Exercise set 1

Let us begin with some technical exercises:

Exercise 1. Let X be a topological space and let \mathcal{A} and \mathcal{B} be Riemann surface at lases on X. Prove that the at lases \mathcal{A} and \mathcal{B} are equivalent if and only if the identity map $1: (X, \mathcal{A}) \to (X, \mathcal{B})$ is a morphism of topological spaces equipped with Riemann surface at lases. In the lectures we used the "only if" direction. (Warning: This may be harder than it looks.)

Exercise 2. Let X be a Riemann surface and let $U \subset X$ be a nonempty open subset with the induced structure of a Riemann surface. Prove that this is the unique structure with respect to which the canonical map $U \hookrightarrow X$ is a morphism of Riemann surfaces.

Exercise 3. Construct an example of a non-Hausdorff topological space that admits a Riemann surface atlas.

Exercise 4. Fill in details of the discussion of tangent spaces in the lectures.

(a) Let W be a finite dimensional **R**-vector space. Construct for every point $u \in W$ an isomorphism $T_uW \cong W$ that is canonical (in a sense you personally find satisfactory).

A Riemann surface X is in particular a smooth manifold of dimension 2, so for each point $x \in X$ we have a tangent space T_xX that is an \mathbf{R} -vector space of dimension 2. A local coordinate $z: U \to \mathbf{C}$ around x induces an isomorphism $T_x(z): T_xX \xrightarrow{\sim} T_{z(x)}\mathbf{C}$. By (a) the target is canonically isomorphic to \mathbf{C} , so by transport of structure the tangent space T_xX becomes a \mathbf{C} -vector space of dimension 1.

- (b) Prove that the resulting structure is independent of the choice of the local coordinate z.
- (c) Let $U \subset \mathbf{C}$ be an open subset and let $f: U \to \mathbf{C}$ be a smooth map. Show that f is holomorphic if and only if for every point $x \in U$ the induced map $T_x(f): T_xU \to T_x\mathbf{C}$ is \mathbf{C} -linear.
- (d) Let X and Y be Riemann surfaces, and let $f: X \to Y$ be a smooth map. Deduce that f is a morphism of Riemann surfaces if and only if for every point $x \in X$ the induced map $T_x X \to T_{f(x)} Y$ is C-linear.

Next we move to exercises that are more geometric in nature:

Exercise 5. Consider the open subset

$$U := \{x + iy \in \mathbf{C} \mid y > 0\}.$$

Show that U is isomorphic as a Riemann surface to the open unit disk Δ .

Exercise 6. Show that every rational function $f \in \mathbf{C}(X)$ gives rise to a morphism of Riemann surfaces $F: S^2 \to S^2$, in the following way:

Write f as a quotient $\frac{P}{Q}$ of coprime polynomials. At every point $z \in \mathbf{C}$ define

$$F(z) := \begin{cases} \frac{P(z)}{Q(z)} & \text{if } Q(z) \neq 0, \\ \infty & \text{otherwise.} \end{cases}$$

Define also

$$F(\infty) := \left\{ \begin{aligned} 0 & \text{if } \deg(P) < \deg(Q), \\ \infty & \text{if } \deg(P) > \deg(Q) \end{aligned} \right.$$

In the remaining case deg(P) = deg(Q) set

$$F(\infty) := \frac{a}{b}$$

where a is the top coefficient of P and b is the top coefficient of Q.

Finally, prove that the map of sets $F: S^2 \to S^2$ so defined is a morphism of Riemann surfaces.

Exercise 7. For each quadruple $a, b, c, d \in \mathbb{C}$ such that $ad - bc \neq 0$ show that the rational function $f(z) = \frac{az+b}{cz+d}$ gives rise to an automorphism of Riemann surfaces $S^2 \xrightarrow{\sim} S^2$. (Hint: Try to guess a rational function that gives the inverse morphism.)

Exercise 8. Fill in details of the discussion of projective spaces. Namely, let V be a C-vector space of dimension $n+1 \ge 1$. In the following you are free to assume that n=1, but the case of arbitrary n is not harder.

Recall that we defined $\mathbf{P}(V)$ to be the set of 1-dimensional C-vector subspaces of V equipped with the quotient topology via the surjection

$$V \setminus \{0\} \longrightarrow \mathbf{P}(V), \quad v \mapsto \mathbf{C}v.$$

Next, for each hyperplane $H \subset V$, i.e. a C-vector subspace of codimension 1, we set

$$\mathbf{P}(V \setminus H) := \{ L \in \mathbf{P}(V) \mid L \not\subset H \}.$$

- (a) Show that each $P(V \setminus H)$ is open in P(V).
- (b) Find a set of n+1 hyperplanes H such that $P(V \setminus H)$ cover P(V).

Pick a splitting $s: V \to H$, i.e. a C-linear map such that $s|_H = 1_H$. Pick also an isomorphism $t: V/H \cong \mathbb{C}$. Given such a triple (H, s, t) consider a map of sets

$$V \setminus H \longrightarrow H, \quad v \mapsto \frac{s(v)}{t([v])}.$$

- (c) Show that this map induces a homeomorphism $\mathbf{P}(V \setminus H) \xrightarrow{\sim} H$.
- (d) Prove that the collection of maps $\mathbf{P}(V \setminus H) \xrightarrow{\sim} H$ defined by all possible triples (H, s, t) forms a complex manifold atlas on $\mathbf{P}(V)$. In view of (a) and (b) it remains to show that all the transition maps are biholomorphic.

We have thus defined a complex manifold P(V) of dimension n.

Exercise 9. Show that the Riemann surfaces S^2 and $\mathbf{P}(\mathbf{C} \oplus \mathbf{C})$ are isomorphic.

Finally, here is an exercise which at this stage is probably hard, but doable:

Exercise 10. Let $F: S^2 \to S^2$ be a morphism of Riemann surfaces such that $F(S^2) \neq \{\infty\}$. Prove that F is given by a rational function as in Exercise 6.