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Smoking data

Table 2: Lung cancer deaths in British male physicians (Doll and Hill, 1952). The table gives man-years
at risk T/number of cases y of lung cancer, cross-classified by years of smoking t, taken to be age minus
20 years, and number of cigarettes smoked per day, d.

Years of Daily cigarette consumption d
smoking t

Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+
15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1
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Smoking data

Lung cancer deaths in British male physicians. The figure shows the rate of deaths per 1000
man-years at risk, for each of three levels of daily cigarette consumption.
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Smoking data

! Suppose number of deaths y has Poisson distribution, mean Tλ(d, t), where T is man-years at
risk, d is number of cigarettes smoked daily and t is time smoking (years).

! Take
λ(d, t) = β0t

β1
(
1 + β2d

β3
)
:

– background rate of lung cancer is β0tβ1 for non-smoker,

– additional risk due to smoking d cigarettes/day is β2dβ3 .

! With xj = (Tj , dj , tj), can write this as

yj ∼ Poiss{µ(β;xj)},

µ(β;x) = Tβ0t
β1
(
1 + β2d

β3
)
, j = 1, . . . , n :

a nonlinear model with Poisson-distributed response.
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Comments

! Linear model y ∼ (Xβ,σ2In)

– applicable for continuous response y ∈ R

– assumes linear dependence of mean response E(y) on covariates X

– sometimes assumes y normal

! Lots of data not like this

! Need extensions for

– nonlinear dependence on covariates

– arbitrary response distribution (binomial, Poisson, exponential, . . . )

– dependent responses

– variance non-constant (and related to mean?)

– censoring, truncation, . . .

– . . .
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Simple fixes

! Just fit a linear model anyway

– Might work as an approximation, but usually extrapolates really badly.

! Fit a linear model to transformed responses

– E.g., take variance-stabilising transformation for y, such as 2
√
y when y is Poisson

– Can be helpful, but usually the obvious transformation can’t give linearity.

! Instead we attempt to fit the model using likelihood estimation.
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2.1 Inference slide 95

Revision: Likelihood

Definition 15 Let y be a data set, assumed to be the realisation of a random variable Y ∼ f(y; θ),
where the unknown parameter θ lies in the parameter space Ωθ ⊂ Rp. Then the likelihood (for θ
based on y) and the corresponding log likelihood are

L(θ) = L(θ; y) = fY (y; θ), ℓ(θ) = logL(θ), θ ∈ Ωθ.

The maximum likelihood estimate (MLE) θ̂ satisfies ℓ(θ̂) ≥ ℓ(θ), for all θ ∈ Ωθ.
Often θ̂ is unique and in many cases it satisfies the score (or likelihood) equation

∂ℓ(θ)

∂θ
= 0,

which is interpreted as a vector equation of dimension p× 1 if θ is a p× 1 vector.
The observed information and expected (Fisher) information are defined as

J(θ) = −∂
2ℓ(θ)

∂θ∂θT
, I(θ) = E {J(θ)} ;

these are p× p matrices if θ has dimension p.
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Revision: Maximum likelihood estimator

! In large samples from a regular model in which the true parameter is θ0p×1, the maximum

likelihood estimator θ̂ has an approximate normal distribution,

θ̂
·∼ Np

{
θ0, J(θ̂)−1

}
,

so we can compute an approximate (1− 2α) confidence interval for the rth parameter θ0r as

θ̂r ± zαv
1/2
rr ,

where vrr is the rth diagonal element of the matrix J(θ̂)−1.

! This is easily implemented:

– we code the negative log likelihood −ℓ(θ) (and check the code carefully!);

– we minimise −ℓ(θ) numerically, ensuring that the minimisation routine returns θ̂ and the
Hessian matrix J(θ̂) = −∂2ℓ(θ)/∂θ∂θT|θ=θ̂

– we compute J(θ̂)−1, and use the square roots of its diagonal elements, v1/211 , . . . , v1/2dd , as

standard errors for the corresponding elements of θ̂.
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Revision: Regular model

We say that a statistical model f(y; θ) is regular (for likelihood inference) if

1. the true value θ0 of θ is interior to the parameter space Ωθ ⊂ Rp;

2. the densities defined by any two different values of θ are distinct;

3. there is an open set I ⊂ Ωθ containing θ0 within which the first three derivatives of the log
likelihood with respect to elements of θ exist almost surely, and

|∂3 log f(Yj; θ)/∂θr∂θs∂θt| ≤ g(Yj)

uniformly for θ ∈ I, where 0 < E0{g(Yj)} = K <∞; and

4. for θ ∈ I we can interchange differentation with respect to θ and integration, that is,

∂

∂θ

∫
f(y; θ) dy =

∫
∂f(y; θ)

∂θ
dy,

∂2

∂θ∂θT

∫
f(y; θ) dy =

∫
∂2f(y; θ)

∂θ∂θT
dy.

The results are also true under weaker conditions, for non-identically distributed and dependent data.
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Revision: Comments on regular models

Condition

1. is needed so that θ̂ can lie ‘on both sides’ of θ0 and hence can have a limiting normal distribution,
once standardized—fails, for example, if θ has a discrete component (e.g. changepoint
γ ∈ {1, . . . , n});

2. is needed to be able to identify the model on the basis of the data;

3. ensures the validity of Taylor series expansions of ℓ(θ)—not usually a problem;

4. ensures that the score statistic has a limiting normal distribution—can fail in some models —
sometimes good news, leading to faster convergence than n−1/2.

All the above assumes the postulated model is correct! — there is a literature on what happens
when we fit the wrong model, or if the parameter dimension increases with n, or . . . usually there are
no generic results for such cases.
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Revision: Likelihood ratio statistic

! Model fB(y) is nested within model fA(y) if A reduces to B on restricting some parameters:

– for example, the model Y1, . . . , Yn
iid∼ N (0,σ2) is nested within the model

Y1, . . . , Yn
iid∼ N (µ,σ2), because the first is obtained from the second by setting µ = 0;

– the maximised log likelihoods satisfy ℓ̂A ≥ ℓ̂B, because the more comprehensive model A
contains the simpler model B.

! The likelihood ratio statistic for comparing them is

W = 2(ℓ̂A − ℓ̂B).

! If the model is regular, the simpler model is true, and A has q more parameters than B, then

W
·∼ χ2

q .

! This implicitly assumes that ML inference for model A is OK, so that the approximation
θ̂A

·∼ N{θA, JA(θ̂A)−1} is adequate.
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Revision: Profile log likelihood

! Consider a regular log likelihood ℓ(ψ,λ), where the parameter of interest ψ is variation
independent of the nuisance parameter λ, i.e., (ψ,λ) ∈ Ωψ ×Ωλ, and the overall MLE is (ψ̂, λ̂).

! For a confidence set for ψ, without reference to λ, we use the profile log likelihood

ℓp(ψ) = max
λ∈Ωλ

ℓ(ψ,λ) = ℓ(ψ, λ̂ψ),

say, and, based on the limiting distribution of the likelihood ratio statistic, take as (1− 2α)
confidence region the set

{
ψ ∈ Ωψ : 2{ℓ(ψ̂, λ̂)− ℓ(ψ, λ̂ψ)} ≤ χ2

dimψ(1− 2α)
}
.

! When ψ is scalar, this yields

{
ψ ∈ Ωψ : ℓ(ψ, λ̂ψ)} ≥ ℓ(ψ̂, λ̂)− 1

2χ
2
1(1− 2α)

}
,

and 1
2χ

2
1(0.95) = 1.92.

! Such intervals are generally better than the standard interval ψ̂ ± zαSE, particularly when the
distribution of ψ̂ is asymmetric, but require more computation, since they involve many
maximisations of ℓ.
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Model setup

! Independent random variables Y1, . . . , Yn, with observed values y1, . . . , yn, and covariates
x1, . . . , xn.

! Suppose that probability density of Yj is f(yj; ηj ,φ), where ηj = η(β, xj), and φ is common to all
models.

! Log likelihood is

ℓ(β,φ) =
n∑

j=1

ℓj(β,φ) =
n∑

j=1

log f{yj; η(β, xj),φ}.

! More generally, just let ℓj(β,φ) denote the log likelihood contribution from the jth observation.

! Suppose φ known (for now), suppress it, and estimate β.

Example 16 (Normal regression model) Express the normal regression model in the terms above.
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Note to Example 16

Here Yj
ind∼ N (µj ,σ2) with µj = ηj = η(xj ;β), so obviously

ηj = η(xj ;β), φ = σ2, ℓj ≡ −1
2{(yj − ηj)

2/φ+ log φ}.
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Iterative weighted least squares (IWLS)

! General approach for estimation in regression models, based on Newton–Raphson iteration

! Assume that φ is fixed, and write

ℓ(β) =
n∑

j=1

ℓj{ηj(β)}.

