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Solution 1

(a) The density for a binary observation can be written as π
yj

j (1 − πj)1−yj , so the log likelihood
for independent binary data y1, . . . , yn is

ℓ(π1, . . . , πn) =
n∑

j=1
yj log πj + (1 − yj) log(1 − πj).

If the πj are unconnected, then it is easy to check that the maximising probabilities are
π̃j = yj, so π

yj

j (1 − πj)1−yj = 1 (noting that 00 = 1), and therefore

ℓ(π̃1, . . . , π̃n) = 0

is the highest possible value of the log likelihood function. Therefore the deviance for a model
in which πj(β) = exp(xT

j β)/{1 + exp(xT
j β)} is

D = 2 {ℓ(π̃1, . . . , π̃n) − ℓ(π̂1, . . . , π̂n)} = −2ℓ(β̂),

where we have set

ℓ(β̂) = ℓ(π̂1, . . . , π̂n) =
n∑

j=1
yj log πj(β̂) + (1 − yj) log{1 − πj(β̂)}.

We could now note that the logistic regression model is a canonical exponential family model
with minimal sufficient statistic XTy, and therefore the maximum likelihood estimators and
all derived quantities, including ℓ(β̂) and therefore the deviance, are functions of this. Hence
the deviance is a function only of the fitted model, not of the individual observations, and
thus cannot measure model fit.
In more detail, we write

n∑
j=1

yj log πj + (1 − yj) log(1 − πj) =
n∑

j=1
yjβxj − yj log{1 + exp(xT

j β)} − (1 − yj) log{1 + exp(xT
j β)}

= yTXβ +
n∑

j=1
log{1 + exp(xT

j β)},

from which we see that yTX, or equivalently XTy, is sufficient for β and that

∂ℓ(β)
∂β

= XTy −
n∑

j=1
xT

j

exT
j β

1 + exT
j β

= XTy − XTπ(β),

and that (after a little work) and with W = diag{π1(1 − π1), . . . , πn(1 − πn)},

− ∂2ℓ(β)
∂β∂βT

= XTWX,

which is positive definite when X has rank p and all the πj satisfy 0 < πj < 1. If so, the
maximum likelihood estimator is unique and satisfies

XTy = XTπ(β̂) = XTπ̂,



say. Hence

ℓ(β̂) = ℓ{π1(β̂), . . . , πn(β̂)} =
n∑

j=1
yj log πj(β̂) + (1 − yj) log{1 − πj(β̂)},

and thus D = −2ℓ(β̂) depends only on π̂1, . . . , π̂n, where π̂j = πj(β̂). It is therefore useless
as a measure of fit.

(b) In this case π̂ = y = n−1∑n
j=1 yj. As the data are binary, y2

j = yj for all j, and Pearson’s
statistic

P =
n∑

i=1

(yj − y)2

y(1 − y) = 1
y(1 − y)

(
n∑

i=1
yj − 2y

n∑
i=1

yj + ny2
)

= ny − ny2

y(1 − y) = n

is clearly also uninformative about model fit.

Solution 2

(a) The likelihood L(β) for discrete responses such as these is a product of probabilities, so
L(β) < 1 for all β, with logarithm

ℓ(β) =
n∑

j=1
yj log P(Yj = 1) + (1 − yj) log P(Yj = 0) =

n∑
j=1

yjx
T
j β − log

(
1 + exT

j β
)

after a little algebra.

(b) The log likelihood can be re-expressed as

ℓ(tγ) =
∑

j:xT
j γ>0

{
txT

j γ − log
(
1 + etxT

j γ
)}

−
∑

j:xT
j γ<0

log
(
1 + etxT

j γ
)

= −
∑

j:xT
j γ>0

log
(
1 + e−txT

j γ
)

−
∑

j:xT
j γ<0

log
(
1 + etxT

j γ
)

.

Both sums here are positive and both tend monotonically down to zero as t → ∞, because
e−txT

j γ → 0 when xT
j γ > 0 and etxT

j γ → 0 when xT
j γ < 0; recall that none of the γTxj equal

zero.
We saw in (a) that ℓ(β) < 0, and here we see that ℓ(tγ) → 0 when t → ∞, so the MLE is
given by limt→∞ tγ. Since we cannot have γ = 0 (otherwise xT

j γ = 0 for all j), some element
of the MLE must equal ±∞. This corresponds to a perfect fit of the model to the data (i.e.,
the fitted probability for every yj = 1 is 1, and the fitted probability for every yj = 0 is 0).

(c) In panel A the 0s and 1s are not separated, so maximum likelihood estimation should work
OK.
In panel B there is total separation of the 0s and 1s (i.e., there is a line that separates them
perfectly), so the problem found in (c) will arise. In B the log likelihood has a maximum at
infinity, leading to divergence of some component of β̂, which we would expect to lead to
‘large estimates’ of at least one parameter when the iterations stop. In R, for example, the
estimates are often ±36 or so.
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