## Exercise set 11

As in the lectures we denote by Ab the category of abelian groups and by  $Ab_X$  the category of sheaves (of abelian groups) on a topological space X. For each topological space X and each abelian group A we denote by  $H^i(X,A)$  the i-th sheaf cohomology group of X with coefficients in the constant sheaf  $\underline{A}_X$ .

**Exercise 1.** Let X be a Riemann surface, and let  $\mathcal{D}_X$  be the presheaf that sends an open subset  $U \subset X$  to the abelian group of divisors  $\mathrm{Div}(U)$ .

- (a) Prove that  $\mathcal{D}_X$  is a sheaf.
- (b) Show that there is an isomorphism of sheaves  $\mathcal{D}_X \cong \bigoplus_{x \in X} x_* \mathbf{Z}$ .

**Exercise 2.** Let X be a Riemann surface. Construct a bijection between the set of meromorphic functions on X and the set of morphisms of Riemann surfaces  $f: X \to S^2$  such that  $f(X) \neq {\infty}$ .

**Exercise 3.** Consider the Riemann sphere  $X := S^2$ , and pick a point  $P \in X$ . Show that

$$\Omega_X \cong \mathcal{O}_X(-2P).$$

Hint: you may take  $P = \infty$  and work out an explicit isomorphism of invertible sheaves directly from the definitions of  $\Omega_X$  and  $\mathcal{O}_X(-2P)$  using the standard atlas on  $X = S^2$ .

The last exercise may be somewhat hard at this stage:

**Exercise 4.** Recall that in Exercise 9 of Set 1 we constructed an isomorphism of Riemann surfaces  $S^2 \cong \mathbf{P}(\mathbf{C} \oplus \mathbf{C})$ . By Exercise 4 of Set 10 we have the invertible sheaves  $\mathcal{O}(n)$ ,  $n \in \mathbf{Z}$ , on  $\mathbf{P}(\mathbf{C} \oplus \mathbf{C})$ , and consequently, on the Riemann sphere  $S^2$ . Pick a point  $P \in S^2$  and prove that for all n we have an isomorphism

$$\mathcal{O}(n) \cong \mathcal{O}_{S^2}(nP).$$