! MLEs β̂ usually satisfy
∂ℓ(β̂)

∂βr
= 0, r = 1, . . . , p,

or equivalently

∂ℓ(β̂)

∂β
=
∂ηT

∂β

∂ℓ

∂η
=
∂ηT

∂β
u(β̂) =

n∑

j=1

∂ηj
∂β

∂ℓj{ηj(β)}
∂ηj

= 0, (6)

where u(β) is n× 1 vector with jth element ∂ℓ/∂ηj .
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IWLS II

! Newton–Raphson update step:
β̂ = (XTWX)−1XTWz,

where

Xn×p = ∂η/∂βT, (design matrix)

Wn×n = diag{E(−∂2ℓj/∂η2j )}, (weights)

zn×1 = Xβ +W−1u, (adjusted dependent variable)

! Thus to obtain MLEs β̂ we use the IWLS algorithm:

! take an initial β̂. Repeat

– compute X,W, u, z;

– compute new β̂ and replace the preceding value;

until changes in ℓ(β̂) (or, sometimes, β̂, or both) are lower than some tolerance.

! Sometimes a line search is added, if ℓ(β̂new) < ℓ(β̂old): i.e., we half the step length and try again.
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Derivation of IWLS algorithm

! To find the maximum likelihood estimate β̂ starting from a trial value β, we make a Taylor series
expansion in (6), to obtain

∂ηT(β)

∂β
u(β) +

⎧
⎨

⎩

n∑

j=1

∂ηj(β)

∂β

∂2ℓj(β)

∂η2j

∂ηj(β)

∂βT
+

n∑

j=1

∂2ηj(β)

∂β∂βT
uj(β)

⎫
⎬

⎭ (β̂ − β) .
= 0. (7)

If we denote the p× p matrix in braces on the left by −J(β), assumed invertible, we can
rearrange (7) to obtain

β̂
.
= β + J(β)−1 ∂η

T(β)

∂β
u(β). (8)

This suggests that maximum likelihood estimates may be obtained by starting from a particular
β, using (8) to obtain β̂, then setting β equal to β̂, and iterating (8) until convergence. This is
the Newton–Raphson algorithm applied to our particular setting. In practice it can be more
convenient to replace J(β) by its expected value

I(β) =
n∑

j=1

∂ηj(β)

∂β
E

(

−∂
2ℓj
∂η2j

)
∂ηj(β)

∂βT
;

the other term vanishes because E{uj(β)} = 0. We write

I(β) = X(β)TW (β)X(β), (9)

where X(β) is the n× p matrix ∂η(β)/∂βT and W (β) is the n× n diagonal matrix whose jth
diagonal element is E(−∂2ℓj/∂η2j ).

! If we replace J(β) by X(β)TW (β)X(β) and reorganize (8), we obtain

β̂ = (XTWX)−1XTW (Xβ +W−1u) = (XTWX)−1XTWz, (10)

say, where the dependence of the terms on the right on β has been suppressed. That is, starting
from β, the updated estimate β̂ is obtained by weighted linear regression of the n× 1 vector
adjusted dependent variable

z = X(β)β +W (β)−1u(β)

on the columns of X(β), using weight matrix W (β). The maximum likelihood estimates are
obtained by repeating this step until the log likelihood, the estimates, or more often both, are
essentially unchanged. The variable z plays the role of the response or dependent variable in the
weighted least squares step.

! Often the structure of a model simplifies the estimation of an unknown value of φ. It may be
estimated by a separate step between iterations of β̂, by including it in the step (8), or from the
profile log likelihood ℓp(φ).
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Examples

Example 17 (Normal nonlinear model) Give the components of the IWLS algorithm for the
normal nonlinear model.
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Note to Example 17

! Here the mean of the jth observation is ηj = η(xj ;β). The log likelihood contribution ℓj(ηj) is

ℓj(ηj ,σ
2) ≡ −1

2

{
log σ2 +

1

σ2
(yj − ηj)2

}
,

so

uj(ηj) =
∂ℓj
∂ηj

=
1

σ2
(yj − ηj),

∂2ℓj
∂η2j

= − 1

σ2
;

the jth element on the diagonal of W is the constant σ−2.
The jth row of the matrix X = ∂η/∂βT is (∂ηj/∂β0, . . . , ∂ηj/∂βp−1), and as ηj is nonlinear as a
function of β, X depends on β.
After some simplification, we see that the new value for β̂ given by (10) is

β̂
.
= (XTX)−1XT(Xβ + y − η), (11)

where X and η are evaluated at the current β. Here η ̸= Xβ and (11) must be iterated.

! The log likelihood is a function of β only through the sum of squares,
SS(β) =

∑n
j=1{yj − ηj(β)}2. The profile log likelihood for σ2 is

ℓp(σ
2) = max

β
ℓ(β,σ2) ≡ −1

2

{
n log σ2 + SS(β̂)/σ2

}
,

so the maximum likelihood estimator of σ2 is σ̂2 = SS(β̂)/n. Although S2 = SS(β̂)/(n − p) is
not unbiased when the model is nonlinear, it turns out to have smaller bias than σ̂2, and is
preferable in applications.

! In some cases the error variance depends on covariates, and we write the variance of the jth
response as σ2j = σ2(xj, γ). Such models may be fitted by alternating iterative weighted least
squares updates for β treating γ as fixed at a current value with those for γ with β fixed,
convergence being attained when neither estimates nor log likelihood change materially.
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Deviance

! Let η̂j = ηj(β̂, xj), where β̂ is MLE of β, giving maximised log likelihood ℓ(β̂) and
η̂T = (η̂1, . . . , η̂n).

! Let η̃j be the value of ηj that maximises log f(yj; ηj), and let η̃T = (η̃1, . . . , η̃n). This
corresponds to the saturated model, with

#parameters in η = #observations in y,

which will give the largest likelihood possible.

! Define the scaled deviance:

D = 2
n∑

j=1

{log f(yj; η̃j)− log f(yj; η̂j)} ≥ 0.

! Small D implies η̂ ≈ η̃, so model fits well.

! Large D implies poor fit — like SS(β̂) in linear model.

Regression Methods Autumn 2024 – slide 106

60



Differences of deviances

! Consider two models:

– Model A: βT = (β1, . . . ,βp) ∈ Rp vary freely — MLEs η̂A = η(β̂A);

– Model B: (β1, . . . ,βq) ∈ Rq vary freely, but βq+1, . . . ,βp are fixed — hence q free parameters,

MLEs η̂B = η(β̂B).

! Model B is nested within model A: B can be obtained by restricting A.

! Likelihood ratio statistic for comparing the models is

2(ℓ̂A − ℓ̂B) = 2
n∑

j=1

{
log f(yj; η̂

A
j )− log f(yj; η̂

B
j )
}
= DB −DA,

and this
·∼ χ2

p−q if the models are regular.

! If φ unknown, replace it by an estimate: same distributional approximations will apply.

Example 18 (Normal linear model) Find the difference of deviances in the normal linear model.
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Note to Example 18

! Suppose that the yj are normal with means ηj and known variance φ. Then

log f(yj; ηj ,φ) = −1
2

{
log(2πφ) + (yj − ηj)2/φ

}

is maximized with respect to ηj when η̃j = yj, giving log f(yj; η̃j ,φ) = −1
2 log(2πφ). Therefore

the scaled deviance for a model with fitted means η̂j is

D = φ−1
n∑

j=1

(yj − η̂j)2,

which is just the residual sum of squares for the model, divided by φ. If ηj = xT

j β is the correct

normal linear model, the distribution of the residual sum of squares is φχ2
n−p, so values of D

extreme relative to the χ2
n−p distribution call the model into question.

! The difference between deviances for nested models A and B in which β has dimensions p and
q < p,

DB −DA = φ−1
n∑

j=1

{
(yj − η̂Bj )2 − (yj − η̂Aj )2

} ·∼ χ2
p−q

when model B is correct. This distribution is exact for linear models.

! If φ is unknown, it is replaced by an estimate. The large-sample properties of deviance differences
outlined above still apply, though in small samples it may be better to replace the approximating
χ2 distribution by an F distribution with denominator degrees of freedom equal to the degrees of
freedom for estimation of φ.
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2.2 Model Checking slide 108

Model checking

! Two basic approaches:

– overall tests either using generic statistic (e.g., chi-squared) or by model expansion (e.g.,
adding a term and testing for significance);

– regression diagnostics for detecting a few possibly dodgy observations.

! Most widely used diagnostics in the linear model y = Xn×pβ + ε are residuals ej = yj − ŷj and
(much better) standardized residuals

rj =
yj − ŷj

s(1− hjj)1/2
, j = 1, . . . , n,

where the leverage hjj is the jth diagonal element of the hat matrix H = X(XTX)−1XT, and
the Cook statistic

Cj =
1

ps2
(ŷ − ŷ−j)

T(ŷ − ŷ−j) =
r2jhjj

p(1− hjj)
,

which measures the effect of deleting the jth case (xj , yj) on the fitted model.
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Diagnostics in general case

! Linear model ideas work as approximations (2nd order Taylor series, painful expansions).

