
Exercise set 10

As in the lectures we denote by Ab the category of abelian groups and by AbX the category
of sheaves (of abelian groups) on a topological space X. For each topolgical space X and
each abelian group A we denote by H i(X,A) the i-th sheaf cohomology group of X with
coefficients in the constant sheaf AX .

Exercise 1. Let U ⊂ C be the open unit disk centered at 0, let z : U ↪→ C be the
holomorphic function which is the identity on U , and let n ⩾ 1 be an integer. Consider the
morphism of sheaves µ : OU → OU given by the formula f 7→ fzn.

(a) Show that µ is a morphism of OU -modules, and that µ is a monomorphism.

Next, for each point u ∈ U let ιu : {·} ↪→ U be the corresponding inclusion map.

(b) Show that the morphism ι∗u(µ) is an isomorphism whenever u ̸= 0.

(c) Show that for u = 0 the morphism ι∗0(µ) is zero, and conclude that pullback functors
are not exact in general.

(d) Set M := coker(µ); this is naturally an OU -module. Show that M|U∖{0} = 0 and
that dimC

(
M(U)

)
= n.

(e) In the special case n = 1 prove that the OU -module M is isomorphic to ι0∗(C{·}).

(f) (extra) If n ⩾ 2, is it true that M ∼= ι0∗(N ) for some sheaf of modules N on the
singleton manifold {·}? Prove your answer.

Next, let us do some exercises with linear systems. Exercise 3 is especially important! In
the following let V be a fixed finite-dimensional C-vector space. Let also X be a complex
manifold. Recall that a linear system on X is a pair (L, ϕ) where L is an invertible OX-
module and ϕ : V ∗ → H0(X,L) is a morphism of C-vector spaces. By a slight abuse of
terminology we will generally refer to ϕ itself as a linear system.

In the lectures, for every morphism of complex manifolds g : Y → X and every linear
system ϕ on X we defined the pullback linear system g∗(ϕ) on Y to be the composite

V ∗ H0(X,L) H0(Y, g∗L)ϕ εL

where the arrow εL comes from the unit of adjunction L → g∗g
∗L by applying the global

sections functor.
Applying this construction to inclusions of points {·} → X we get for every x ∈ X

a morphism of C-vector spaces ϕ|x : V ∗ → L|x. Now recall that ϕ is base point free if
ϕ|x ̸= 0 for all x ∈ X. To each base point free linear system ϕ we associate a map of sets
fϕ : X → P(V ) defined as follows. The vector space ker(ϕ|x) is by assumption a hyperplane

1



in V ∗. Via the evaluation pairing V ×V ∗ → C, (v, ℓ) 7→ ℓ(v) this hyperplane is orthogonal
to a line Lx ⊂ V . We then set

fϕ(x) := Lx.

Later in the lectures we will see that fϕ : X → P(V ) is a morphism of complex manifolds.

Exercise 2. Let g : Y → X be a morphism of complex manifolds, and let ϕ : V ∗ →
H0(X,L) be a base point free linear system on X. Show that the induced linear system
g∗(ϕ) : V ∗ → H0(Y, g∗L) on Y is base point free, and that

fg∗(ϕ) = fϕ ◦ g.

Hint: Use the fact that pullbacks of OX-modules are compatible with compositions.

Next, let us introduce an important notion. Let M be an OX-module. For every point
x ∈ X the unit of adjunction M → ιx∗ι

∗
xM determines a morphism M(X) → M|x (by

taking the global sections). We say that a point x ∈ X is a zero of a section s ∈ M(X) if
the image of s in the fiber M|x is zero. We denote by Z(s) ⊂ X the subset of zeroes of s.

Exercise 3. Let ϕ : V ∗ → H0(X,L) be a base point free linear system defining a map
fϕ : X → P(V ). Pick a nonzero linear form ℓ ∈ V ∗ and let H ⊂ V be the hyperplane that
is the kernel of ℓ. Show that

f−1
ϕ

(
P(H)

)
= Z

(
ϕ(ℓ)

)
.

In the special case when fϕ is the inclusion of a subset this formula means that Z(ϕ(ℓ)) is
the intersection of X with P(H), a so called hyperplane section of X.

Exercise 4. In this exercise we assume that dimC V ⩾ 2. Let q : V ∖ {0} ↠ P(V ) be
the quotient map. Recall that for each integer n we defined a sheaf O(n) on P(V ) by the
formula

O(n) : U 7→ {f : q−1(U) → C is holomorphic and homogeneous of degree n}.

The homogeneity condition means that for all z ∈ q−1(U) and λ ∈ C× we have

f(λz) = λnf(z).

By construction O(0) = OP(V ) is the structure sheaf.

(a) Show that multiplication by holomorphic functions that are homogeneous of degree 0
provides O(n) with a structure of an OP(V )-module.

(b) Show that for each n the OP(V )-module O(n) is invertible.

(c) (extra) For each pair of integers n and n′ construct an OP(V )-module isomorphism

O(n)⊗OP(V )
O(n′) ∼= O(n+ n′).

Elements of V ∗ are linear forms, and, restricted to V ∖{0}, become holomorphic functions
that are homogeneous of degree 1. We thus have a map

ϕ : V ∗ ↪−→ H0
(
P(V ),O(1)

)
.

One can in fact show that ϕ is an isomorphism, but we do not need this.
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(d) Show that ϕ is a base point free linear system.

(e) Show that the induced map fϕ : P(V ) → P(V ) is the identity map.

