Regression Methods: Problems MATH-408
Anthony Davison

Solution 1

(a)

The column ‘t value”gives the t-statistics to test the null hypotheses 5, = 0, i.e.,
b _ B
V5%, SE(B,)

where v, is the rth diagonal element of the matrix (X*X)™*. When in fact 8, = 0, T}, ~ t,,_,,
and the null hypothesis is rejected for large |T|.

T, =

The column ‘Pr(>|t|)’ gives the p-values for two-sided t tests of these hypotheses. For an
observed statistic ¢, ops, the p-value is

Pr = P<|Tr’ > |tr,obs|) = 2{1 - Fn—p(|tr,obs|)} - 2Fn—p(_|tr,obs|)7

where F,,_, is the Student ¢ CDF with n — p degrees of freedom.

If p, < 0.05, for example, we reject rth hypothesis at the 5% significance level. For this
example, with 5% significance level, we can reject 3, = 0 for » = 0, 1,2, but not for » = 3.

Computing the variance formula simply uses the properties of covariance and correlation.
The test statistic is R R

B c'B—c'p B c'p

B \/S%T(XTX)*lc B \/Sch(XTX)*lc
for ¢ =0,0,1,—1]" and under the hypothesis that ¢*5 = 0. Now

82CT(XTX)_IC = {SE (32)}2 + {SE (Bg) }2 — 2corr (BQ, 33) SE (B\Q) SE (B\g,)
= 0.04423% + 0.18471% — 2 - (—0.08911) - 0.04423 - 0.18471 = 0.03753,

SO

~0.65691 — 0.25002

T
v/0.03753

= 2.10033,
and the corresponding p-value is
p = 2F134(—2.10033) = 0.06508.

Thus we do not reject the null hypothesis at the 5% level. This seems a bit surprising at first
sight, because the estimates are rather different and almost uncorrelated, but on the other
hand the standard error for (3 is rather large, even if that for Sy is much smaller.

Solution 2
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(ii) Clearly X has rank 2 and therefore X" X is not invertible. Thus all three parameters
cannot be estimated separately, i.e., the model is not identifiable.

(iii) Here

= b
—_= 0 O O
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Suppressing the column for a; is equivalent to setting a; = 0. [y is the mean of the
observations for which a; = 1 and s is the difference between the means of the groups
with a; = 1 and a; = 2.

(iv)  For the model y ~ a,
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For the model y ~ a + b,
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For the model y ~ z +a — 1,

93
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109
141
136
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For the model y ~ b+ x — 1,

152
93
127
109
141
136
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(b) For the model y ~a : x,
1 152 0
1 93 0
1 127 0
1 0 109
0 141
0 136
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the columns are linearly independent.

For the model y ~ a : b,
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the columns are not linearly independent.

For the model y ~a+b: x,
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the columns are linearly independent.

For the model y ~a+a:b: x,

10152 0 0 0 0 0
10 0 0 93 0 0 0

¥ 10 0 0O 0 0 127 O
11 0 109 0 O 0 0 ’
11 0 0 0 141 O 0
11 0 0 0 O 0 136

the columns are not linearly independent.

Solution 3

(a) If the Gaussian model is correct, then the residuals e and the fitted values § are independent
and the standardized residuals r; have a standard normal distribution; hence we expect to
see 95% of the ||r;] <2, and r 1L y.

¢ Plot A: the model seems reasonable.

e Plot B: there is an outlier with r; < —2. We should check whether there is some-
thing special about this observation, and see whether omitting it changes the fit and
interpretation appreciably.

o Plot C: the fitted values and standardized residuals seem dependent. The addition of a
quadratic term in one of the covariates might solve this.

o Plot D: the variance of the residual grows with the fitted mean. Weighted least squares
estimation might be preferable.

(b) If the data distribution has a lower tail (left side of the distribution) heavier than the normal
law, the empirical quantiles on the lower left part of the quantile-quantile plot will be under
the diagonal y = x . Indeed in this case, G(z) > ®(x) when © — —o0o, where G is the
empirical distribution function and ¢ the Gaussian distribution function. For small o > 0, if
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Figure 1: Standardized residuals for four Gaussian linear models.

r = F~(a), then G(r) > a, and so G~(a) < z, which means that the points will be under
the line y = x. On the contrary, if the lower tail is lighter than the normal distribution, then
empirical quantiles will be above the diagonal. Similar considerations give the behaviour for
the upper (right) tail.

Plot A: heavy lower tail and light upper tail, showing negative skewness.

Plot B: tails are lighter than Gaussian.

Plot C: tails are heavier than Gaussian

Plot D: light lower tail and heavy upper tail, showing positive skewness.
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Figure 2: Four Gaussian Q-Q plots.



