Exercise set 10

As in the lectures we denote by Ab the category of abelian groups and by Aby the category
of sheaves (of abelian groups) on a topological space X. For each topolgical space X and
each abelian group A we denote by H'(X, A) the i-th sheaf cohomology group of X with
coefficients in the constant sheaf Ay.

Exercise 1. Let U C C be the open unit disk centered at 0, let z: U — C be the
holomorphic function which is the identity on U, and let n > 1 be an integer. Consider the
morphism of sheaves p: Oy — Oy given by the formula f — f2".

(a) Show that p is a morphism of Op-modules, and that p is a monomorphism.
Next, for each point u € U let ¢,: {-} < U be the corresponding inclusion map.

(b) Show that the morphism ¢} () is an isomorphism whenever u # 0.

(¢) Show that for u = 0 the morphism ¢{(u) is zero, and conclude that pullback functors
are not exact in general.

(d) Set M := coker(u); this is naturally an Oy-module. Show that M|y 0y = 0 and
that dimg(M(U)) = n.

(e) In the special case n = 1 prove that the Oy-module M is isomorphic to to.(Cy.y).

(f) (extra) If n > 2, is it true that M = 1o, (N) for some sheaf of modules N/ on the
singleton manifold {-}7 Prove your answer.

Next, let us do some exercises with linear systems. Exercise 3 is especially important! In
the following let V' be a fixed finite-dimensional C-vector space. Let also X be a complex
manifold. Recall that a linear system on X is a pair (£, ¢) where L is an invertible Ox-
module and ¢: V* — H°(X, L) is a morphism of C-vector spaces. By a slight abuse of
terminology we will generally refer to ¢ itself as a linear system.

In the lectures, for every morphism of complex manifolds g: Y — X and every linear
system ¢ on X we defined the pullback linear system ¢g*(¢) on Y to be the composite

Ve~ HY(X, L)~ HO(Y,g'L)

where the arrow €, comes from the unit of adjunction £ — ¢,g*L by applying the global
sections functor.

Applying this construction to inclusions of points {-} — X we get for every z € X
a morphism of C-vector spaces ¢|,: V* — L|,. Now recall that ¢ is base point free if
¢l # 0 for all z € X. To each base point free linear system ¢ we associate a map of sets
fs: X — P(V) defined as follows. The vector space ker(¢|,) is by assumption a hyperplane



in V*. Via the evaluation pairing V' x V* — C, (v, ¢) — £(v) this hyperplane is orthogonal
to a line L, C V. We then set

fo(x) == L,.

Later in the lectures we will see that f;: X — P(V) is a morphism of complex manifolds.

Exercise 2. Let g: Y — X be a morphism of complex manifolds, and let ¢: V* —
H°(X, L) be a base point free linear system on X. Show that the induced linear system
g*(¢): V* — H°(Y,g*L) on Y is base point free, and that

fo0) = fs09

Hint: Use the fact that pullbacks of Ox-modules are compatible with compositions.

Next, let us introduce an important notion. Let M be an Ox-module. For every point
r € X the unit of adjunction M — 1,05 M determines a morphism M(X) — M|, (by
taking the global sections). We say that a point x € X is a zero of a section s € M(X) if
the image of s in the fiber M|, is zero. We denote by Z(s) C X the subset of zeroes of s.

Exercise 3. Let ¢: V* — HY(X, L) be a base point free linear system defining a map
fs: X — P(V). Pick a nonzero linear form ¢ € V* and let H C V be the hyperplane that
is the kernel of /. Show that

fo ' (P(H)) = Z(4(0)).
In the special case when f, is the inclusion of a subset this formula means that Z(¢(¢)) is
the intersection of X with P(H), a so called hyperplane section of X.

Exercise 4. In this exercise we assume that dimcV > 2. Let ¢: V ~ {0} — P(V) be
the quotient map. Recall that for each integer n we defined a sheaf O(n) on P(V') by the
formula

O(n): U {f: ¢ '(U) — C is holomorphic and homogeneous of degree n}.
The homogeneity condition means that for all 2 € ¢7'(U) and A € C* we have
fAz) = A" f(2).
By construction O(0) = Op(y) is the structure sheaf.

(a) Show that multiplication by holomorphic functions that are homogeneous of degree 0
provides O(n) with a structure of an Op(y-module.

(b) Show that for each n the Op()-module O(n) is invertible.

(c¢) (extra) For each pair of integers n and n’ construct an Op(y)-module isomorphism

O(1) ©opy, O() = O+ 1),

Elements of V* are linear forms, and, restricted to V' ~\. {0}, become holomorphic functions
that are homogeneous of degree 1. We thus have a map

¢: V' — HO(P(V), (’)(1)).
One can in fact show that ¢ is an isomorphism, but we do not need this.
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(d) Show that ¢ is a base point free linear system.

(e) Show that the induced map f,: P(V) — P(V) is the identity map.

