- (a) Prove that $J \circ -$ is fully faithful.
- (b) Let $G, G' \in [\mathcal{A}, \mathcal{B}]$ be functors such that $J \circ G \cong J \circ G'$. Deduce that $G \cong G'$.

Let us move to additive and abelian categories. The following simple exercise is to check your understanding of the basics:

Exercise 6. Let \mathcal{A} be an additive catgeory. Show that every kernel in \mathcal{A} is a monomorphism and every cokernel in \mathcal{A} is an epimorphism.

Here is a more elaborate exercise on kernels and cokernels:

Exercise 7. Let $f: A \to B$ be a morphism in an abelian category. The *image* Im(f) is defined to be the kernel of the cokernel of f. Dually, the coimage Coim(f) is the cokernel of the kernel of f.

(a) Show that there is a unique morphism $f' \colon \operatorname{Coim}(f) \longrightarrow \operatorname{Im}(f)$ that makes the following square commutative:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \uparrow \\
\operatorname{Coim}(f) & \xrightarrow{f'} & \operatorname{Im}(f).
\end{array}$$

- (b) Show that f' is an isomorphism.
- (c) Conclude that f factorizes into a composite of an epimorphism followed by a monomorphism.