! Leverage hjj defined as jth diagonal element of

H = W 1/2X(XTWX)−1XTW 1/2,

depends in general on β̂, unlike in linear model.

! Cook statistic is change in deviance

Cj = 2p−1
{
ℓ(β̂)− ℓ(β̂−j)

}
.
=

hjj
p(1− hjj)

r2Pj,

where β̂−j is MLE when jth case (xj , yj) is dropped, and rPj is standardized Pearson residual
(see below).

! There are several types of residual (see next page).
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Residuals in general case

! Deviance residual:
dj = sign(η̃j − η̂j)[2{ℓj(η̃j ;φ)− ℓj(η̂j ;φ)}]1/2,

for which
∑

d2j = D is deviance.

! Pearson residual: uj(β̂)/
√

wj(β̂).

! Standardized versions

rDj =
dj

(1− hjj)1/2
, rPj =

uj(β̂)

{wj(β̂)(1− hjj)}1/2
,

and (even better)

r∗j = rDj + r−1
Dj log(rPj/rDj)

·∼ N(0, 1)

for many models.

! These all reduce to usual standardized residual for normal linear model.
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Example

Example 19 (Gumbel linear model) Give the components of the IWLS algorithm for fitting the
linear model

yj = β0 + β1(xj − x) + τεj , j = 1, . . . , n,

with Gumbel errors having density function

f(yj; ηj , τ) = τ−1 exp

{
−yj − ηj

τ
− exp

(
−yj − ηj

τ

)}
,

where τ > 0 and ηj = β0 + β1(xj − x); this distribution is natural for maxima; note that τ2 is not the
variance.
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Note to Example 19

! As the data are annual maxima, it is more appropriate to suppose that yj has the Gumbel density

f(yj; ηj , τ) = τ−1 exp

{
−yj − ηj

τ
− exp

(
−yj − ηj

τ

)}
, (12)

where τ is a scale parameter and ηj = β0 + β1(xj − x); here we have replaced the γs with βs for
continuity with the general discussion above.

! In this case

ℓj(ηj , τ) = − log τ − yj − ηj
τ

− exp

(
−yj − ηj

τ

)
, (13)

and it is straightforward to establish that

∂ℓj(ηj , τ)

∂ηj
= τ−1

{
1− exp

(
−yj − ηj

τ

)}
, E

{

−∂
2ℓj(ηj , τ)

∂η2j

}

= τ−2,

that ∂η/∂βT = X is the n× 2 matrix whose jth row is (1, xj − x), and W = τ−2In. Hence (10)

becomes β̂
.
= (XTX)−1(Xβ + τ2u), where the jth element of u is τ−1[1− exp{−(yj − ηj)/τ}].

! Here it is simplest to fix τ , to obtain β̂ by iterating (10) for each fixed value of τ , and then to
repeat this over a range of values of τ , giving the profile log likelihood ℓp(τ) and hence confidence
intervals for τ . Confidence intervals for β0 and β1 are obtained from the information matrix.

! With starting value chosen to be the least squares estimates of β, and with τ = 5, 19 iterations of
(10) were required to give estimates and a maximized log likelihood whose relative change was
less than 10−6 between successive iterations. We then took τ = 5.5, . . . , 40, using β̂ from the
preceding iteration as starting-value for the next; in most cases just three iterations were needed.
The left panel of Figure 1 shows a close-up of ℓp(τ); its maximum is at τ̂ = 14.5, and the 95%
confidence interval for τ is (11.9, 18.1). The maximum likelihood estimates of β0 and β1 are
111.4 and 0.563, with standard errors 2.14 and 0.137; these compare with standard errors 2.61
and 0.177 for the least squares estimates. There is some gain in precision in using the more
appropriate model.
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Venice data

Example 20 (Venice sea level data) The figure below shows annual maximum sea levels in Venice,
from 1931–1981. The very large value in 1966 is not an outlier. The fit of a Gumbel model to the
data using IWLS gives MLEs (SEs) β̂0 = 111.4 (2.14) (cm) and β̂1 = 0.563 (0.137) (cm/year). The
standard errors for LSEs are 2.61, 0.177, larger than for MLEs with Gumbel model — gain in precision
through using appropriate model.
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Venice data

Figure 1: Gumbel analysis of Venice data. Left panel: profile log likelihood ℓp(τ) = maxβ ℓ(β, τ),
with 95% confidence interval (11.9, 18.1) (cm) for τ . Right panel: normal probability plot of residuals
r∗j .
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Summary

! For regression problems with independent responses yj dependent on parameters β through
parameter ηj = η(xj ;β), generalise least squares estimation to maximum likelihood estimation,
using iterative weighted least squares algorithm: iterate to convergence

β̂ = (XTWX)−1XTWz, z = Xβ +W−1u,

where

Xn×p ≡ X(β) =
∂η

∂βT
, un×1 ≡ u(η) =

∂ℓ

∂η
, Wn×n ≡W (η) = −E

{
∂2ℓ

∂η∂ηT

}
,

with ℓ the log likelihood for the data.

! Standard likelihood theory is used for confidence intervals and model comparison.

! Linear model diagnostics (residuals, leverage, Cook statistics, . . . ) generalise to this setting.

! Next: generalized linear models (GLMs), wide class of models with exponential family-like
response distributions.
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2.3 Generalized Linear Models slide 116

Motivation

! Need to generalise linear model beyond normal responses, e.g. to data with y ∈ {0, 1, . . . ,m}, or
y ∈ {0, 1, . . .}, or y > 0.

! Consider exponential family response distributions (binomial, Poisson, . . . ), which have an
elegant unifying theory, and encompass many possibilities (in addition to the normal)

! Basic idea is to build models such that

E(y) = µ, g(µ) = η = xTβ,

where g is a suitable function, and y ∼ exponential family (almost).

! Warnings:

– Don’t confuse Generalized Linear Model (GLM) with General Linear Model (GLM, in older
books, the latter is y = Xβ + ε, with cov(ε) = σ2V not diagonal);

– Don’t write y = µ+ ε, since in a GLM the distribution of ε usually depends on µ.
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Generalized linear model (GLM)

! Normal linear model has three key aspects:

– structure for covariates: linear predictor, η = xTβ;

– response distribution: y ∼ N(µ,σ2);

– linear relation η = µ between µ = E(y) and η.

! GLM extends last two to

– Y has density/mass function

f(y; θ,φ) = exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
, y ∈ Y, θ ∈ Ωθ,φ > 0, (14)

where

◃ Y is the support of Y ,

◃ Ωθ is the parameter space of valid values for θ ≡ θ(η), and
◃ the dispersion parameter φ is often known;

– η = g(µ), where g is monotone link function

◃ the canonical link function giving η = θ = b′−1(µ) has nice statistical properties;

◃ but a range of link functions are possible for each distribution of Y .
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Examples

Example 21 (GLM density) Show that the moment-generating function of f(y; θ,φ) is
MY (t) = exp[{b(θ + tφ)− b(θ)}/φ], and deduce that

E(Y ) = b′(θ) = µ, var(Y ) = φb′′(θ) = φb′′{b′−1(µ)} = φV (µ);

the function µ -→ V (µ) is known as the variance function.

Example 22 (Poisson distribution) Write the Poisson mass function as a GLM density, and find its
canonical link function.

Example 23 (Normal distribution) Write the normal density function as a GLM density, and find
its canonical link function.
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Note to Example 21

! Suppose that Y has a continuous density; if not the argument below is the same, except that
integrals are replaced by summations.

! Let Ωθ = {θ : b(θ) <∞}. Then
MY (t) = E{exp(tY )}

=

∫
ety exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
dy

=

∫
exp

{
y(θ + tφ)− b(θ)

φ
+ c(y;φ)

}
dy.

If θ + tφ ∈ Ωθ, then

∫
exp

{
y(θ + tφ)− b(θ + tφ)

φ
+ c(y;φ)

}
dy = 1,

so
MY (t) = E{exp(tY )} = exp [{b(θ + tφ)− b(θ)} /φ] .

! Hence the cumulant-generating function of Y is

KY (t) = logMY (t) = {b(θ + tφ)− b(θ)} /φ,

and differentiating twice with respect to t and setting t = 0 yields

E(Y ) = K ′
Y (t)

∣∣
t=0

= b′(θ), var(Y ) = K ′′
Y (t)

∣∣
t=0

= φb′′(θ).