Next, let us return to de Rham cohomology. Here are some exercises suggested by Ilaria:

Exercise 5. (a) Use the Mayer—Vietoris sequence for de Rham cohomology to prove
that
Hiz(S")=0forn >2

and
Hip(S™) =2 HE(S™ ) forn > 2, k> 2.

Hint: consider U = S™ ~ {(0,...,0,—1)} and V = 5"~ {(0,...,0,1)}. Note that U
and V are diffeomorphic to R" and U NV is homotopy equivalent to S™~!.

(b) Deduce the topological invariance of dimension: If m # n, then R™ is not homeomor-
phic to R™.

Exercise 6. (Kinneth formula) An open cover {U,}aen of a smooth manifold M is good
if every intersection ("),.; U; with arbitrary I C A is either empty or diffeomorphic to R™.
Every smooth manifold M admits a good cover, see Chapter I, §5 of the book Differential
forms in algebraic topology by Raoul Bott and Loring Tu. In particular, each compact
smooth manifold admits a finite good cover.

(a) Suppose that a manifold M admits a finite good cover. Prove that HX; (M) is finite-
dimensional for all k.

(b) Let M and N be smooth manifolds admitting finite good covers. Show that for any
0 <k <dimM +dim N, one has

=0
(¢) Deduce that
R itk=0,2n
Hip(S" x SMY=2({R? ifk=n
0 otherwise.

(d) Deduce that for the n-dimensional torus 7" = S' x --- x S! one has

Hlg (1) 2 R,

The last couple of exercises is very optional (and will not appear at the exam!). We will
show that for every complex manifold X the cohomology group H'(X, Q%) parametrizes
the isomorphism classes of invertible Ox-modules. The proof of this claim splits into two
parts, each presented as an exercise.

Exercise 7. Let X be a topological space and let F be a sheaf of abelian groups on X. An
F-torsor is a pair (T, ) consisting of a sheaf of sets 7 on X and a morphism of sheaves
of sets u: F x T — T such that



e For every open U C X the map py: F(U) x T(U) — T(U) is a left action of F(U)
on the set T (U).

e For every open U C X either the set T(U) is empty or F(U) acts on T (U) simply
transitively.

e Every point x € X has a neighbourhood U such that T (U) # @.

A morphism of F-torsors is a morphism of sheaves of sets that commutes with the action
of F. Torsors thus form a category. The action of F on itself (by addition) turns F into
an J-torsor, called the trivial torsor.

(a) Show that every morphism of F-torsors is an isomorphism.

(b) Show that a torsor 7 is isomorphic to F if and only if 7(X) # @.

Next, consider extensions of the sheaf Z by F, as in Exercise 7 of Set 9. We saw that
extensions form a category, and that every morphism of extensions is an isomorphism.
Now, to each extension £ = (0 - F — & — Zy — 0) we associate a sheaf of sets

Te: U {s € EU) | the image of s in Z(U) is equal to 1}.
The group F(U) acts on Tg(U) by addition of sections.

(¢) Prove that T is an F-torsor.
(d) Check that the torsor 7Tg is isomorphic to F if and only if the extension F is split.
(e)

Show that the functor £ — T from the category of extensions of Zy by F to the
category of F-torsors is fully faithful.

(f) Given an extension E as above show that every point € X has an open neighbour-
hood U such that the extension E|y := (0 = Fly — £|lv — Zy; — 0) is split. Hint:
Use the fact that Z is a projective object in the category of abelian groups.

(9) Deduce that the functor F +— Tg is essentially surjective, and conclude that this
functor is an equivalence of categories. Hint: Given a torsor 7, there is an open cover
{U;} of X such that Ty, is trivial for every 7. Use part (e) to patch split extensions
on each U; into an extension on X.

(h) Invoking Exercise 7 of Set 9 conclude that the set of isomorphism classes of F-torsors
is in bijection with the cohomology group H!(X, F).

Exercise 8. Let X be a complex manifold. (You are free to assume that X is a Riemann
surface, but this does not really simplify the problem.) To each invertible Ox-module £
we associate a sheaf of sets £* defined by the formula

LXU)={se LU)| Z(s) = 2}.
Multiplication by invertible holomorphic functions provides £* with an action of O%.

(a) Prove that £* is an Oy-torsor, and check that every isomorphism of Ox-modules
L1 = L induces a morphism of torsors £ =% L.

(b) Show that the functor £ — L* is an equivalence the following categories:



e The category that has invertible Ox-modules as objects and their isomorphisms
as morphisms.

e The category of O%-torsors.

(¢) Deduce that the set of isomorphism classes of invertible Oy-modules is in bijection
with the cohomology group H'(X, O%).

(d) (extra) Assuming that X is a compact connected Riemann surface show that there
is an exact sequence of the form

0 —— HY(X,Z) — H'(X,0x) — H'(X,0%) Z 0.

One can prove that the image of H'(X,Z) in H*(X, Oy) is a lattice, so that
HY(X,0%)2TxZ

where T is a topological torus of dimension g = dimg H'(X, Ox).



