
Regression Methods: Problems MATH-408
Anthony Davison

Solution 1

(a) (i), response is y and Xn×3 has rows (1, 1/x, 1/x2).

(b) (ii), response is y and Xn×1 has rows 1/(1 + β1x), with β1 fixed.

(c) (iii), response is 1/y and Xn×2 has rows (1, x).

(d) (ii), response is y and Xn×2 has rows (1, xβ2), with β2 fixed.

(e) Can’t be done.

Solution 2

(a) Here

y =




y11

y12

y13

y21

y22

y23




, X =




1 0 x11 0
1 0 x12 0
1 0 x13 0
0 1 0 x21

0 1 0 x22

0 1 0 x23




, β =




α1

α2

β1

β2


 .

(b) With

X =




1 x11 0 0
1 x12 0 0
1 x13 0 0
1 x21 1 x21

1 x22 1 x22

1 x23 1 x23




, β =




β0

β1

γ0

γ1


 ,

we have model (i) with columns 1, 2, 3, model (ii) with columns 1, 2, 4, and model (iii) with
columns 1 and 2.

Solution 3

(a) The first and second derivatives of

‖y − Xβ‖2 =
n∑

j=1

(yj − xT

j β)2,

with respect to β (and βT for the second) are

−2
n∑

j=1

(yj − xT

j β)xj = −2XT(y − Xβ), 2
n∑

j=1

xjx
T

j = 2XTX.

If X has rank p then so too does XTX and hence its inverse exists, and a little algebra
after setting −2XT(y − Xβ) = 0 yields β̂ = (XTX)−1XTy. This gives the unique minimum
because the second derivative matrix is positive definite.



(b) Symmetry and idempotency of H are simple to check. Note also that

(I − H)2 = (I − H)(I − H) = I − 2H + H2 = I − 2H + H = I − H,

so I −H is also symmetric and idempotent. If v is an eigenvector of H , then H2v = H(λv) =
λ2v, but as H2v = Hv = λv, the eigenvalues must satisfy λ2 = λ, which implies that λ = 1
or λ = 0. But the trace of H is the sum of its eigenvalues, and this equals the trace of
tr{(XTX)−1XTX} = tr(Ip) = p, so H has p eigenvalues equal to 1 and n − p equal to 0.

(c) H ′ is a projection onto the vector subspace V ′ of Rn spanned by the columns of X ′, and this
is a subspace of the space V generated by the columns of X, i.e., V ′ ⊂ V ⊂ R

n.

Clearly (I −H)H = H −H2 = H −H = 0, and likewise for H ′, and H and H ′ are projection
matrices onto V and V ′.

Let y ∈ R
n, and note that H ′y ∈ V ′, so H ′y ∈ V, so HH ′y = H ′y, which implies that

HH ′ = H ′, because y was arbitrary. Hence

HH ′ = H ′ = (H ′)T = (HH ′)T = (H ′)THT = H ′H,

rearrangement of which gives the required

H ′(H − H ′) = H ′(I − H) = H ′(I − H ′) = H(I − H) = 0.

Solution 4

(a) Let Q have spectral decomposition V DV T, where the columns of the orthogonal matrix V
are the eigenvectors of Q and the diagonal matrix D contains its eigenvalues (which are all
positive). Recall that V V T = V TV = In. Then we can write

Q−1 = V D−1V T = W, W 1/2 = V D−1/2V T,

say, where W 1/2 is symmetric, and hence

y∗ = W 1/2y ∼ (W 1/2Xβ, σ2W 1/2Q(W 1/2)T ∼ (X∗β, σ2In),

say, because W 1/2Q(W 1/2)T = W 1/2W −1W 1/2 = In. Hence

β̂ = (XT

∗
X∗)−1XT

∗
y∗

= {XT(W 1/2)TW 1/2X}−1XT(W 1/2)TW 1/2y

= (XTWX)−1XTWy,

the hat matrix is

H = X∗(X
T

∗
X∗)

−1XT

∗
= W 1/2X(XTWX)−1XTW 1/2,

and the residual sum of squares is

yT

∗
(In − H)y∗ = yT{W − WX(XTWX)−1XTW}y

= yTW 1/2{In − W 1/2X(XTWX)−1XTW 1/2}W 1/2y.

(b) When Q is diagonal we have var(yj) ∝ qjj = 1/wj, and then we can write

β̂ = (XTWX)−1XTWy =




n∑

j=1

wjxjx
T

j




−1
n∑

j=1

wjx
T

j yj,

so we see that the contribution to β̂ from the jth case, (xj , yj), is given weight wj , where
the weight wj is large if the corresponding variance qjj is small.
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