! One can show that b(θ) is strictly convex on Ωθ. Thus b′(θ) is a monotonic increasing function of
θ, so b′−1(·) exists and is itself monotonic, so V (µ) = b′′{b′−1(µ)} is well-defined.
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Note to Example 22

The Poisson density may be written as

f(y;µ) = exp (y log µ− µ− log y!) , y = 0, 1, . . . , µ > 0,

which has GLM form (14) with θ = log µ, b(θ) = eθ, φ = 1, and c(y;φ) = − log y!. The mean of y is
µ = b′(θ) = eθ = µ, and its variance is b′′(θ) = eθ = µ, so the variance function is linear: V (µ) = µ.
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Note to Example 23

The normal density with mean µ and variance σ2 may be written

f(y;µ,σ2) = exp

{
−(y2 − 2yµ+ µ2)

2σ2
− 1

2 log(2πσ
2)

}
,

so
θ = µ, φ = σ2, b(θ) = 1

2θ
2, c(y;φ) = − 1

2φy
2 − 1

2 log(2πφ).

As the first and second derivatives of b(θ) are θ and 1, we have V (µ) = 1; the variance function is
constant.
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Estimation of β

Example 24 (IWLS algorithm) Find the components of the IWLS algorithm for a GLM.

! If canonical link is used then θj = xT

j β, so if φ is known, then

ℓ(β) =
n∑

j=1

{
yjxT

j β − b(xT

j β)

φ
+ c(yj;φ)

}

= {yTXβ −K(β)}/φ + C(y;φ),

say, which in terms of β is a linear exponential family with

– canonical parameter βp×1

– canonical statistic (XTy)p×1,

and many nice properties then hold.

! If X is full rank, then ℓ(β) is (almost always) strictly concave and has a unique maximum in
terms of β.

! Problem: the maximum may be at infinity in certain (rare) cases—this can arise with binomial
responses: beware of θ̂r ≈ ±36.
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Note to Example 24

! To compute the quantities needed for the IWLS step β̂ = (XTWX)−1XTW (Xβ +W−1u), we
need

Xn×p =
∂η

∂βT
, Wn×n = diag{E(−∂2ℓj/∂η2j )}, un×1 = {∂ℓj/∂ηj},

where (with φj instead of φ for generality, see the next slide),

ℓj(β) =

{
yjθj − b(θj)

φj
+ c(yj ;φj)

}
, b′(θj) = µj, ηj = g(µj) = xT

j β.

! First note that ∂ηj/∂βr = xjr, so X = ∂η/∂βT is just a matrix of constants.

! We need the first and second derivatives of ℓj with respect to ηj , so we write

∂ℓj
∂ηj

=
∂µj

∂ηj

∂θj
∂µj

∂ℓj
∂θj

,

with
∂ηj
∂µj

= g′(µj),
∂µj

∂θj
= b′′(θj) = V (µj),

∂ℓj
∂θj

=
yj − b′(θj)

φj
,

which yields

uj =
∂ℓj
∂ηj

=
yj − b(θj)

g′(µj)φjV (µj)
=

yj − µj

g′(µj)φjV (µj)
=

A(θj)

B(θj)
,

say, where E(A) = 0. For the second derivative, we note that

∂2ℓj
∂η2j

=
∂

∂ηj

∂ℓj
∂ηj

=

(
∂µj

∂ηj

∂θj
∂µj

∂

∂θj

)
∂ℓj
∂ηj

=
∂µj

∂ηj

∂θj
∂µj

{
A′(θj)

B(θj)
− A(θj)B′(θj)

B(θj)2

}
,

and on noting that B(θj) is non-random and A′(θj) = −b′′(θj) = −V (µj), we obtain

wj = E

(

−∂
2ℓj
∂η2j

)

=
1

g′(µj)

1

V (µj)

V (µj)

g′(µj)φjV (µj)
=

1

g′(µj)2φjV (µj)
.
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Note to Example 24, part II

! From above we see that the components of the score statistic u(β) and the weight matrix W (β)
may be expressed in terms of components µj of the mean vector µ as

uj =
∂θj
∂ηj

∂ℓj(θj)

∂θj
=

yj − µj

g′(µj)φjV (µj)
,

wj =

(
∂θj
∂ηj

)2 ∂2ℓj(θj)

∂θ2j
=

1

g′(µj)2φjV (µj)
, (15)

where g′(µj) = dg(µj)/dµj . Thus β̂ is obtained by iterative weighted least squares regression of
response

z = Xβ + g′(µ)(y − µ) = η + g′(µ)(y − µ)

on the columns of X using weights (15).

! By using y as an initial value for µ and g(y) as an initial value for η = Xβ, we avoid needing an
initial value for β.

! It may be necessary to modify y slightly for this initial step. For example if we use the log link for
Poisson data, and some yj equal zero, then we may need to replace them with some small
positive value to avoid taking log 0 for some components of the initial η = log y.
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Estimation of φ

! When φ unknown, it is often replaced by φj = φaj , with known aj and a−1
j treated as a weight.

Then we replace the scaled deviance by the deviance φD.

! If the model is correct and φ is known, then Pearson’s statistic

P =
1

φ

n∑

j=1

(yj − µ̂j)2

ajV (µ̂j)
·∼ χ2

n−p,

analogously to the sum of squares in a linear model, with E(P )
.
= n− p.

! The MLE of φ can be badly behaved, so usually we prefer the method of moments estimator

φ̂ =
1

n− p

n∑

j=1

(yj − µ̂j)
2/{ajV (µ̂j)},

which is obtained by solving the equation P = n− p, based on noting that E(χ2
n−p) = n− p.

! If the data are sparse (e.g., many small binomial or Poisson counts), then standard asymptotic
results are suspect.

Regression Methods Autumn 2024 – slide 121

71



Example: Jacamar data

Table 3: Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar
to individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0
† includes Philaethria dido also.
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Jacamar data

Figure 2: Proportion of butterflies eaten (±2SE) for different species and wing colour.
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Jacamar data

! How does a bird respond to the species s and wing colour c of its prey?

! Response has 3 (ordered) categories: not attacked (N), attacked but then rejected (S), attacked
and eaten (E)

! The data form an 8× 6 layout, with a 3-category response in each cell, total mcs

! Assume that the number in category E (response) is binomial:

Rcs ∼ B(mcs,πcs), c = 1, . . . , 8, s = 1, . . . , 6,

where c is colour and s is species, with probability that bird attacks and eats butterfly is

πcs =
exp(αc + γs)

1 + exp(αc + γs)
, c = 1, . . . , 8, s = 1, . . . , 6,

so

– large αc corresponds to colours that the jacamar likes to eat,

– large γs corresponds to species that it likes.

! This is a GLM with response ycs = rcs/mcs, E(ycs) = πcs, and canonical (logit) link function

η = log{π/(1 − π)}, ηcs = αc + γs.
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Jacamar data: Analysis of deviance

Table 4: Deviances and analysis of deviance for models fitted to jacamar data. The lower part shows
results for the reduced data, without two outliers.

Full data Without outliers
Terms df Deviance df Deviance
1 43 134.24 35 73.68
1+Species 38 114.59 31 46.04
1+Colour 36 108.46 28 63.20
1+Species+Colour 31 67.28 24 28.02

Terms df Deviance Terms df Deviance
reduction reduction

Species (unadj. for Colour) 5 19.64 Species (adj. for Colour) 5 41.18
Colour (adj. for Species) 7 47.31 Colour (unadj. for Species) 7 25.78

Species (unadj. for Colour) 4 27.63 Species (adj. for Colour) 4 35.18
Colour (adj. for Species) 7 18.03 Colour (unadj. for Species) 7 10.48
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Jacamar data: Residuals

Figure 3: Standardized deviance residuals rD for binomial two-way layout fitted to jacamar data.
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Jacamar data: Parameter estimates

Table 5: Estimated parameters and standard errors for the jacamar data, without 2 outliers.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes
–1.99 (0.79) –2.22 (0.85) –0.56 (0.67) 0.16 (0.54) — 1.50 (0.78)

Brown Yellow Blue Green Red Orange Black
0.16 (0.73) 0.33 (0.68) –0.53 (0.81) –0.83 (0.75) –1.93 (0.88) –1.94 (0.85) –1.26 (0.86)

! Interpretation

! Residual deviance: 28.02, with 24 df

! Pearson statistic: 25.58, with 24 df

! Standardized residuals in range −2.03 to 1.96: OK.
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Example: Chimpanzee data

Table 6: Times in minutes taken by four chimpanzees to learn ten words.

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

! A two-way layout.

! Times vary from 2 to 476 minutes — need transformation (e.g., logarithm) if use linear model.

Regression Methods Autumn 2024 – slide 128

Chimpanzee data

! How does learning time depend on word w and chimp c?

! Response is continuous and positive, so we try fitting the gamma distribution with mean µ and
shape parameter ν, i.e.,

f(y;µ, ν) =
1

Γ(ν)
yν−1

(
ν

µ

)ν
exp(−νy/µ), y > 0, ν, µ > 0,

so dispersion parameter is φ = 1/ν (φ = ν = 1 for exponential).

