Regression Methods: Problems MATH-408
Anthony Davison

Solution 1
(a) This is obvious.

(b) The Poisson density function is
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where y represents the number of deaths and n = E(y) equals the given formula. Then if
the y; are treated as independent this gives log likelihood

Z{yg log n;(8) —n;(8) —logy;'} .

The components of the algorithm are given by
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where I(-) denotes an indicator function,
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are the jth terms of the n x 1 vector u(n) and the n x n diagonal matrix W (n).

Note that some of the y; equal zero, so we cannot set 1; = y; in the first step of the algorithm,
but must instead choose some initial values of 3, so that all initial n; are positive.

Solution 2 In the case of the normal linear model, we have
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because for the saturated model n; = y;. Then we recall that ¢ = o2, so replacing /¢ by its
estimate s we retrieve the standardized linear model residuals.
Similarly, we have
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and we have wj(B) = ¢!, estimated by 1/s%, which leads to
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In both cases, we retrieve the classical standardized residuals of the linear normal model.
As rp; = rp;, we have

1
T‘; = TDj 4+ — lOg(ij/TDj) = rDj-
'Dj

Solution 3 The density function is
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=exp{v (—y/p—logu) +vlogr+ (v —1)logy —logI'(v)},

and we deduce that

0= bO)=—log(-0), ¢= % c(y,6) = ¢~ log(¢) + (¢~ — 1) logy — log I'(¢7),

where # < 0 and ¢ > 0. For the mean and variance we have
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The canonical link function satisfies n = 6 = —1/u. The log link n = log i1 seems generally

preferable, because it ensures that p > 0.

Solution 4 As Y is binary,
p=EY)=1-PY =0)=1-P(X =0)=1—exp{—exp(z'5)} =1 — exp{—exp(n)},
giving the complementary log-log link function

n=g(p) =log{—log(l—p)}, 0<p<l