Next, let us return to de Rham cohomology. Here are some exercises suggested by Ilaria:

Exercise 5. (a) Use the Mayer–Vietoris sequence for de Rham cohomology to prove
that

H1
dR(S

n) = 0 for n ⩾ 2

and
Hk

dR(S
n) ∼= Hk−1

dR (Sn−1) for n ⩾ 2, k ⩾ 2.

Hint : consider U = Sn ∖ {(0, . . . , 0,−1)} and V = Sn ∖ {(0, . . . , 0, 1)}. Note that U
and V are diffeomorphic to Rn and U ∩ V is homotopy equivalent to Sn−1.

(b) Deduce the topological invariance of dimension: If m ̸= n, then Rn is not homeomor-
phic to Rm.

Exercise 6. (Künneth formula) An open cover {Uα}α∈Λ of a smooth manifold M is good
if every intersection

⋂
i∈I Ui with arbitrary I ⊂ Λ is either empty or diffeomorphic to Rn.

Every smooth manifold M admits a good cover, see Chapter I, §5 of the book Differential
forms in algebraic topology by Raoul Bott and Loring Tu. In particular, each compact
smooth manifold admits a finite good cover.

(a) Suppose that a manifold M admits a finite good cover. Prove that Hk
dR(M) is finite-

dimensional for all k.

(b) Let M and N be smooth manifolds admitting finite good covers. Show that for any
0 ⩽ k ⩽ dimM + dimN , one has

Hk
dR(M ×N) ∼=

k⊕
i=0

H i
dR(M)⊗R Hk−i

dR (N).

(c) Deduce that

Hk
dR(S

n × Sn) ∼=


R if k = 0, 2n

R2 if k = n

0 otherwise.

(d) Deduce that for the n-dimensional torus T n = S1 × · · · × S1 one has

Hk
dR(T

n) ∼= R(nk).

The last couple of exercises is very optional (and will not appear at the exam!). We will
show that for every complex manifold X the cohomology group H1(X,O×

X) parametrizes
the isomorphism classes of invertible OX-modules. The proof of this claim splits into two
parts, each presented as an exercise.

Exercise 7. Let X be a topological space and let F be a sheaf of abelian groups on X. An
F-torsor is a pair (T , µ) consisting of a sheaf of sets T on X and a morphism of sheaves
of sets µ : F × T → T such that
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• For every open U ⊂ X the map µU : F(U)× T (U) → T (U) is a left action of F(U)
on the set T (U).

• For every open U ⊂ X either the set T (U) is empty or F(U) acts on T (U) simply
transitively.

• Every point x ∈ X has a neighbourhood U such that T (U) ̸= ∅.

A morphism of F -torsors is a morphism of sheaves of sets that commutes with the action
of F . Torsors thus form a category. The action of F on itself (by addition) turns F into
an F -torsor, called the trivial torsor.

(a) Show that every morphism of F -torsors is an isomorphism.

(b) Show that a torsor T is isomorphic to F if and only if T (X) ̸= ∅.

Next, consider extensions of the sheaf ZX by F , as in Exercise 7 of Set 9. We saw that
extensions form a category, and that every morphism of extensions is an isomorphism.
Now, to each extension E = (0 → F → E → ZX → 0) we associate a sheaf of sets

TE : U 7→ {s ∈ E(U) | the image of s in ZX(U) is equal to 1}.

The group F(U) acts on TE(U) by addition of sections.

(c) Prove that TE is an F -torsor.

(d) Check that the torsor TE is isomorphic to F if and only if the extension E is split.

(e) Show that the functor E 7→ TE from the category of extensions of ZX by F to the
category of F -torsors is fully faithful.

(f) Given an extension E as above show that every point x ∈ X has an open neighbour-
hood U such that the extension E|U := (0 → F|U → E|U → ZU → 0) is split. Hint:
Use the fact that Z is a projective object in the category of abelian groups.

(g) Deduce that the functor E 7→ TE is essentially surjective, and conclude that this
functor is an equivalence of categories. Hint: Given a torsor T , there is an open cover
{Ui} of X such that T |Ui

is trivial for every i. Use part (e) to patch split extensions
on each Ui into an extension on X.

(h) Invoking Exercise 7 of Set 9 conclude that the set of isomorphism classes of F -torsors
is in bijection with the cohomology group H1(X,F).

Exercise 8. Let X be a complex manifold. (You are free to assume that X is a Riemann
surface, but this does not really simplify the problem.) To each invertible OX-module L
we associate a sheaf of sets L× defined by the formula

L×(U) = {s ∈ L(U) | Z(s) = ∅}.

Multiplication by invertible holomorphic functions provides L× with an action of O×
X .

(a) Prove that L× is an O×
X-torsor, and check that every isomorphism of OX-modules

L1
∼−→ L2 induces a morphism of torsors L×

1
∼−→ L×

2 .

(b) Show that the functor L 7→ L× is an equivalence the following categories:
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• The category that has invertible OX-modules as objects and their isomorphisms
as morphisms.

• The category of O×
X-torsors.

(c) Deduce that the set of isomorphism classes of invertible OX-modules is in bijection
with the cohomology group H1(X,O×

X).

(d) (extra) Assuming that X is a compact connected Riemann surface show that there
is an exact sequence of the form

0 H1(X,Z) H1(X,OX) H1(X,O×
X) Z 0.

One can prove that the image of H1(X,Z) in H1(X,OX) is a lattice, so that

H1(X,O×
X)

∼= T × Z

where T is a topological torus of dimension g = dimC H1(X,OX).

5