! Possible link functions:

η = log µ, (log, most common), η = 1/µ, (reciprocal, canonical)

! Linear model structure:

ηcw = αc + γw, c = 1, . . . , 4, w = 1, . . . , 10,

but the interpretation of the αc and γw will depend on the link function.

! With the log link, the deviances for models 1, 1+Chimp, 1+Word, and 1+Chimp+Word are
60.38, 53.43, 21.19, and 14.97. How many df are there for each model?
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Chimpanzee data: Analysis of deviance

Table 7: Analysis of deviance for models fitted to chimpanzee data.

Term df Deviance Term df Deviance
reduction reduction

Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22
Word (adj. for Chimp) 9 38.46 Word (unadj. for Chimp) 9 39.19

! Method of moments estimate is φ̂ = 0.432, so ν̂ = 1/φ̂ = 2.31.

! Use F tests to assess effects of Word and Chimp, for example obtaining

6.22/3

0.423
= 4.78

·∼ F3,27

if there is no difference between the chimps. What is the corresponding statistic for testing
differences between words?

! Residuals suggest that this model, or one with the inverse link, are both adequate, and both are
better than fitting a normal linear model to the log times.
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Summary

! Generalized linear models extend the classical linear model in two ways:

– the response distribution is (almost) exponential family, so includes binomial, Poisson, gamma
and other distributions in addition to the normal;

– the relation between the linear predictor η = xTβ and the mean µ is determined by a wide
range of possible link functions.

! Canonical link functions give particularly simple models and are widely used.

! Estimates of β are obtained by IWLS, which has a simple form, with no need for initial values.

! A simple estimate of the dispersion parameter φ is available using the method of moments.

! Models are compared using the analysis of deviance, which generalises the analysis of variance in
the classical linear model.

! Standard likelihood theory results are used for inference (standard errors, confidence intervals,
etc.)

! Standard diagnostics (residuals, . . . ) extend in a natural way to this setting.
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2.4 Proportion Data slide 132

Binary response

! Response Y has Bernoulli distribution with

P(Y = 1) = π, P(Y = 0) = 1− π, 0 < π < 1.

and E(Y ) = µ = π, var(Y ) = π(1− π).
! Linear link function π = η = xTβ can give π ̸∈ [0, 1], so not usually a good idea.

! Y can be interpreted in terms of a hidden variable/tolerance distribution: let Z = xTγ + σε,
where ε ∼ F . Set Y = I(Z > 0), and note that

π = P(Y = 1) = P(xTγ + σε > 0) = P(ε > −xTγ/σ) = 1− F (−xTβ),

say. Note that β = γ/σ is estimable, but γ and σ are not.

! The corresponding link function is given by

η = xTβ = −F−1(1− π) = g(π),

so different choices of F yield different possible link functions.
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Link functions

Tolerance distributions and corresponding link functions for binary data.

Distribution F Link function
Logistic eu/(1 + eu) Logit η = log{π/(1 − π)}
Normal Φ(u) Probit η = Φ−1(π)
Log Weibull 1− exp(− exp(u)} Log-log η = − log{− log(π)}
Gumbel exp{− exp(−u)} Complementary log-log η = log{− log(1− π)}

! The logit and probit links are symmetric.

! Logit (canonical link) is usual choice, good for medical studies (later), with nice interpretation,
but the probit is very similar to it and may be preferred in some cases, for its relation to the
normal distribution.

! The log-log and complementary log-log links are asymmetric.
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Logistic regression

! Commonest choice of link function for proportion data is the logit, which gives

P(Y = 1) = π =
exp(xTβ)

1 + exp(xTβ)
, P(Y = 0) = 1− π =

1

1 + exp(xTβ)
,

leading to a linear model for the log odds of success,

log

{
P(Y = 1)

P(Y = 0)

}
= log

(
π

1− π

)
= xTβ, β ∈ R

p.

! The likelihood for β based on independent responses y1, . . . , yn with covariate vectors x1, . . . , xn
and corresponding probabilities π1, . . . ,πn is

L(β) =
n∏

j=1

π
yj
j (1− πj)1−yj = · · · =

exp
(∑n

j=1 yjx
T

j β
)

∏n
j=1

{
1 + exp

(
xT

j β
)} ,

which is a regular exponential family with s(y) = XTy and log likelihood

ℓ(β) = (XTy)Tβ −
n∑

j=1

log
{
1 + exp

(
xT

j β
)}

, β ∈ R
p,

known as the logistic regression model.
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Nodal involvement data

Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five
binary covariates age, stage, etc.

m r age stage grade xray acid
6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
...

...
...

...
...

...
1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0
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Deviances for nodal involvement models

Scaled deviances D for 32 logistic regression models for nodal involvement data. + denotes a term
included in the model.

age st gr xr ac df D age st gr xr ac df D
52 40.71 + + + 49 29.76

+ 51 39.32 + + + 49 23.67
+ 51 33.01 + + + 49 25.54

+ 51 35.13 + + + 49 27.50
+ 51 31.39 + + + 49 26.70

+ 51 33.17 + + + 49 24.92
+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07
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Model selection

! We have 32 competing models, and would like to select the ‘best’, or a few ‘near-best’.

! In general we have 2p models, so automatic selection of some sort is helpful.

! Could use likelihood ratio tests (differences of deviances) to compare competing models, but this
involves many correlated tests, so may lead to spurious results.

! Usually minimise an information criterion, which accounts for the number of parameters in each
model, such as

AIC ≡ D + 2p, BIC ≡ D + p log n,

where D is the deviance.

! Recall their properties, with p fixed and as n→∞:

– AIC tends to overfit, i.e., it has a positive probability of choosing a model that is too complex,;

– BIC applies a stronger penalty, so if the true model is among those fitted, it will choose it with
probability one;

– BIC usually yields less complex models than AIC, but they may predict less well.

! There are many other information criteria, but these are most used in practice.
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Example: Nodal involvement

! Model with lowest AIC has stage, xray, acid:

xTβ̂ = −3.05 + 1.65Istage + 1.91Ixray + 1.64Iacid,

where Istage = 1 indicates that stage takes its higher level, etc.

! Interpretation of this model:

– for an individual with stage, xray and acid at their lowest levels, the fitted probability of nodal
involvement is e−3.05/(1 + e−3.05)

.
= 0.045 (though there are no such people in the data, so

this involves extrapolation);

– for someone with only Istage = 1, the odds of nodal involvement are

e−3.05+1.65 = e−1.4 .
= 0.25, a probability of 0.2;

– for someone with Istage = Ixray = Iacid = 1, the odds of nodal involvement are

e−3.05+1.65+1.91+1.64 .
= 8.6, a probability of 0.9;

! Problems with interpretation of residual deviance of 19.64: how many df? — can amalgamate
independent binary responses with same covariates.

! Likewise problems with residuals . . .
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Nodal involvement residuals

Figure 4: Standardized deviance residuals for nodal involvement data, for ungrouped responses (left)
and grouped responses (right).
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Summary

! Proportion data are often modelled using the Bernoulli/binomial response distributions.

! Link functions (logit, probit, . . . ) have interpretations in terms of underlying continuous variables
that have been dichotomized.

! The canonical and most commonly-used link is the logit, and fitting using this yields logistic
regression, in which

– the canonical parameter is the log odds;

– classical data structures (e.g., the 2× 2 table) have nice interpretations.

! The deviance can be used to compare models (so can AIC, BIC, . . . ), but using its absolute value
to assess fit can be dangerous (exercise).

! Residuals for binary data are not very informative.
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2.5 Count Data slide 142

Types of count data

! y ∈ {0, 1, 2, . . .}, perhaps with upper bound m, depending on sampling scheme:

– counts, with no fixed total;

– m individuals, subdivided into various categories:

◃ nominal response—unordered categories (gender, nationality, . . . )

◃ ordinal response—ordered categories (pain level, spiciness of curry, . . . )

! Simplest models:

– single unbounded response, or Poisson approximation to binomial, takes Y ∼ Pois(µ);

– group of responses (Y1, . . . , Yd) with fixed total
∑

Yj = m has multinomial distribution,
probabilities (π1, . . . ,πd) and denominator m.

! Previous examples:

– Doll and Hill data on smoking had response y Poisson with µ = Tλ(x;β);

– Jacamar data had ordinal (?) response N/S/E with total N+S+E fixed—multinomial with
d = 3

Regression Methods Autumn 2024 – slide 143

Poisson and multinomial distributions

! Y ∼ Pois(µ) implies that

f(y;µ) =
µy

y!
e−µ, y = 0, 1, 2, . . . , µ > 0.

! Exponential family with natural parameter θ = log µ, GLM with canonical logarithmic link,
xTβ = η = log µ.

! If Y is number of events in Poisson process of rate λ observed for period of length T , then
µ = λT and we set η = xTβ + log T

– offset log T is fixed part of linear predictor η

! If Yr
ind∼ Pois(µr), r = 1, . . . , d, then the joint distribution of Y1, . . . , Yd given Y1 + · · · + Yd = m

is multinomial, with denominator m, and probabilities

π1 =
µ1∑d
r=1 µr

, . . . , πd =
µd∑d
r=1 µr

.

! If (Y1, . . . , Yd) ∼ Mult(m;π1, . . . ,πd), then marginal and conditional distributions, e.g., of

(Y1 + Y2, Y3 + Y4 + Y5, Y6, . . . , Yd), (Y1, Y2, Y4) | (Y3, Y5, . . . , Yd),

are also multinomial.
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Log-linear and logistic regressions

! Special case: if d = 2, then

Y2 | Y1 + Y2 = m ∼ B

(
m,π =

µ2

µ1 + µ2

)

! If µ1 = exp(γ + xT

1β), µ2 = exp(γ + xT

2β), then

π =
exp(γ + xT

2β)

exp(γ + xT

1β) + exp(γ + xT

2β)
=

exp{(x2 − x1)Tβ}
1 + exp{(x2 − x1)Tβ}

,

which corresponds to a logistic regression model for Y2 with denominator m and probability π.

! Can estimate β using log linear model or logistic model—but can’t estimate γ from logistic model.
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2.6 Poisson Regression slide 146

Premier League data

> soccer

month day year team1 team2 score1 score2

1 Aug 19 2000 Charlton ManchesterC 4 0

2 Aug 19 2000 Chelsea WestHam 4 2

3 Aug 19 2000 Coventry Middlesbr 1 3

4 Aug 19 2000 Derby Southampton 2 2

5 Aug 19 2000 Leeds Everton 2 0

6 Aug 19 2000 Leicester AstonVilla 0 0

7 Aug 19 2000 Liverpool Bradford 1 0

8 Aug 19 2000 Sunderland Arsenal 1 0

9 Aug 19 2000 Tottenham Ipswich 3 1

10 Aug 20 2000 ManchesterU Newcastle 2 0

11 Aug 21 2000 Arsenal Liverpool 2 0

12 Aug 22 2000 Bradford Chelsea 2 0

13 Aug 22 2000 Ipswich ManchesterU 1 1

14 Aug 22 2000 Middlesbr Tottenham 1 1

15 Aug 23 2000 Everton Charlton 3 0

16 Aug 23 2000 ManchesterC Sunderland 4 2

17 Aug 23 2000 Newcastle Derby 3 2

18 Aug 23 2000 Southampton Coventry 1 2

19 Aug 23 2000 WestHam Leicester 0 1

20 Aug 26 2000 Arsenal Charlton 5 3

...
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Premier League data

! 380 soccer matches in English Premier League in 2000–2001 season.

! Data: home score yhij and away score yaij when team i is at home to team j, for i, j,= 1, . . . , 20,
i ̸= j.

! Treat these as Poisson counts with means

µh
ij = exp(∆+ αi − βj), µa

ij = exp(αj − βi)

where

– ∆ represents the home advantage;

– αi and βi represent the offensive and defensive strengths of team i.

! Two possibilities for fitting:

– Poisson GLM, with 39 parameters;

– binomial GLM, with 20 parameters.
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Premier League data: Analysis of deviance

Poisson model Binomial model
Terms df Deviance Terms df Deviance

reduction reduction
Home 1 33.58 Home 1 33.58
Defence 19 39.21 Team 19 79.63
Offence 19 58.85
Residual 720 801.08 Residual 332 410.65

! There’s a strong effect of playing at home, and lots of evidence of differences among the
teams—more in offence than defence.

! Both residual deviances are a little large, but since the counts are small, we don’t expect the
large-sample χ2 distribution to apply well to the residual deviance.

! Simulations from the fitted model suggest that the residual deviances are not unusually large, so
there’s no evidence of a lack of fit.
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Premier League data: Null deviance for defence effect

Defence effect deviance (in red) for the Poisson model is large(ish) relative to χ2
19 distribution, but the

asymptotics seem OK, based on simulations from a model without this effect (i.e., Home + Offence).
It seems we can trust asymptotic distributions for differences of deviances, even though the counts are
small.

Simulated likelihood ratio statistics

Likelihood ratio statistic

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0 10 20 30 40 50 60

0
10

20
30

40
50

60

Quantiles of chi−squared distribution, 19 df

O
rd

e
re

d
 L

R
 s

ta
tis

tic
s

Regression Methods Autumn 2024 – slide 150

Premier League data: Residual deviance

Residual deviance of 801 (in red) for the Poisson model seems large(ish) relative to χ2
720 distribution,

but the asymptotics are suspect because most of the counts are small. Comparison of observed
deviance with χ2

720 distribution shows that 801 is in fact somewhat smaller than average for datasets
simulated from the fitted model.

Simulated likelihood ratio statistics
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Premier League data: Estimates

Overall (δ) Offensive (α) Defensive (β)
Manchester United 0.39 0.22 0.15
Liverpool 0.13 0.12 −0.08
Arsenal — 0.04 —
Chelsea −0.09 0.08 −0.22
Leeds −0.10 0.02 −0.17
Ipswich −0.16 −0.10 −0.13
Sunderland −0.33 −0.31 −0.10
Aston Villa −0.48 −0.31 −0.15
West Ham −0.53 −0.33 −0.30
Middlesborough −0.53 −0.35 −0.17
Charlton −0.55 −0.21 −0.43
Tottenham −0.58 −0.28 −0.38
Newcastle −0.59 −0.35 −0.30
Southampton −0.60 −0.45 −0.25
Everton −0.75 −0.32 −0.46
Leicester −0.77 −0.47 −0.31
Manchester City −0.90 −0.40 −0.56
Coventry −0.93 −0.53 −0.52
Derby −0.93 −0.51 −0.45
Bradford −1.29 −0.71 −0.62

SEs 0.29 0.20 0.20

Home advantage: ∆̂ = 0.37 (0.07), exp(∆̂) = 1.45.
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Premier League data: Assessment of fit

Diagnostic plots for fitted model: residuals against η̂ (top left); normal QQ-plot of residuals (top
right); Cook statistic Cj against leverage ratio hj/(1− hj) (lower left); Cook statistic Cj against case
number (lower right).
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2.7 Contingency Tables slide 154

Sampling schemes

! A contingency table contains individuals (sampling units) cross-classified by various categorical
variables.

– Example: the jacamar data cross-classify butterflies by

6 species × 8 colours × 3 fates

for a total of 144 categories, each with its number of butterflies 0, 1, . . . , 14.

! The sampling scheme underlying a table may fix certain totals. Suppose a pollster wants to find
out how people will vote. She might

– wait in the street for a morning, and get opinions from those people willing to talk to her;

– wait until she has the views of a fixed number, say m, of people;

– wait until she has the views of fixed numbers of men and women.

Example 25 Find the likelihoods for each of these sampling schemes, under (unrealistic!)
assumptions of independence of voters.
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Note to Example 25

! An R× C table arises by randomly sampling a population over a fixed period and then classifying
the resulting individuals.

! In the first scheme there are no constraints on the row and column totals, and a simple model is
that the count in the (r, c) cell, yrc, has a Poisson distribution with mean µrc. The resulting
likelihood is ∏

r,c

{
µyrc
rc

yrc!
e−µrc

}
;

this is simply the Poisson likelihood for the counts in the RC groups.

! The pollster may set out with the intention of interviewing a fixed number m of individuals,
stopping only when

∑
rc yrc = m. In this case the data are multinomially distributed, with

likelihood
m!∏
r,c yrc!

∏

r,c

πyrcrc ,
∑

r,c

πrc = 1,

with πrc = µrc/
∑

s,t µst the probability of falling into the (r, c) cell.

! A third scheme is to interview fixed numbers of men and of women, thus fixing the row totals
mr =

∑
c yrc in advance. In effect this treats the row categories as subpopulations, and the

column categories as the response. This yields independent multinomial distributions for each
row, and product multinomial likelihood

∏

r

{
mr!∏
c yrc!

∏

c

πyrcrc

}

,
∑

c

π1c = · · · =
∑

c

πRc = 1,

in which πrc = µrc/
∑

t µrt.
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Contingency tables and Poisson response models

! Multinomial models can be fitted using Poisson errors, provided the appropriate baseline terms are
always included in the linear predictor.

! Write the data as two-way layout, with C columns and R rows with fixed totals (e.g., 6× 8 = 48
rows each with 3 columns for the jacamar data).

! Consider Poisson model with means µrc = exp(γr + xT

rcβ):

– the row parameters γ1, . . . γR are nuisance parameters, not of interest;

– we want inference for the parameter of interest, β.

! Corresponding multinomial model has fixed row totals mr and probabilities

πrc =
µrc∑C
d=1 µrd

=
exp(γr + xT

rcβ)∑C
d=1 exp(γr + xT

rdβ)
=

exp(xT

rcβ)∑C
d=1 exp(x

T

rdβ)
,

for r = 1, . . . , R, c = 1, . . . , C; i.e., one multinomial variable for each row.

! The resulting multinomial log likelihood is

ℓMult(β; y | m) ≡
R∑

r=1

C∑

c=1

yrc log πrc

=
R∑

r=1

{
C∑

c=1

yrcx
T

rcβ −mr log

(
C∑

d=1

ex
T
rdβ

)}

.
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Contingency tables and Poisson response models, II

Lemma 26 If parameters τr for the row margins are included in the above setup, then we can write

ℓPoiss(β, τ) = ℓPoiss(τ ;m) + ℓMult(β; y | m).

! Implications:

– the MLEs of β and τ based on the LHS are the same as those from separate maximisations of
the terms on the right:

◃ β̂ equals the MLE for the multinomial model,

◃ τ̂r = mr

– the observed and expected information matrices for β, τ are block diagonal.

– SEs based on the multinomial and Poisson models are equal (exercise).

! General conclusion: inferences on β are the same for multinomial and Poisson models,

provided the parameters associated to the margins fixed under the multinomial
model, i.e., the γr, are included in the Poisson fit.
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Note to Lemma 26

! The Poisson model has no conditioning, so with log µrc = γr + xT

rcβ the log likelihood is

ℓPoiss(β, γ) ≡
∑

r,c

(yrc log µrc − µrc) =
R∑

r=1

(

mrγr +
C∑

c=1

yrcx
T

rcβ − eγr
C∑

c=1

ex
T
rcβ

)

.

! Now we reparametrise in terms of the row totals τr =
∑

c µrc, noting that

τr = eγr
C∑

c=1

ex
T
rcβ, γr = log τr − log

{
C∑

c=1

exp(xT

rcβ)

}

,

so

ℓPoiss(β, τ) ≡
R∑

r=1

(mr log τr − τr) +
R∑

r=1

{
C∑

c=1

yrcx
T

rcβ −mr log

(
C∑

c=1

ex
T
rcβ

)}

,

= ℓPoiss(τ ;m) + ℓMult(β; y | m),

which is the log likelihood corresponding to

– independent Poisson row totals mr with means τr, and, independent of this,

– the multinomial log likelihood for the contingency table.
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Jacamar data

Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar to
individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0
† includes Philaethria dido also.
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Jacamar data: Models

! Let factors F , S, C represent the 3 fates, the 6 species, and the 8 colours.

! The models C ∗ S, C ∗ S + F , and C ∗ S + C ∗ F mean we set

log µcsf = αcs, log µcsf = αcs + γf , log µcsf = αcs + γcf .

! The vector of probabilities corresponding to the model with terms C ∗ S is

(πcs1,πcs2,πcs3) =

(
µcs1∑3
f=1 µcsf

,
µcs2∑3
f=1 µcsf

,
µcs3∑3
f=1 µcsf

)

= (13 ,
1
3 ,

1
3 ),

and that corresponding to the model with terms C ∗ S + F is

(πcs1,πcs2,πcs3) =

(
µcs1∑3
f=1 µcsf

,
µcs2∑3
f=1 µcsf

,
µcs3∑3
f=1 µcsf

)

=
1

eγ1 + eγ2 + eγ3
(eγ1 , eγ2 , eγ3) .

! Exercise: similar computations for C ∗ S + C ∗ F and C ∗ S + C ∗ F + S ∗ F .
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Jacamar data: Analysis of deviance

Deviances for log-linear models fitted to jacamar data.

Terms df Deviance
C ∗ S 88 259.42
C ∗ S + F 86 173.86
C ∗ S + C ∗ F 72 139.62
C ∗ S + S ∗ F 76 148.23
C ∗ S + C ∗ F + S ∗ F 62 90.66
C ∗ S ∗ F 0 0

! The null model C ∗ S is not of interest.

! The first model it is sensible to fit is C ∗ S + F .

! The best model seems to be C ∗ S + C ∗ F + S ∗ F , corresponding to independent effects of
species and colour, though its deviance is high (but remember the two outlying cells!)

Regression Methods Autumn 2024 – slide 160

90



2.8 Ordinal Responses slide 161

Pneumoconiosis data

Period of exposure x and prevalence of pneumoconiosis amongst coalminers.

Period of exposure (years)
5.8 15 21.5 27.5 33.5 39.5 46 51.5

Normal 98 51 34 35 32 23 12 4
Present 0 2 6 5 10 7 6 2
Severe 0 1 3 8 9 8 10 5

! Here
Normal < Present < Severe,

so these are ordinal responses with d = 3 categories and the total in each group (corresponding to
each period of exposure) fixed.

! We imagine that the assigned category stems from an underlying continuous variable, even if this
cannot be quantified very well.
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Models

! Assume we have n independent individuals whose responses I1, . . . , In fall into the set {1, . . . , L},
corresponding to L ordered categories, and that

γl = P(Ij ≤ l) = π1 + · · ·+ πl, l = 1, . . . , L, γL = 1,

! The corresponding likelihood is
∏n

j=1 πIj , where usually the contribution πIj ≡ πIj(ηj) for
individual j will depend on covariates xj through a linear predictor ηj = xT

j β.

! We often want the interpretation of the parameters not to change if we merge adjacent
categories, and we can do this using an underlying tolerance distribution, with

Ij = l ⇔ xT

j β + εj ∈ (ζl−1, ζl], ζ0 = −∞ < ζ1 < · · · < ζL−1 < ζL =∞,

where the tolerance distribution F of εj is often taken to be logistic, giving the proportional
odds model, in which

πl(x
T

j β) = P(ζl−1 < xT

j β + ε ≤ ζl) = F (ζl − xT

j β)− F (ζl−1 − xT

j β), l = 1, . . . , L;

here ζ1, . . . , ζL−1 are aliased with an intercept β0 and are not usually of interest.

! Another standard tolerance distribution is F (u) = 1− exp{− exp(u)}.
! To fit, we just apply IWLS to the multinomial likelihood

∏n
j=1 πIj .
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Pneumoconiosis data

Pneumoconiosis data analysis, showing how the implied fitted logistic distributions depend on x. Left:
plots of empirical logistic transforms for comparing categories 1 with 2 + 3 and 1 + 2 with 3; the
nonlinearity suggests using log x as covariate. Right: fitted model, showing probabilities for the three
groups with an underlying logistic distribution.
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Comments on count data

! Log-linear models are mathematically elegant and useful defaults for count data, with close links
to logistic regression, based on the relation between the Poisson and multinomial distributions.

! Interpretation of log-linear models can be difficult, especially for contingency tables, because
marginal and conditional parameters cannot be disentangled.

! Other models exist that are less elegant mathematically, but are more interpretable statistically.

! Also possible to fit models for ordinal data, using multinomial models and tolerance distribution
interpretation used for binomial data.
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2.9 Overdispersion slide 166

Overdispersion

! Often find that discrete response data are more variable than might be expected from a simple
Poisson or binomial model, so we see

– residual deviances larger than expected

– residuals more variable than expected under the model

but otherwise no evidence of systematic lack of fit

! This is overdispersion, perhaps due to effect of unmeasured explanatory variables on the
responses.
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UK monthly AIDS reports 1983–1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end
Year Quarter 0† 1 2 3 4 5 6 · · · ≥14 of 1992

...
...

...
...

...
...

...
...

...
...

...

1988 1 31 80 16 9 3 2 8 · · · 6 174
2 26 99 27 9 8 11 3 · · · 3 211
3 31 95 35 13 18 4 6 · · · 3 224
4 36 77 20 26 11 3 8 · · · 2 205

1989 1 32 92 32 10 12 19 12 · · · 2 224
2 15 92 14 27 22 21 12 · · · 1 219
3 34 104 29 31 18 8 6 · · · 253
4 38 101 34 18 9 15 6 · · · 233

1990 1 31 124 47 24 11 15 8 · · · 281
2 32 132 36 10 9 7 6 · · · 245
3 49 107 51 17 15 8 9 · · · 260
4 44 153 41 16 11 6 5 · · · 285

1991 1 41 137 29 33 7 11 6 · · · 271
2 56 124 39 14 12 7 10 · · · 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data

! UK monthly reports of AIDS diagnoses 1983–1992, with reporting delay up to several years!

! Example of incomplete contingency table (very common in insurance)

! Chain-ladder model: number of reports in row j and column k is Poisson, with mean

µjk = exp(αj + βk).

! Analysis of deviance:

Model df Deviance reduction df Deviance
464 14184.3

Time (rows) 37 6114.8 427 8069.5
Delay (cols) 14 7353.0 413 716.5

! Residual deviance is obviously far too large for a Poisson model to be OK, but the model is also
too complex, since we expect smooth variation in the αj .

! Residuals on next page show no obvious problems, just generic overdispersion.
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AIDS data: Assessment of fit

Diagnostic plots for fitted model: residuals against η̂ (top left); normal QQ-plot of residuals (top
right); Cook statistic Cj against leverage ratio hj/(1− hj) (lower left); Cook statistic Cj against case
number (lower right).

−2 0 2 4

−
4

−
2

0
2

4

Linear predictor

R
e
si

d
u
a
ls

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Ordered deviance residuals

Q
u
a
n
til

e
s 

o
f 
st

a
n
d
a
rd

 n
o
rm

a
l

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0
.0

5
0
.1

0
0
.1

5

h/(1−h)

C
o
o
k 

st
a
tis

tic

0 100 200 300 400

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Case

C
o
o
k 

st
a
tis

tic

Regression Methods Autumn 2024 – slide 170

94



AIDS data

! Data (+) and predicted true numbers based on simple Poisson model (solid) and GAM (dots).

! The Poisson model and data agree up to where data start to be missing.
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Dealing with overdispersion

! Two basic approaches:

– parametric modelling

– quasi-likelihood estimation, based only on the variance function

Example 27 (Linear and quadratic variance functions) Suppose that, conditional on ε > 0,
Y ∼ Pois(µε), where E(ε) = 1 and var(ε) = ξ. Show that this can lead to either linear or quadratic
variance functions, but a lot of data may be needed to distinguish them.

Comparison of variance functions for overdispersed count data. The linear and quadratic variance
functions are VL(µ) = (1 + ξL)µ and VQ(µ) = µ(1 + ξQµ), with ξL = 0.5 and ξQ chosen so that
VL(15) = VQ(15).

µ 1 2 5 10 15 20 30 40 60
Linear 1.5 3.0 7.5 15.0 22.5 30 45 60 90
Quadratic 1.0 2.1 5.8 13.3 22.5 33 60 93 180
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Note to Example 27

Let ε have unit mean and variance ξ > 0, and to be concrete suppose that conditional on ε, Y has
the Poisson distribution with mean µε. Then

E(Y ) = Eε {E(Y | ε)} , var(Y ) = varε {E(Y | ε)}+ Eε {var(Y | ε)} ,

so the response has mean and variance

E(Y ) = Eε(µε) = µ, var(Y ) = varε(µε) + Eε(µε) = µ(1 + ξµ).

If on the other hand the variance of ε is ξ/µ, then var(Y ) = (1 + ξ)µ. In both cases the variance of
Y is greater than its value under the standard Poisson model, for which ξ = 0. In the first case the
variance function is quadratic, and in the second it is linear.
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Negative binomial model

Example 28 (Negative binomial) In Example 27, if ε is gamma with shape parameter 1/ν, show
that

f(y;µ, ν) =
Γ(y + ν)

Γ(ν)y!

ννµy

(ν + µ)ν+y
, y = 0, 1, . . . , µ, ν > 0,

and that quadratic and linear variance functions are obtained on setting ν = 1/ξ and ν = µ/ξ
respectively.
The log link function log µ = xTβ is most natural.
ξ is estimated by maximum likelihood or through Pearson’s statistic.

Example 29 (AIDS data)

! MLE ξ̂Q = 22.7 (5.5)

! Analysis of Deviance (with ξ̂Q fixed):

Model df Deviance reduction df Deviance
464 7998.3

Time (rows) 37 3582.5 427 4415.8
Delay (cols) 14 3892.2 413 523.6

! Still somewhat overdispersed?
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AIDS data: Deviance residuals for NB model

Clear improvement over previous plots, even if not perfect.
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Quasi-likelihood

! Recall two basic assumptions for the linear model:

– the responses are uncorrelated with means µj = xT

j β and equal variances σ2;

– in addition to this, the responses are normally distributed.

! To avoid parametric modelling, we generalise the second-order assumptions, to

E(Yj) = µj , var(Yj) = φjV (µj), g(µj) = ηj = xT

j β,

where the variance function V (·) and the link function are taken as known.

! We obtain estimates β̃ by solving the estimating equation

h(β;Y ) = XTu(β) =
n∑

j=1

xjuj(β) =
n∑

j=1

xj
Yj − µj

g′(µj)φjV (µj)
= 0.

! If the mean structure is correct, then E(Yj) = µj, so E{h(β;Y )} = 0, and under mild conditions
β̃ is consistent (but maybe not efficient) as n→∞.
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Quasi-likelihood II

Recall that the general variance of an estimator β̃ defined by an estimating equation h(β;Y )p×1 = 0p
has sandwich form

E

{
−∂h(β;Y )

∂βT

}−1

var {h(β;Y )}E
{
−∂h(β;Y )T

∂β

}−1

.

Lemma 30 If V (µ) is correctly specified, then var(β̃)
.
= (XTWX)−1, where W is diagonal with

(j, j) element {g′(µj)2φjV (µj)}−1.

! If φj = φaj, with known aj > 0 and unknown φ > 0, then we obtain

– β̃ by fitting the GLM with variance function V (µ) and link g(µ);

– standard errors by multiplying the standard errors for this fit by φ̂1/2, where

φ̂ =
1

n− p

n∑

j=1

(yj − µ̂j)2

ajg′(µj)2V (µ̂j)
.
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Note to Lemma 30

! Note first that we can write

uj(β) ≡ uj(µj) =
Aj(µj)

Bj(µj)
,

where Aj(µj) = Yj − µj and Bj(µj) = g′(µj)φjV (µj). Only Aj is random and E{Aj(µj)} = 0.
Hence if we let prime denote derivative with respect to µj ,

∂uj(µj)

∂µj
=

A′
j(µj)

Bj(µj)
−

Aj(µj)B′
j(µj)

B2
j (µj)

has expectation E{A′
j(µj)}/Bj(µj) = −1/Bj(µj).

! We require E{−∂h(β;Y )/∂βT} and var{h(β;Y )}. Now

∂uj(β)

∂βT
=
∂ηj
∂βT

∂µj

∂ηj

∂uj(β)

∂µj
= xT

j
1

g′(µj)
u′j(µj),

which gives

E

{
−∂h(β;Y )

∂βT

}
= −

n∑

j=1

xjE

{
∂uj(β)

∂βT

}
=

n∑

j=1

xjx
T

j
1

g′(µj)2φjV (µj)
= XTWX,

where W is the n× n diagonal matrix with jth element {g′(µj)2φjV (µj)}−1. Moreover if in
addition the variance function has been correctly specified, then var(Yj) = φjV (µj), and hence

var{h(β;Y )} = XTvar{u(β)}X =
n∑

j=1

xjx
T

j
var(Yj)

g′(µj)2φ2jV (µj)2
= XTWX.

Thus the sandwich equals (XTWX)−1.

! Had the variance function been wrongly specified, the variance matrix of β̃ would have been
(XTWX)−1(XTW ′X)(XTWX)−1, where W ′ is a diagonal matrix involving the true and
assumed variance functions. Only if the variance function has been chosen very badly will this
sandwich matrix differ greatly from (XTWX)−1, which therefore provides useful standard errors
unless a plot of absolute residuals against fitted means is markedly non-random. In that case the
choice of variance function should be reconsidered.
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Quasi-likelihood III

! Under an exponential family model, h(β;Y ) is the score statistic, so β̃ is the MLE and is efficient
(i.e., it has the smallest possible variance in large samples).

! If not, inference is valid provided g and V are correctly chosen, and β̃ is optimal among
estimators based on linear combinations of the Yj − µj , by extending the Gauss–Markov theorem.

! In fact we can define a quasi-likelihood Q and its score through

Q(β;Y ) =
n∑

j=1

∫ µj

Yj

Yj − u

φajV (u)
du, h(β;Y ) =

∂

∂β
Q(β;Y ),

and a (quasi-)deviance as D = −2φQ(β;Y ).

! To compare models A, B with numbers of parameters pB < pA and deviances DB > DA, we use
the fact that

(DB −DA)/(pA − pB)

φ̂A

·∼ FpA−pB,n−pA,

if the simpler model B is adequate. This is easy in R.
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AIDS example

> aids.ql <- glm(y~factor(time)+factor(delay),family=quasipoisson,data=aids.in)

> anova(aids.ql,test="F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 464 14184.3

factor(time) 37 6114.8 427 8069.5 92.638 < 2.2e-16 ***

factor(delay) 14 7353.0 413 716.5 294.402 < 2.2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Summary

! Overdispersion is widespread in count and proportion data.

! We deal with it either by

– parametric modelling, or

– quasi-likelihood (QL) estimation, which involves assumptions only on the mean-variance
relationship.

! QL estimators equal the ML ones, but SEs are inflated by φ̂1/2.

! (Quasi-)deviance can also be defined, and used for model comparison, with F tests replacing χ2

tests.
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